文档库 最新最全的文档下载
当前位置:文档库 › 最新高考文科数学圆锥曲线专题复习

最新高考文科数学圆锥曲线专题复习

圆锥曲线专题复习

抛物线:

图形

x

y

O F

l

x

y

O F

l

)0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x

点 )0,2

(p )0,2(p -

)2,0(p

)2,0(p -

线 2

p x -= 2p x =

2p y -=

2

p y =

(一)椭圆

1. 椭圆的性质:由椭圆方程)0(122

22>>=+b a b

y a x

(1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。

(2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心,

简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点

椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c

e =

?2)(1a

b e -=。10<

c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例。,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为是椭圆在1=e 时的特例。 2. 椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆。其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。

椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式 3. 椭圆的准线方程

对于12222=+b y a x ,左准线c a x l 21:-=;右准线c a x l 2

2:=

对于12222=+b

x a y ,下准线c a y l 21:-=;上准线c a y l 2

2:=

焦点到准线的距离c

b c c a c c a p 2

222=-=-=(焦参数)

(二)双曲线的几何性质: 1. (1)范围、对称性

由标准方程122

22=-b

y a x ,从横的方向来看,直线x =-a,x =a 之间没有图象,从纵的方向来看,随着x

的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。双曲线不

封闭,但仍称其对称中心为双曲线的中心。 (2)顶点

顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21

实轴:21A A 长为2a,a 叫做实半轴长。虚轴:21B B 长为2b ,b 叫做虚半轴长。 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。 (3)渐近线

过双曲线12222=-b y a x 的渐近线x a b y ±=(0=±b

y

a x )

(4)离心率

双曲线的焦距与实轴长的比a

c

a c e ==

22,叫做双曲线的离心率 范围:e>1 双曲线形状与e 的关系:1122

2

22-=-=-==e a

c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔。

2. 等轴双曲线

定义:实轴和虚轴等长的双曲线叫做等轴双曲线。

等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e 。

3. 共渐近线的双曲线系

如果已知一双曲线的渐近线方程为x a

b y ±

=)0(>±=k x ka kb

,那么此双曲线方程就一定是:

)0(1)()(2

2

22>±=-k kb y ka x 或写成λ=-22

22

b

y a x 。 4. 共轭双曲线

以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。区别:三量a,b,c 中a,b 不同(互换)c 相同。共用一对渐近线。双曲线和它的共轭双曲线的焦点在同一圆上。确定双曲线的共轭双曲线的方法:将1变为-1。

5. 双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=

a c a

c

e 的点的轨迹是双曲线。其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线。常数e 是双曲线的离心率。 6. 双曲线的准线方程:

对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2

1:-=,相对于右焦点)0,(2c F 对

应着右准线c

a x l 2

2:=;

焦点到准线的距离c

b p 2

=(也叫焦参数)。

对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2

1:-=;相对于上焦点),0(2c F 对

应着上准线c

a y l 2

2:=。

(三)抛物线的几何性质 (1)范围

因为p >0,由方程()022

>=p px y 可知,这条抛物线上的点M 的坐标(x ,y )满足不等式x ≥0,所

以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。 (2)对称性

以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴。 (3)顶点

抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y =0时,x =0,因此抛物线()022>=p px y 的顶点就是坐标原点。

(4)离心率

抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示。由抛物线的定义可知,e =1。

【典型例题】

例1. 根据下列条件,写出椭圆方程

(1)中心在原点、以对称轴为坐标轴、离心率为1/2、长轴长为8; (2)和椭圆9x2+4y2=36有相同的焦点,且经过点(2,-3);

(3)中心在原点,焦点在x 轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶点的

距离是510-。

分析:求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a2=b2+c2及已知条件确定a2、b2的值进而写出标准方程。 解:(1)焦点位置可在x 轴上,也可在y 轴上

因此有两解:

112

x 16y 112y 16x 2

222=+=+或 (2)焦点位置确定,且为(0,5±),设原方程为22

221y x a b

+=,(a>b>0),由已知条件有

?????=+=-1

4

95

2222b a

b a 10,152

2==?b a ,故方程为110x 15y 22=+。 (3)设椭圆方程为122

22=+b

y a x ,(a>b>0)

由题设条件有??

