文档库 最新最全的文档下载
当前位置:文档库 › 4FSK调制和解调

4FSK调制和解调

4FSK调制和解调
4FSK调制和解调

%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>初始化数据>>>>>>>>>>>>>>>>>>>>>

%---------------------------------------------------

clc,clear,close all;

fs = 30000;

Time_Hold_On = 0.1;

Num_Unit = fs * Time_Hold_On;

one_Level = zeros ( 1, Num_Unit );

two_Level = ones ( 1, Num_Unit );

three_Level = 2*ones ( 1, Num_Unit );

four_Level = 3*ones ( 1, Num_Unit );

A = 1; % the default ampilitude is 1 w1 = 300; %初始化载波频率

w2 = 600;

w3=900;

w4=1200;

%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>串并转换>>>>>>>>>>>>>>>

%---------------------------------------------------

Sign_Set=[0,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1]

Lenth_Of_Sign_Set = length ( Sign_Set ); %计算信号长度

j=1;

for I=1:2:Lenth_Of_Sign_Set %信号分离成两路信号Sign_Set1(j)= Sign_Set(I);Sign_Set2(j)=Sign_Set(I+1);

j=j+1;

end

Lenth_Of_Sign = length ( Sign_Set1 );

st = zeros ( 1, Num_Unit * Lenth_Of_Sign/2 );

sign_orign = zeros ( 1, Num_Unit * Lenth_Of_Sign/2 );

sign_result = zeros ( 1, Num_Unit * Lenth_Of_Sign/2 );

t = 0 : 1/fs : Time_Hold_On * Lenth_Of_Sign- 1/fs;

%---------------------------------------------------

%>>>>>>>>>>>产生基带信号>>>>>>>>>>>>

%---------------------------------------------------

for I = 1 : Lenth_Of_Sign

if ((Sign_Set1(I) == 0)&(Sign_Set2(I) == 0)) %00为1电平sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = one_Level;

elseif ((Sign_Set1(I) == 0)&(Sign_Set2(I) == 1)) %01为2电平sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = two_Level;

elseif ((Sign_Set1(I) == 1)&(Sign_Set2(I) == 1)) %11为3电平

sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = three_Level;

else %10为4电平sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = four_Level;

end

end

%---------------------------------------------------

%>>>>>>>>>>>>>>>>>>产生频带信号>>>>>>>>>>>>>>>>>>

%---------------------------------------------------

for I = 1 : Lenth_Of_Sign

if ((Sign_Set1(I) == 0)&(Sign_Set2(I) == 0)) %00为载波w1 st((I-1)*Num_Unit + 1 : I*Num_Unit) = A * cos ( 2 * pi * w1 * t( (I-1)*Num_Unit + 1 : I*Num_Unit ) );

elseif ((Sign_Set1(I) == 0)&(Sign_Set2(I) == 1)) %01为载波w2 st( (I-1)*Num_Unit + 1 : I*Num_Unit) = A * cos ( 2 * pi * w2 * t((I-1)*Num_Unit + 1 : I*Num_Unit ) );

elseif ((Sign_Set1(I) == 1)&(Sign_Set2(I) == 1)) %11为载波w3 st( (I-1)*Num_Unit + 1 : I*Num_Unit) = A * cos ( 2 * pi * w3 * t((I-1)*Num_Unit + 1 : I*Num_Unit ) );

else %10为载波w4 st( (I-1)*Num_Unit + 1 : I*Num_Unit) = A * cos ( 2 * pi * w4 * t( (I-1)*Num_Unit + 1 :I*Num_Unit ) );

end

end

%---------------------------------------------------

%>>>>>>>>>>>>>>>画初始信号图>>>>>>>>>>>>>>>>>

%---------------------------------------------------

figure

subplot ( 2, 1, 1 )

plot ( t, sign_orign );

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1),-A/2, 3*A+A/2] );

title ( 'The original Signal' );

grid;

subplot ( 2, 1, 2 )

plot ( t, st ); % the signal after modulation

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), -A, A ] );

title ( 'the signal after modulation' );

grid;

%---------------------------------------------------

%>>>>>>>>>>>>>>>带通滤波器>>>>>>>>>>>>>>

%---------------------------------------------------

%- design the bandpass [ 250 250 ]

wp = [ 2*pi*250 2*pi*350 ]; %通带

ws = [ 2*pi*50 2*pi*500 ]; %阻带

[N,wn]=buttord(wp,ws,1,30,'s');

[b,a]=butter( N,wn,'bandpass','s');

[bz,az]=impinvar(b,a,fs); %映射为数字的

dt1 = filter(bz,az,st); %带通取出频率w1

figure

subplot( 2, 2, 1 )

plot(t,dt1);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] ); title ( 'The element of 300 Hz' );

wp = [ 2*pi*550 2*pi*650 ];

ws = [ 2*pi*400 2*pi*800 ];

[N,wn]=buttord(wp,ws,1,30,'s');

[b,a]=butter( N,wn,'bandpass','s');

[bz,az]=impinvar(b,a,fs);

dt2 = filter(bz,az,st); %带通取出频率w2 subplot( 2, 2, 2 )

plot(t,dt2);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] ); title ( 'The element of 600 Hz' );

grid;

wp = [ 2*pi*850 2*pi*950 ];

ws = [ 2*pi*700 2*pi*1100 ];

[N,wn]=buttord(wp,ws,1,30,'s');

[b,a]=butter( N,wn,'bandpass','s');

[bz,az]=impinvar(b,a,fs);

dt3 = filter(bz,az,st); %带通取出频率w3

subplot( 2, 2, 3 )

plot(t,dt3);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] ); title ( 'The element of 900 Hz' );

wp = [ 2*pi*1150 2*pi*1250 ];

ws = [ 2*pi*1000 2*pi*1400 ];

