文档库 最新最全的文档下载
当前位置:文档库 › 13lookup函数

13lookup函数

13lookup函数
13lookup函数

1、逆向查询

下面这个表中,A:C列是员工基础信息表,分别是部门、姓名和职务。

【Excel函数篇】LOOKUP函数最经典的五种用法

现在要根据E5单元格中的员工姓名,在这个信息表中查询属于哪个部门,也就是咱们常说的逆向查询,就可以使用LOOKUP函数了。

F5单元格输入以下公式:

=LOOKUP(1,0/(B2:B10=E5),A2:A10)

得出的结果是“生产部”。

我靠,可怜的天竺僧还上三班倒呢^_^

上面这个公式就是LOOKUP函数最典型用法。

可以归纳为:

=LOOKUP(1,0/(条件),目标区域或数组)

其中,条件可以是多个逻辑判断相乘组成的多条件数组。

=LOOKUP(1,0/((条件1)*( 条件2)* ( 条件N)),目标区域或数组)

以0/(B2:B10=E5)构建一个0、#DIV/0!组成的数组,再用永远大于第2个参数中所有数值的1作为查找值,即可查找最后一个满足非空单元格条件的记录。

2、查询A列中的最后一个文本

这个题目也非LOOKUP函数莫属,用到的公式是:

=LOOKUP("々",A:A )

"々"通常被看做是一个编码较大的字符,它的输入方法为组合键。

如果感觉每次写这个符号有点费事儿,也可以写成:

=LOOKUP("座",A:A )

一般情况下,第一参数写成“座”也可以返回一列或一行中的最后一个文本。

3、查询A列中的最后一个数值

用到的公式是:

=LOOKUP(9E307,A:A)

9E307被认为是接近Excel规范与限制允许键入最大数值的数,用它做查询值,可以返回一列或一行中的最后一个数值。

有朋友会说了,如果我A列中的数据既有文本也有数值,想得到最后一个单元格内容,那咋办?当然不能凉拌!

哈哈^_^ ,写成这样就可以的:

=LOOKUP(1,0/(A:A<>""),A:A)

注意,上面这个公式中整列引用的写法在03版本中不适用,可以写

成实际的单元格区域引用。

4、根据简称查询全称

这个问题相信大家都会经常遇到吧?

如下面这个图中所示,A列是客户的简称,要求根据E列的客户全称对照表,在C列写出客户的全称。

【Excel函数篇】LOOKUP函数最经典的五种用法

C2单元格输入以下公式,可得到“上海沛发”的客户全称“上海沛发包装材料有限公司”。

=IFERROR(LOOKUP(1,0/FIND(A2,E$2:E$13),E$2:E$13),"")

公式中“0/FIND(A2,E$2:E$13)”部分,首先用FIND函数查询A2单元格“上海沛发”在E$2:E$13的起始位置,得到一个由错误值和数值组成的数组。

余下部分的计算过程就和咱们前面说过的一样了,使用IFERROR函数来屏蔽公式查询不到对应结果时返回的错误值。

5、多个区间的条件判断

话说某公司组织员工技能考核,根据不同的分值,给出相应的评语。50分以下的为“很差”

50-59分的为“差”

60-74分的为“一般”

75-85分的为“较好”

86-95分的为“优秀”

96分及以上的为“能手”。

【Excel函数篇】LOOKUP函数最经典的五种用法

这种多个区间的判断,如果需要判断的条件和区间都很多,再使用IF 函数来计算,估计会把自己都转晕了。

而使用LOOKUP函数来解决,不过是小菜一碟而已。

C2单元格输入以下公式,向下复制即可。

=LOOKUP(B2,{0,50,60,75,86,96;"很差","差","一般","较好","优秀","能手"})

【Excel函数篇】LOOKUP函数最经典的五种用法

除此之外,LOOKUP函数还被用于带有合并单元格的汇总计算,以及单元格中数值字段的提取等等,这些内容咱们留到以后慢慢再说。

先把今天这些记住了、熟悉了,即使练不成降龙十八掌,那起码也是降龙十巴掌了。

方差与协方差理解

§2 方差、协方差与相关系数 方差 例1 比较甲乙两人的射击技术,已知两人每次击中环数分布为: ξ:7 8901 0601...?? ??? η:67891001 02040201.....?? ???. 问哪一个技术较好 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于 ()E E ξξ-=E E ξξ-=0对一切随机变量均成立,即ξ的离差正负相消,因此 用()E E ξξ-是不恰当的. 我们改用()2 E E ξξ-描述取值ξ的离散程度,这 就是方差. 定义 1 若()2 E E ξξ-存在,为有限值,就称它是随机变量ξ的方差(variance),记作Var ξ, Var ξ=()2E E ξξ- (1) 但Var ξ的量纲与ξξ的标准差(standard deviation). 方差是随机变量函数()2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的计算公式