?-=-=5

10c a c

b 及a2=b2+c2,解得b =10,5=a

故所求椭圆的方程是15

y 10x 2

2=+。

例2. 直线1+=kx y 与双曲线132

2=-y x 相交于A 、B 两点,当a 为何值时,A 、B 在双曲线的同一支上?当a 为何值时,A 、B 分别在双曲线的两支上? 解:把1+=kx y 代入132

2=-y x

整理得:022)3(2

2=---ax x a ……(1) 当3±≠a 时,2424a -=?

由?>0得6a 6<<-且3±≠a 时,方程组有两解,直线与双曲线有两个交点

若A 、B 在双曲线的同一支,须3

2

2

21-=a x x >0,所以3?-a 或3>a 。 故当36-<<-a 或63<

双曲线的两支上。

例3. 已知抛物线方程为)1x (p 2y 2

+=(p>0),直线m y x l =+:过抛物线的焦点F 且被抛物线截得的弦长为3,求p 的值。

解:设l 与抛物线交于1122(,),(,),|| 3.A x y B x y AB =则 由距离公式|AB|=|y y |2|y y |k 1

1)y y ()x -(x 21212

2

212

21-=-+

=-+

则有2129().2

y y -=

由02y x ,)1(221222=-+??

???

+=+

-=+p py ,x p y p y x 得消去

.,2.

04)2(2212122p y y p y y p p -=-=+∴>+=?

从而212212214)()(y y y y y y -+=- 即2

94)2(22=

+-p p 由于p>0,解得4

3=

p 例4. 过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为2

2

的椭圆C 相交于A 、B 两点,直线y=2

1

x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.

解法一:由e=22=a c ,得21

2

22=-a b a ,从而a2=2b2,c=b.

设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上. 则x12+2y12=2b2,x22+2y22=2b2,两式相减得, (x12-x22)+2(y12-y22)=0,

.)

(2212

12121y y x x x x y y ++-=--

设AB 中点为(x0,y0),则kAB=-

2y x , 又(x0,y0)在直线y=21x 上,y0=2

1

x0,

于是-

2y x =-1,kAB=-1, 设l 的方程为y=-x+1.

右焦点(b,0)关于l 的对称点设为(x ′,y ′

???-='='???????++'-='=-''

b y x b x y b

x y 11 1

22

1解得则

由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=

8

9

,1692=a . ∴所求椭圆C 的方程为2

29

1698y x + =1,l 的方程为y=-x+1.

解法二:由e=21,22222=-=a

b a a

c 得,从而a2=2b2,c=b. 设椭圆C 的方程为x2+2y2=2b2,l 的方程为y=k(x -1),

将l 的方程代入C 的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,

则x1+x2=

2

2214k k +,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-

2

212k k +.

直线l :y=21x 过AB 的中点(2,22121y y x x ++),则22

22122121k

k k k +?=+-, 解得k=0,或k=-1.

若k=0,则l 的方程为y=0,焦点F(c,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k=0舍去,从而k=-1,直线l 的方程为y=-(x -1),即y=-x+1,以下同解法一. 解法3:设椭圆方程为

)1()0(12

22

2>>=+b a b y a x

直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过2

1

=中点矛盾。 故可设直线)2()1(-=x k y l 的方程为

整理得:

消代入y )1()2()3(02)(2222222222=-+-+b a k a x a k x b a k )()(2211y x B y x A ,,设,2

2

2

22212b

a k a k x x +=

+知:

代入上式得:

又k x x k y y 2)(2121-+=+ 21

221=+-x x k k ,212222222=+?-∴a k b a k k k ,2

122=--∴ka b k k ,22=e 又 122)

(2222

222

2-=+-=--

=-

=∴e a

c a a

b k ,x y l -=∴1的方程为直线,

222b a =此时,02243)3(22=-+-b x x 化为方程,0)13(8)1(241622>-=--=?b b

3

3

>

∴b ,)4(22222b y x C =+的方程可写成:椭圆,2222b b a c =-=又, )0(,右焦点b F ∴,)(00y x l F ,的对称点关于直线设点,

则b y x b x y b x y -=-?????

???+-==-11212

100000

,, 得:

在椭圆上,代入,又点)4()11(b -22)1(21b b =-+,3

3

43>

=∴b , 1692=

∴b , 8

9

2=a 所以所求的椭圆方程为:116

9892

2=+y x

例5. 如图,已知△P1OP2的面积为4

27

,P 为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P 的离心率为

2

13

的双曲线方程.

相关文档