[N,wn]=buttord(wp,ws,1,30,'s');

[b,a]=butter( N,wn,'bandpass','s');

[bz,az]=impinvar(b,a,fs);

dt4 = filter(bz,az,st);

subplot( 2, 2, 4 )

plot(t,dt4);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] );

title ( 'The element of 1200 Hz' );

%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>>相干解调>>>>>>>>>>>>>>>>>>>>>>>>

%---------------------------------------------------

dt1 = dt1 .* cos ( 2 * pi * w1 * t ); %解调载波1

dt2 = dt2 .* cos ( 2 * pi * w2 * t ); %解调载波2

dt3 = dt3 .* cos ( 2 * pi * w3 * t ); %解调载波3

dt4 = dt4 .* cos ( 2 * pi * w4 * t ); %解调载波4

figure

subplot( 2, 2, 1 )

plot(t,dt1);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] );

title ( '300Hz分量相干解调后的波形' );

grid

subplot( 2, 2, 2 )

plot(t,dt2);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] );

title ( '600Hz分量相干解调后的波形' );

grid;

subplot( 2, 2, 3 )

plot(t,dt3);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] );

title ( '900Hz分量相干解调后的波形' );

grid

subplot( 2, 2, 4 )

plot(t,dt4);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] );

title ( '1200Hz分量相干解调后的波形' );

grid

%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>>低通滤波器>>>>>>>>>>>>>>>>>>>>

%---------------------------------------------------

[N,Wn] = buttord( 2*pi*50, 2*pi*150,3,25,'s'); %临界频率采用角频率表示[b,a]=butter(N,Wn,'s');

[bz,az]=impinvar(b,a,fs); %映射为数字的

dt1 = filter(bz,az,dt1);

dt2 = filter(bz,az,dt2);

dt3 = filter(bz,az,dt3);

dt4 = filter(bz,az,dt4);

figure

subplot( 2, 2, 1 )

plot(t,dt1);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] );

title ( '300Hz分量低通滤波后的波形' );

grid

subplot( 2, 2, 2 )

plot(t,dt2);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] );

title ( '600Hz分量低通滤波后的波形' );

grid;

subplot( 2, 2, 3 )

plot(t,dt3);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] );

title ( '900Hz分量低通滤波后的波形' );

grid

subplot( 2, 2, 4 )

plot(t,dt4);

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] );

title ( '1200Hz分量低通滤波后的波形' );

grid

%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>>抽样判决>>>>>>>>>>>>>>>>>>>>

%---------------------------------------------------

for I = 1 : Lenth_Of_Sign

if (dt1((2*I-1)*Num_Unit/2) > dt2((2*I-1)*Num_Unit/2))&&(dt1((2*I-1)*Num_Unit/2) > dt3((2*I-1)*Num_Unit/2))&&(dt1((2*I-1)*Num_Unit/2) > dt4((2*I-1)*Num_Unit/2)) sign_result( (I-1)*Num_Unit + 1 : I*Num_Unit) = one_Level;

a(I)=0,b(I)=0;

elseif (dt2((2*I-1)*Num_Unit/2) >

dt1((2*I-1)*Num_Unit/2))&&(dt2((2*I-1)*Num_Unit/2) >

dt3((2*I-1)*Num_Unit/2))&&(dt2((2*I-1)*Num_Unit/2) > dt4((2*I-1)*Num_Unit/2)) sign_result( (I-1)*Num_Unit + 1 : I*Num_Unit) = two_Level;

a(I)=0,b(I)=1;

elseif (dt3((2*I-1)*Num_Unit/2) >

dt1((2*I-1)*Num_Unit/2))&&(dt3((2*I-1)*Num_Unit/2) >

dt2((2*I-1)*Num_Unit/2))&&(dt3((2*I-1)*Num_Unit/2) > dt4((2*I-1)*Num_Unit/2)) sign_result( (I-1)*Num_Unit + 1 : I*Num_Unit) =three_Level;

a(I)=1,b(I)=1;

else

sign_result( (I-1)*Num_Unit + 1 : I*Num_Unit) =four_Level;

a(I)=1,b(I)=0;

end

end

figure

plot ( t, sign_result );

axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), -A/2, 3*A+A/2 ] ); title ( '解调出来的波形' );

grid

%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>>并串转换>>>>>>>>>>>>>>>>>>>>

%---------------------------------------------------

signdemo=[];

for I=1:Lenth_Of_Sign

signdemo=[signdemo,a(I),b(I)]

end

AM调制解调系统仿真

设计(论文)任务书 课题名称:AM调制系统的仿真与原理实验分析 完成期限:2009年11月28日至2010年1月3日 院系名称外经贸学院指导教师李XX 专业班级电信0722班指导教师职称副教授学生姓名许XX 学号 071409xxx 院系课程设计(论文)工作领导小组组长签字

摘要 通信按照传统的理解就是信息的传输。在当今高度信息化的社会,信息和通信已经成为现代社会的“命脉”。信息作为一种资源,只有通过广泛的传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。而通信作为传输信息的手段或方式,与传感技术、计算机技术相互融合,已成为21世纪国际社会和世界经济发展的强大动力。可以预见,未来的通信对人们的生活方式和社会的发展将会产生更加重大和意义深远的影响。 在此我们将分别介绍各种调制系统,并将重点放在发展迅猛的数字调制上。调制在通信系统中的作用至关重要。所谓调制就是把信号转换成适合在信道中传输的形式的一种过程。调制的方式有很多。根据调制信号时模拟信号还是数字信号,载波是连续波还是脉冲序列,相应的调制方式有模拟连续波调制、数字连续波调制、模拟脉冲调制和数字脉冲调制等。 关键字:模拟调制系统、调制解调、超外差、仿真