Var ξ=2()d ()x E F x ξ ξ+∞ -∞-?=22()(),,()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2) 进一步,注意到 ()2 E E ξξ-= ()222E E E ξξξξ??-+??=()22E E ξξ- 即有 Var ξ=()2 2 E E ξξ-. (3) 许多情况,用(3)式计算方差较方便些. 例1(续) 计算例1中的方差Var ξ与Var η. 解 利用(3)式 2 E ξ= ∑=i i i x P x ) (2 ξ=72×+82×+92×=, Var ξ= ()2 2E E ξξ-=82=. 同理, Var η= ()2 2 E E ηη-= = > Var ξ, 所以η取值较ξ分散. 这说明甲的射击技术较好. 例2 试计算泊松分布P(λ)的方差. 解 2 2 01 ! (1)!k k k k E k e k e k k λ λ λλξ∞ ∞ --====-∑∑ 1 1(1) (1)! (1)!k k k k k e e k k λ λ λλ∞ ∞ --===-+--∑∑ 2 ! ! j j j j j e e j j λ λ λλλ λ∞ ∞ --===+∑∑ 2 λλ=+ 所以Var ξ=22 λλλλ+-=. 例3 设ξ服从[ a, b ]上的均匀分布U [a, b],求Var ξ.

对样条函数及其插值问题的一点认识

对样条函数及其插值问题的一点认识 样条函数是计算数学以及计算机辅助设计几何设计的重要工具。1946年,I. J. Schoenberg 著名的关于一元样条函数的奠定性论文“Contribution to the problem of application of equidistant data by analytic functions ”发表,建立了一元样条函数的理论基础。自此以后,关于样条函数的研究工作逐渐深入。随着电子计算机技术的不断进步,样条函数的理论以及应用研究得到迅速的发展和广泛的应用。经过数学工作者的努力,已经形成了较为系统的理论体系。 所谓(多项式)样条函数,乃指具有一定光滑性的分段(分片)多项式。一元n 次且n -1阶连续可微的样条函数具有如下的表示式: 1()()()()N n n j j j s x p x c x x x +==+--∞<<+∞∑[] 011,00,01,,...,,(1),...,(),,...,,n n n n N n N N u un u u u u x x x x x S x x x x ++++ +≥??=??

自相关函数

自相关函数在不同的领域,定义不完全等效。在某些领域,自相关函数等 同于自协方差(autocovariance)。 统计学 R(k) = \frac{E[(X_i - \mu)(X_{i+k} - \mu)]}{\sigma^2} 信号处理 R_f(\tau) = f(\tau) * f^*(-\tau)= \int_{-\infty}^{\infty} f(t+\tau)f^*(t)\, dt = \int_{-\infty}^{\infty} f(t)f^*(t-\tau)\, dt,其中“*”是卷积算符,(\cdot)^*为取共轭。 同一时间函数在瞬时t和t+a的两个值相乘积的平均值作为延迟时间t 的函数,它是信号与延迟后信号之间相似性的度量。延迟时间为零时,则 成为信号的均方值,此时它的值最大。 编辑本段 自相关函数的性质 以下以一维自相关函数为例说明其性质,多维的情况可方便地从一维 情况推广得到。 对称性:从定义显然可以看出R(i) = R(?i)。连续型自相关函数为偶 函数 当f为实函数时,有: R_f(-\tau) = R_f(\tau)\, 当f是复函数时,该自相关函数是厄米函数,满足: R_f(-\tau) = R_f^*(\tau)\, 其中星号表示共轭。 连续型实自相关函数的峰值在原点取得,即对于任何延时τ,均有 |R_f(\tau)| \leq R_f(0)。该结论可直接有柯西-施瓦兹不等式得到。离 散型自相关函数亦有此结论。 周期函数的自相关函数是具有与原函数相同周期的函数。 两个相互无关的函数(即对于所有τ,两函数的互相关均为0)之和 的自相关函数等于各自自相关函数之和。 由于自相关函数是一种特殊的互相关函数,所以它具有后者的所有性质。 连续时间白噪声信号的自相关函数是一个δ函数,在除τ = 0 之外 的所有点均为0。 维纳-辛钦定理(Wiener–Khinchin theorem)表明,自相关函数和功 率谱密度函数是一对傅里叶变换对: R(\tau) = \int_{-\infty}^\infty S(f) e^{j 2 \pi f \tau} \, df