目录 引言 (4) 1. 通信系统简介 (5) 1. 1 通信的基本概念 (5) 1. 2 通信的发展史 (5) 1.3 通信系统的组成 (5) 1.4 通信系统的分类 (6) 2. AM调制原理 (6) 2. 1 基本概念 (6) 2.2 AM调制的SystemView仿真 (7) 2.3 仿真模型参数 (10) 2.3.1正弦波发生器 (11) 2.3.2运放 (11) 2.3.3噪声源 (11) 2.3.4低通滤波器 (11) 3. 结语 (12) 参考文献: (13)

GFSK的调制解调原理

G F S K的调制和解调原理 高斯频移键控GFSK(GaussfrequencyShiftKeying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency-shiftkeying)。但FSK带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz频段的带宽较窄,因此在低数据速率应用中,GFSK调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调频。由于通常调制信号都是加在PLL频率合成器的VCO上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK调制特 另一部分则加在PLL的主分频器一端(基于PLL技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO进行分频)。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量,不受环路带宽的影响。但是,两点调制增加了GFSK调制指数控制的难度。

FM调制解调原理

频率调制信号的表示式为:()cos[()]t m c S t A t kfm d ωττ-∞ =+ ? 其中,kf 为 调频灵敏度,m(t)为调制信号。从公式出发即可完成频率调制的程序。 调频信号的解调方法通常是采用鉴频法。方框图如图所示 其中鉴频器包括微分电路和包络检波。 在模拟信号的调频程序中,先对输入参量的个数做出判断,少于则运行默认的。然后对信号进行调制,这里采样的调制信号是最简单的正弦信号,当然也可以为其他信号。调制过程中,积分是根据积分的定义编写的一段程序。在对已调信号进行解调前加入了噪声。解调过程中的微分同样的根据定义编写的,当然也可以采用MATLAB 里自带的函数diff 。在经过包络检波后对幅值做出了一定的修正。 下图是调频信号的时域频域波形。经过调频之后的信号频谱不仅发生了频谱搬移还增加了频率分量。

下图绿色的是小信噪比条件下的解调波形,可以发现信噪比对解调的影响。 而在语音信号的调频中,积分采用cumsum来完成,微分采用diff。因为经过调试发现,采用根据定义编写的程序由于循环运行需

要很多时间。另外,在经过微分器后,包络检波和低通这段和幅度调制的非相干解调一样,所以也可以在经过微分后调用AM包络检波的程序。对于调频信号来说,都会存在门限效应,使之在小信噪比情况下无法恢复出原来的调制信号。所以语音信号的调制解调是在很大信噪比情况下。

下面是语音信号调制解调的时域频域图。观看频谱可以看到调制信号的频谱相对于输入信号,发生了频谱搬移,还有在fc处多了一个冲激。 另外还有一个需要注意的问题,读入语音信号时所输入的路径必须和存放语音信号的路径相同。否则无法打开。 参考文献: [1]樊昌信,曹丽娜。通信原理。国防工业出版社。2006.9 [2] Santosh, the LNM IIT Jaipur (India).santosh_am_fm.m.2002.4 [3]陈丽丹。FM调制解调系统设计与仿真

SSB调制解调系统设计

南华大学电气工程学院 《通信原理课程设计》任务书 设计题目:SSB调制解调系统设计 专业:通信工程 学生姓名: 唐军德学号:20114400227 起迄日期:2013 年12月20日~2014年1月3日指导教师:宁志刚副教授 系主任:王彦教授

《通信原理课程设计》任务书

附件二: 《通信原理课程设计》设计说明书格式 一、纸张和页面要求 A4纸打印;页边距要求如下:页边距上下各为2.5 厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 二、说明书装订页码顺序 (1)任务书 (2)论文正文 (3)参考文献,(4)附录 三、课程设计说明书撰写格式 见范例 引言(黑体四号) ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆(首行缩进两个字,宋体小四号) 1☆☆☆☆(黑体四号) 正文……(首行缩进两个字,宋体小四号) 1.1(空一格)☆☆☆☆☆☆(黑体小四号) 正文……(首行缩进两个字,宋体小四号) 1.2 ☆☆☆☆☆☆、☆☆☆ 正文……(首行缩进两个字,宋体小四号) 2 ☆☆☆☆☆☆ (黑体四号) 正文……(首行缩进两个字,宋体小四号) 2.1 ☆☆☆☆、☆☆☆☆☆☆,☆☆☆(黑体小四号) 正文……(首行缩进两个字,宋体小四号) 2.1.1☆☆☆,☆☆☆☆☆,☆☆☆☆ (楷体小四号) 正文……(首行缩进两个字,宋体小四号) (1)…… ①……

………… 图1. 工作波形示意图(图题,居中,宋体五号) 5结论(黑体四号) ☆☆☆☆☆☆(首行缩进两个字,宋体小四号) 参考文献(黑体四号、顶格) 参考文献要另起一页,一律放在正文后,不得放在各章之后。只列出作者直接阅读过或在正文中被引用过的文献资料,作者只写到第三位,余者写“等”,英文作者超过3人写“et al”。 几种主要参考文献著录表的格式为: ⑴专(译)著:[序号]著者.书名(译者)[M].出版地:出版者,出版年:起~止页码. ⑵期刊:[序号]著者.篇名[J].刊名,年,卷号(期号):起~止页码. ⑶论文集:[序号]著者.篇名[A]编者.论文集名[C] .出版地:出版者,出版者. 出版年:起~止页码. ⑷学位论文:[序号]著者.题名[D] .保存地:保存单位,授予年. ⑸专利文献:专利所有者.专利题名[P] .专利国别:专利号,出版日期. ⑹标准文献:[序号]标准代号标准顺序号—发布年,标准名称[S] . ⑺报纸:责任者.文献题名[N].报纸名,年—月—日(版次). 附录(居中,黑体四号) ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆(首行缩进两个字,宋体小四号)

用MATLAB建模实现信号的调制解调(DOC)

用MATLAB 建模实现信号的调制解调 1. 实验要求 用MATLAB 的调制解调建模实现信号的调制解调过程,需要文字报告、波形图。 (本文选用AM 、FM 调制进行仿真分析) 2. 实验原理 2.1 AM 调制解调的原理 2.1.1 AM 调制信号的产生 标准调幅(AM )是指用信号m(t)去控制载波c(t)的振幅,是已调信号的包络按照m(t)的规律线性变化的过程,u(t)=(A0+a*m(t))*c(t)。调制过程如图2.1所示。 图2.1 AM 调制模型 2.1.2 AM 的解调 调制的逆过程叫解调,调制是一个频谱搬移过程,它是将低频信号的频谱搬移到载频位置。解调就是从已调信号的频谱中,将位于载频的信号频谱搬移回来。调制和解调都完成频谱搬移,各种调幅都是利用乘法器实现的,因此可以设想,在收端也可以利用乘法器进行解调[1]。已调信号u(t)乘以本地载波c(t),再通过低通滤波器得到解调信号dem(t)=u(t)*c(t)。如图所示,解调后dem(t)=A0/2+m(t)/2,所以在解调后要重新缩放。另一种解调方法,包络解调由于包络检波器电路简单,检波效率高,几乎所有调幅(AM )式接收机都采用这种电路,如图2.3所示为包络检波模型。在MATLAB 中我们使用hilbert()函数找出已调信号包络dem(t) A0+m(t)。找出包络后也要重新缩放,最终解调出基带信号m(t)。 c(t) A0 m(t) u(t)

相干解调模型 2.2 FM 调制解调的原理 2.2.1 FM 调制信号的产生 角度调制是频率调制和相位调制的总称。角度调制是使正弦载波信号的角度随着基带调制信号的幅度变化而改变。 调频信号可以被看作调制信号在调制前先积分的调相信号。这意味着先对m(t)积分,再将结果作为调相器的输入即可得到调频信号。相反,先微分m(t),再将结果作为调频器的输入也可得到调相信号。在模拟蜂窝移动通信中,调频是更为普遍应用的角度调制,这是因为FM 不管信号的幅度如何,抗干扰能力都很强,而在调幅中,正如前面所说的那样,抗干扰能力要弱得多[10]。 有两种基本的方法来产生调频信号:直接法和间接法。在直接法中,载波的频率直接随着输入的调制信号的变化而改变。在间接法中,先用平衡调制器产生一个窄带调频信号,然后通过倍频的方式把载波频率提高到需要的水平。 非线形调制要完成频谱的搬移但是他所形成的信号频谱不再保持原来基带频谱的结构,也就是说已调信号频谱与基带信号频谱存在着非线形关系,而解调正是从已调波中不失真地检出调制信号的过程。频率调频制:是瞬时频率偏移随基带信号成比例变化的调制[5]。 =dt t d ) (?) (t m K F (2-1) ?∞ -=t F d m K t τ τ?)()( (2-2) FM 公式: []?∞ -+=t F c m d m K t w A t S τ τ)(cos )( t A t m m m ωcos )(= ?? ????+=t A K t A m m m F c ωωωs i n c o s (2-3) dem(t) c(t) LPF u(t)

调制解调电路

第六章 频谱变换电路 ?? ?非线性:调频、限幅 频 线性:调幅、混频、倍 6.1概述 频谱变换电路:频谱搬移,使之适合于传输. 具备将输入信号频谱进行频谱变换,以获取具有所需频谱的输出信号这种功能的电路就叫做频谱变换电路。 6.2乘法器 变跨导式模拟乘法器是以恒流源式差动放大电路为基础,并采用变换跨导的原理而形成的。 变跨导式模拟乘法器(恒流源式差分放大器) 双入双出 () () EQ T EQ T b b be i be c o I U I U r r u r R u ββ β+≈++=?- ='111

() 21I U T β+= ∴I u U R u i T C o ??- ≈12 若I u i ∞2成正比,则21i i o u u u ?∞ e i e BE i e R u R u u I I 23 2≈-= = ∴21212i i e i i T C o U U R R u u U R u ??=? ?- = 跨导 222121 i e I T T T EQ m u R U U U I U I g ∞?=== ∴称为变跨导乘法器. 6.3调幅波 一、幅度调制(AM ) ()t u Ω-低频 ()t u c -高频 定义:用()t u Ω去控制()t u c 的幅度,使幅度()t u Ω∞,称为调制 称()t u Ω为调制信号,()t u c 为载波信号. 1、 调幅特性. 令()t U t u m Ω=ΩΩcos ()t w U t u c cm c cos = 则 )()t w t M U t u c a cm AM cos cos 1?Ω+= 其中cm m a U U k M Ω? =称为调制指数.(k 由电路决定的一个常数) ()t w t M U t w U t u c a cm c cm AM cos cos cos ?Ω??+?= ()()[]t w t w M U t w U c c a cm c cm Ω-+Ω+??+ ?=cos cos 2 1cos ∴调幅波有3个频率分量c w 、Ω+c w 、Ω-c w .

DSB调制解调系统设计与仿真

DSB调制解调系统设计与仿真 姓名: 学号: 学院:信息工程学院 专业:通信工程 指导老师:

目录 (2) 绪论 (2) 课程设计目的 (3) 课程设计要求 (3) 1. 建立DSB调制解调模型 (4) 1.1 DSB信号的模型 (4) 1.2 DSB信号调制过程分析 (5) 1.3 高斯白噪声信道特性分析 (8) 1.4 DSB解调过程分析 (11) 1.5 DSB调制解调系统抗噪声性能分析 (14) 2. 调制解调仿真过程 (16) 3. 课程设计心得体会 (19) 4. 参考文献 (20)

本课程设计信号的接收端就是通过解调来还原已调制信号从而读取发送端发送的信息。因此信号的解调对系统的传输有效性和传输可靠性有着很大的影响。调制与解调方式往往决定了一个通信系统的性能。双边带DSB信号的解调采用相干解调法,这种方式被广泛应用在载波通信和短波无线电话通信中。 课程设计目的 《通信原理》是通信工程专业的一门极为重要的专业基础课,但内容抽象,基本概念较多,是一门难度较大的课程。本课程设计是DSB调制解调系统的设计与仿真,用于实现DSB信号的调制解调过程,信号的调制与解调在通信系统中具有重要的作用,调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置,解调是调制的逆过程,即是将已调制的信号还原成原始基带信号的过程。在此次课程设计中,我需要通过多方搜集资料与分析,来理解并掌握DSB 调制解调的具体过程和它在MATLAB中的实现方法。通过这个课程设计,我将更清晰地了解DSB的调制解调原理,同时加深对MATLAB这款《通信原理》辅助教学操作的熟练度。 课程设计要求 1.掌握DSB信号的调制解调原理,以此为基础实现DSB信号的调制解调,所有的仿真用matlab或VC程序实现(如用Matlab则只能用代码的形式,不能

调频调制解调系统

课程设计说明书 学生姓名:学号: 学院: 信息工程学院 班级: 题目: 通信系统计算机仿真设计 ——频率调制解调系统的仿真 指导教师:职称: 2014 年 1 月 5 日 通信系统计算机仿真设计 ——频率调制解调系统的仿真

摘要:通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,本次课程设计是基于System view的通信系统的仿真,也就是在System view软件环境下进行频率调制解调系统的仿真设计。 调制可分为模拟调制和数字调制,模拟调制。模拟调制常用的方法有AM调制、DSB调制、SSB调制;数字调制常用的方法有BFSK调制等。经过调制不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响。调制方式往往决定着一个通信系统的性能。 关键词:FM调制解调原理;频率调制;FM信号产生和解调;System view。 前言 在模拟通信系统中,信号的频率相对于信号的幅度来说,不容易受噪声的干扰,在收信端更容易准确无误地回复所发送的信号,所以频率角度调制在模拟通信中占有非常重要的作用。角度调制与线性调制不同,已调信号频率不再是原调制信号频谱的线性搬移,而是频谱的非线性变换,会产生于频率搬移不同的新的频率成分,故又被称为非线性调制。 角度调制主要包裹频率调制(FM)和相位调制(PM),他们之间可相互转换。如果载波的频率变化量与调制信号电压成正比,则称为调频(FM);由于载波频率的变化和相位的变化都表现为载波总相角的变化,因此讲调频和调相统称为调角。由于FM用得比较多,因此这里只讨论频率调制系统。 一、设计要求 (1)掌握FM调制解调的基本原理。 (2)掌握FM信号的产生方法和解调方法 (3)掌握FM信号的波形及频谱特点。 二、知识要点与原理 2.1 FM信号的产生 频率调制是用调制信号x(t)控制载波的频率,使已调信号x FM(t)的频率按x(t)的规律变化,载波的振幅不变。更明确一点说,瞬时角频率偏移随x(t)成正比例变化,即FM信号的振幅是不变的,调制信号x(t)的大小用FM信号与时间轴上零交点的疏密来表示,x(t)越大,则实践轴上的零交点越多。FM信号零交叉点的变化规律直接反映了x (t)的变化规律。 角度调制的一般表达式为:x m(t)=A c cos[c t+(t)] (1)式中,A c为载波振幅;[w c t+ (t)]为信号瞬时相位。 对调频波来说,有k f x(t) (2)

GFSK的调制解调原理

GFSK 的调制和解调原理 高斯频移键控GFSK (Gauss frequency Shift Keying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency- shift keying)。但FSK 带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz 频段的带宽较窄,因此在低数据速率应用中,GFSK 调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK 调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK 调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调 频。由于通常调制信号都是加在PLL 频率合成器的VCO 上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK 调制特性,提出了一种称为两点调制的直接调频技术。 uc 图一 两点调制:调制信号被分成2部分,一部分按常规的调频法加在PLL 的VCO 端,另一部分则加在PLL 的主分频器一端(基于PLL 技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO 进行分频 )。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK 信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量, 鉴频器 PD 环路低通滤波器LF 压控振荡器VCO 载波信号 调制信号ui 调频信号uo 主分频器

FM调制解调系统设计与仿真

贵州大学明德学院 《高频电子线路》 课程设计报告 题目:模拟角度调制系统 学院:明德学院 专业:电子信息工程 班级: 学号: 姓名:周科远 指导老师:宁阳 2012年1月 1日

《高频电子线路》课程设计任务书 一、课程设计的目的 高频电子线路课程设计是专业实践环节之一,是学习完《高频电子线路》课程后进行的一次全面的综合练习。其目的让学生掌握高频电子线路的基本原理极其构造和运用,特别是理论联系实践,提高学生的综合应用能力。 二、课程设计任务 课程设计一、高频放大器 课程设计二、高频振荡器 课程设计三、模拟线性调制系统 课程设计四、模拟角度调制系统 课程设计五、数字信号的载波传输 课程设计六、通信系统中的锁相环调制系统 共6个课题选择,学生任选一个课题为自己的课程设计题目,独立完成;具体内容按方向分别进行,不能有雷同;任务包括原理介绍、系统仿真、波形分析等;要求按学校统一的课程设计规范撰写一份设计说明书。 三、课程设计时间 课程设计总时间1周(5个工作日) 四、课程设计说明书撰写规范 1、在完成任务书中所要求的课程设计作品和成果外,要撰写课程设计说明书1份。课程设计说明书须每人一份,独立完成。 2、设计说明书应包括封面、任务书、目录、摘要、正文、参考文献(资料)等内容,以及附图或附件等材料。 3、题目字体用小三,黑体,正文字体用五号字,宋体,小标题用四号及小四,宋体,并用A4纸打印。

目录 摘要...................................................................I ABSTRACT .............................................................II 一.课程设计的目的与要求.. (1) 1.1课程设计的目的 (1) 1.2课程设计的要求 (1) 二.FM调制解调系统设计 (2) 2.1FM调制模型的建立 (3) 2.2调制过程分析 (3) 2.3FM解调模型的建立 (4) 2.4解调过程分析 (5) 2.5高斯白噪声信道特性 (6) 2.6调频系统的抗噪声性能分析 (9) 三.仿真实现 (10) 3.1MATLAB源代码 (11) 3.2仿真结果 (15) 四.心得体会 (18) 五.参考文献 (19)

数字调制信号调制解调与时频域分析

简明通信原理实验 报告六

实验6 Matlab 实验三数字调制信号调制解调与时频域分析一、MATLAB仿真内容: (1)运行样例程序,观察 OOK、BPSK、BFSK 信号的时域波形和功率谱谱,求已调信号的带宽。 (2)采用相干解调法对 BPSK 信号解调,绘制解调后的信号波形,并与原始信号进行比较,对仿真结果进行分析说明。 (3)编写 DBPSK 信号产生和解调程序,绘制 DBPSK 信号的时域波形和功率谱,绘制解调后的信号波形并与原始信号波形进行比较。(4)编写四进制相移键控信号 QPSK 的产生程序,绘制信号波形与功率谱。 二、MATLAB仿真结果: (1)运行样例程序,观察OOK、BPSK、BFSK 信号的时域波形和功率谱谱,求已调信号的带宽。 文本: clear all;close all; A = 1; % 载波幅度 fc = 2; % 载波频率 N_sample = 8; % 每个码元采样点数 N = 500; % 码元数 Ts = 1; % 码元长度 dt = Ts/(fc*N_sample); % 波形采样间隔 fs = 1/dt; % 采样频率 t = 0:dt:N*Ts-dt; T = length(t); d = (sign(randn(1,N))+1)/2; dd = upsample(d,fc*N_sample);

gt = ones(1,fc*N_sample); d_NRZ = conv(dd,gt); ht = A*cos(2*pi*fc*t); %%********** OOK信号 ****************** s_BASK = d_NRZ(1:T).*ht; [f1,s_BASKf] = myt2f(s_BASK,fs); figure subplot(211) plot(t,s_BASK);grid axis([0 10 -1.2 1.2]); ylabel('OOK'); subplot(212) plot(f1,10*log10(abs(s_BASKf).^2/T));grid axis([-fc-4 fc+4 -50 10]); ylabel('OOK功率谱密度(dB/Hz)'); %%********** BPSK信号 ****************** d_BPSK = 2*d_NRZ-1; s_BPSK = d_BPSK(1:T).*ht; [f2,s_BPSKf] = myt2f(s_BPSK,fs); figure subplot(211) plot(t,s_BPSK);grid axis([0 10 -1.2 1.2]); ylabel('BPSK'); subplot(212) plot(f2,10*log10(abs(s_BPSKf).^2/T));A = 1;grid % 载波幅度fc = 2; % 载波频率 N_sample = 8; % 每个码元采样点数 N = 500; % 码元数 ylabel('BPSK功率谱密度(dB/Hz)'); %%********** BFSK信号 ****************** d_BFSK = 2*d_NRZ-1; s_BFSK = A*cos(2*pi*fc*t+2*pi*d_BFSK(1:T).*t); [f3,s_BFSKf] = myt2f(s_BFSK,fs); figure subplot(211) plot(t,s_BFSK);grid axis([0 10 -1.2 1.2]); ylabel('BFSK'); subplot(212) plot(f3,10*log10(abs(s_BFSKf).^2/T));grid axis([-fc-4 fc+4 -50 10]); ylabel('BFSK功率谱密度(dB/Hz)'); xlabel('f');

FSK调制解调系统(DOC)

课程设计说明书 课程设计名称:通信专业课程设计 课程设计题目: FSK调制解调系统 学院名称:信息工程学院 专业:班级: 学号:姓名: 评分:教师: 20 13 年 7 月 1 日

专业 课程设计任务书 20 12-20 13 学年 第 2 学期 第 17 周- 19 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。 题目 FSK 调制解调系统 内容及要求 1.用分立元件实现相位不连续的2FSK 信号的调制; 2. 提高要求:用锁相环完成2FSK 信号的解调。 门1 门2 倒相 + 2FSK 信号调制 PD LPF VCO 2FSK 信号解调 进度安排 17周:查找资料,进行系统软件方案设计; 18周:软件的分模块调试; 19周:系统联调;设计结果验收,报告初稿的撰写。 学生姓名: 指导时间:每周一、二、三、四 指导地点:E 楼 610 室 任务下达 20 13年 6月 17 日 任务完成 20 13年 7月 5 日 考核方式 1.评阅 □ 2.答辩 □ 3.实际操作□ 4.其它□ 指导教师 系(部)主任

摘要 本课程设计主要运用Multisim仿真软件,设计并进行2FSK的调制与解调系统仿真。在本次课程设计中先根据2FSK调制与解调原理构建调制解调电路,从Multisim工具箱中找出所需各元件,合理设置好参数并运行,用示波器的仿真图形判断2FSK的调制解调系统仿真是否成功。 利用分立元件,将不同频率的方波信号经过振荡器产生正弦波信号,并输入到CD4066模拟开关。利用1KHz载波信号去控制模拟开关,输出相位不一定连续,频率不同的正弦波信号,从而实现利用基带信号选择不同频率的信号。 关键词:Multisim,2FSK ,调制,解调,模拟开关

4ASK载波调制信号的调制解调与性能分析(1)解析

****************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2014年春季学期 通信系统仿真训练课程设计 题目:4ASK载波调制信号的调制解调与性能分析 专业班级:通信工程四班 姓名:赵天宏 学号: 11250414 指导教师:彭清斌 成绩:

摘要 实际通信中的许多信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即正弦载波调制。通过MATLAB软件平台,设计并实现了多进制幅移键控(M-ary Amplitude-Shift Keying,MASK)中的四电平调制(4-ary Amplitude Shift Keying,4ASK)的调制系统和解调系统。本文首先介绍了四电平调制和解调的原理,随后介绍载波产生、振幅调制、振幅判别等功能模块的设计,最后给出了整体调制解调的模块图和仿真波形。 关键词:载波调制、数字通信、四电平调制和解调

目录 一、设计目的和要求 (1) 1.1设计目的 (1) 1.2设计要求 (1) 二、设计内容及原理 (2) 2.1 四进制ASK信号的表示式 (2) 2.2产生方法 (3) 2.3 4ASK调制解调原理 (3) 三、运行环境及MATLAB简介 (6) 3.1运行环境 (6) 3.2 MATLAB简介 (6) 四、详细设计 (8) 4.1载波信号的调制 (8) 4.2调制信号的解调 (8) 4.3编程语言 (9) 4.4测试结果 (10) 五、调试分析 (11) 六、参考文献 (12) 总结 (13)

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

Simulink仿真AM调制解调系统

大连理工大学实验报告 学院(系):专业:班级: 姓名:学号:组: 实验时间:实验室:实验台: 指导教师签字:成绩: 实验名称:Simulink仿真AM调制解调系统 一、实验程序和结果: 利用matlab中的simulink功能,对系统进行仿真。 1.语音信号的调制与解调 (1)各部分参数设计: ①输入的调制信号: 调制信号的频率为20Hz,载波信号的频率为200Hz,二者的采样频率均为1000Hz,满足采样频率的要求。 ②随机信号模拟的干扰: 在实际仿真时,随机信号模拟信道的干扰信号,但在进行仿真时,并无图像输出。大概设置存在问题。 ③带通滤波器的参数设置: 滤波器为带通滤波器,下限通带频率为150Hz,阻带频率为100Hz;上限通带频率为250Hz,阻带频率为300Hz.采样频率为1000Hz. ④低通滤波器: 低通滤波器的上限通带截止频率为25Hz,阻带频率为30Hz;采样频率为1000Hz。

(2)框图: (3)各处时域频域波形: A.调制信号: 时域图像:频域图像:

B.载波信号: 时域波形:频域波形: C.调制后信号波形: 时域波形:频域波形: D.加入噪声后图像: 时域波形:频域波形:

E.带通滤波器后信号图像: 时域波形:频域波形: F.通过低通滤波器后信号图像: 时域波形:频域波形: 2、结果分析 该系统使用乘法器对低频信号进行幅度调制,用低频信号u控制高频载波u0的幅度。再利用想干解调的方法将原信号还原。由输出波形可知,该系统基本实现了预定的功能。但加噪声后的波形输出幅度波动较大,原因是带通滤波器对噪声的滤波效果不理想,导致解调后的波形含有剩余的噪声分量,主要是f0附近的噪声对波形造成了影响。

基于LabView的调制解调系统设计

基于LabVIEW的调制解调系统设计 工程设计报告 题目类型:小组题目 班级:021212 姓名:李x(组长)、黄XX 学号:1149,1100 联系方式: 西安电子科技大学 电子工程学院

一.摘要 虚拟技术的发展使电子技术实验的分析设计过程得以在计算机上轻松、准确、快捷地完成。这样,一方面克服了实验室在元器件和规格上的限制,避免了损坏仪器等不利因素,另一方面使得实验不受时间及空间的限制,从而促进虚拟电子技术实验教学的现代化。本文介绍了基于LabVIEW的虚拟电子技术实验系统——虚拟调制解调器的设计与实现。此系统具有参数调节方便、易实现、可靠度高等优点。 在实现的过程中,我们小组首先对LabVIEW这款软件的使用进行了深入的学习,掌握了这款软件的基本操作和图形编程的方法;其次对调制解调系统进行学习,了解现在流行的调制解调是如何实现的,然后在理论上设计出一套可以实现的调制解调系统;进而在LabVIEW的开发环境下对设计的系统进行试验验证,经过调试和反复的完善,得到最终的调制解调系统。 二.绪论 (一)虚拟仪器的发展 虚拟仪器发展至今,大体可以分为四代:模拟仪器、分立元件式仪器、数字化仪器、智能仪器和虚拟仪器。 第一代---模拟仪器。这类仪器看起来在某些实验室仍然恩能够看到,是以电磁感应基本定律为基础的指针式仪器,如指针式万用表、指针式电压表、指针式电流表等。这类指针式仪器借助指针来显示最终结果。 第二代---分立元件式仪器。当20世纪50年代出现电子管,20世纪60年代出现晶体管时,便产生了以电子管或晶体管电子电路为基础的第二代测试仪器---分立元件式仪器。 第三代---数字化仪器。20世纪70年代,随着集成电路的出现,诞生了以集成电路芯片为基础的第三代仪器这类仪器目前相当普及,如数字电压表,数字频率计等。这类仪器将模拟信号的测量转化为数字信号的测量,并以数字方式输出最终结果,适用于快速响应和较高准确度的测量。 第四代---智能仪器。随着微电子技术的发展和微处理器的普及,以微处理器为核心的第四代仪器---智能仪器也迅速普及。这类仪器内置微处理器,既能进行自动测试,又具有一定的数据处理功能,可取代部分脑力劳动,习惯上称之智能仪器。其缺点是它的功能模块全部都以硬件的形式存在,无论对开发还是针对应用,都缺乏灵活性。 目前,微电子技术和计算机技术飞速发展,测试技术与计算机深层次的结合正引起测试仪器领域里的一场新革命,一种全新的仪器结构概念导致了新一代仪器---虚拟仪器的出现。它是现代计算机技术,通信技术和测量技术想结合的产物,是传统仪器观念的一次巨大变革,是仪器产业发展的一个重要方向。它的出现使得人类的测试技术进入一个新的发展纪元。 (二)虚拟仪器的特点 任何一台仪器,一般都由信号的采集、信号的分析处理、测试结果的输出三

SSB信号调制解调(滤波法)

%SSB信号调制解调 clear;clc; f0 = 1; %信源信号频率(Hz) E0 = 1; %信源信号振幅(V) E = 1; %载波分量振幅(V) fc = 10; %载波分量频率(Hz) t0 = 1; %信号时长 snr = 15; %解调器输入信噪比dB dt = 0.003; %系统时域采样间隔 fs = 1/dt; %系统采样频率 df = 0.001; %所需的频率分辨率 t = 0:dt:t0; Lt = length(t); %仿真过程中,信号长度 snr_lin = 10^(snr/10);%解调器输入信噪比 %-------------画出调制信号波形及频谱 %产生模拟调制信号 m = E*cos(2*pi*f0*t); L = min(abs(m));%包络最低点 R = max(abs(m));%包络最高点 %画出调制信号波形和频谱 clf; figure(1); %% %画出调制信号波形 subplot(411); plot(t,m(1:length(t))); axis([0,t0,-R-0.3,R+0.3]);%设置坐标范围 xlabel('t');title('调制信号'); set(gca,'YTick',-R:1:R); subplot(412); [M,m,df1,f] = T2F_new(m,dt,df,fs); %求出调制信号频谱 [Bw_eq] = signalband(M,df,t0); %求出信号等效带宽 f_start_low = fc - Bw_eq; %求出产生下边带信号的带通滤波器的起始频率f_cutoff_low = fc; %求出产生下边带信号的带通滤波器的截止频率f_start_high = fc; %求出产生上边带信号的带通滤波器的起始频率f_cutoff_high = fc + Bw_eq; %求出产生上边带信号的带通滤波器的截止频率 plot(f,fftshift(abs(M))); %画出调制信号频谱%M:傅里叶变换后的频谱序列

FSK调制解调原理及设计

一.2FSK 调制原理: 1、2FSK 信号的产生: 2FSK 是利用数字基带信号控制在波的频率来传送信息。例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。故其表示式为 式中,假设码元的初始相位分别为1θ和2θ;112 f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。 2FSK 信号的产生方法有两种: (1)模拟法,即用数字基带信号作为调制信号进行调频。如图1-1(a )所示。 (2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。如图1-1(b )所示。 这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。 (a) (b) 2FSK 信号产生原理图 由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即 其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。 其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。 2、2FSK 信号的频谱特性: 由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即 2FSK 信号带宽为 s s F S K R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。 二.2FSK 解调原理: 仿真是基于非相干解调进行的,即不要求载波相位知识的解调和检测方法。 其非相干检测解调框图如下 M 信号非相干检测解调框图 当k=m 时检测器采样值为: 当k ≠m 时在样本和中的信号分量将是0,只要相继频率之间的频率间隔是,就与相移值无关了,于是其余相关器的输出仅有噪声组成。 其中噪声样本{}和{}都是零均值,具有相等的方差 对于平方律检测器而言,即先计算平方包络

FM调制解调系统设计与仿真

航空工业管理学院 《电子信息系统仿真》课程设计 09 级电子信息工程专业班级 题目FM调制解调系统设计与仿真 姓名杜怀超学号091308305 指导教师王丹王娜 二О一一年12 月 6 日

容摘要 频率调制(FM)在常应用通信系统中。FM广泛应用于电视信号的传输、卫星和系统等。 FM调制解调系统设计主要是通过对模拟通信系统主要原理和技术进行研究,理解FM调制原理和FM系统调制解调的基本过程,学会建立FM调制模型并利用集成环境下的M文件,对FM调制解调系统进行设计和仿真,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出对已调信号叠加噪声后信号,相干解调后信号和解调基带信号的时域波形;最后绘出FM基带信号通过上述信道和调制和解调系统后的误码率与信噪比的关系,并通过与理论结果波形对比来分析该仿真调制与解调系统的正确性及噪声对信号解调的影响。在课程设计中,系统开发平台为Windows XP,使用工具软件为 7.0。在该平台运行程序完成了对FM调制和解调以及对叠加噪声后解调结果的观察。通过该课程设计,达到了实现FM信号通过噪声信道,调制和解调系统的仿真目的。从而了解FM调制解调系统的优点和缺点,有利于以后设计应用。 关键词 FM;调制;解调;M ATL AB仿真;信噪比

一、MATLAB软件简介 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和mathematica、maple并称为三大数学软件。它以矩阵为基本数据单位,在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 二、理论分析 2.1 一般通信系统 通信的目的是传输信息。一般通信系统的作用就是将信息从信息源发送到一个或多个目的地。对于任何一个通信系统,均可视为由发

相关文档
相关文档 最新文档