第三章 协方差传播律 使用

第三章 协方差传播律 一、 公式汇编 广义传播律 T YY XX T ZZ XX T YZ XX D FD F D KD K D FD K ?=?=??=?220022 002200()()()T YY XX T ZZ XX YZ XX Q F Q F Q K Q K Q F Q K σσσσσσ?=??=??=?T YY XX T ZZ XX YZ XX Q FQ F Q KQ K Q FQ K ? =??=??=? 独立观测值权倒数 2 2211221111Z n n f f f P L P L P L P ?????????=+++ ? ? ?????????? 方差与协因数阵 202020XX XX YY YY XY XY D Q D Q D Q σσσ===22022 020i ii j jj ji ij Q Q Q σσσσσσ=== 2 210 XX XX XX D Q P σσ-== 权2 02i i p σσ= 二、 解题指南 1.观测值及其方差阵 写成向量、矩阵形式 ,XX X D 2 按要求写出函数式,对函数式求全微分,写成矩阵形式 函数式 ),,2,1(),,,,(21n i X X X f Z n i i == 全微分 写成矩阵形式: dZ KdX =

3应用协方差传播律求方差或协方差阵。 T ZZ XX D KD K = 三、 例题讲解 在三角形ABC 中观测三个内角 ,将闭合差平均分配后得到各角值及其方差阵为: 1 23?4010'30"??5005'20"?8944'10"L L L L ????????==?????????????? ??633363336LL D --????=--????--?? 解:1.观测量 及其方差 123????L L L L ????=??????? ? ??633363336LL D --????=--????--?? 2.写出函数式 1 2 3 3 ??sin sin ??sin sin a b L L S S S S L L == 线性化 013 2 3 ??ln ln ln sin ln sin ??ln ln ln sin ln sin a b S S L L S S L L =+-=+- 11332 2 3 3 ????cot cot ????cot cot a a a b b b dS S L dL S L dL dS S L dL S L dL =-=- 写成矩阵形式 11 332 33???cot 0cot ???0cot cot ?a a a b b b dL dS S L S L dS dL dS S L S L dL ??????-??==?????? -??????? ????? 1 313 2 33??cot cot ?0???cot cot ?0a a a b b b S L S L dL dS dS dL dS S L S L dL ρρρ ρ????-? ????? ? ?==????? ???????-???? ??? ?133?1146041??09625?dL dL KdL dL ρ????-??==????-???????? 3.应用协方差传播律求方差或协方差阵 263311460114604136309620962533645Dss ρ--???? -??????=--??????-??????----???? 1 2 3 ???,,L L L 已知边长S0=1500.000m,求Sa 、Sb 的长度及他们的协方差阵 Dss

三次样条求导函数

三次样条求导函数 function ppd=ppder(pp) % pp=spline(x0,y0) [breaks,coefs,l]=unmkpp(pp); % breaks 是节点横坐标,coefs是每一段上的三次多项式的系数,l 是分的段 数 for n=1:l coefs1(n,:)=polyder(coefs(n,:)); end ppd=mkpp(breaks,coefs1,1); %ppd 是一个类似pp 的结构体数据,计算这样的分段多项式的值可以用 ppval(ppd,x) 举例: >> pp=spline(linspace(0,2*pi,50),sin(linspace(0,2*pi,50))) pp = form: 'pp' breaks: [1x50 double] coefs: [49x4 double] pieces: 49 order: 4 dim: 1 [breaks,coefs,l]=unmkpp(pp) breaks = Columns 1 through 12 0 0.1282 0.2565 0.3847 0.5129 0.6411 0.7694 … ….. Columns 49 through 50 6.1550 6.2832 coefs = -0.1643 -0.0007 1.0000 0 -0.1643 -0.0639 0.9918 0.1279

-0.1581 -0.1270 0.9673 0.2537 ……. 0.1453 -0.2731 -0.8381 0.5455 0.1546 -0.2172 -0.9010 0.4339 …… -0.1503 0.2457 0.8713 -0.4907 -0.1581 0.1879 0.9269 -0.3753 -0.1643 0.1270 0.9673 -0.2537 -0.1643 0.0639 0.9918 -0.1279 l = 49 >> pp1=mkpp(breaks,coefs,1) pp1 = form: 'pp' breaks: [1x50 double] coefs: [49x4 double] pieces: 49 order: 4 dim: 1 >>ppd=ppder(pp) ppd = form: 'pp' breaks: [1x50 double] coefs: [49x3 double] pieces: 49 order: 3 dim: 1 >>ppval(pp,3) ans = 0.1411 >> sin(3) ans = 0.1411

相关协方差相关函数内积点击等概念

>> temp1=[1 2 3]; >> temp2=[3 4 1]; >> xtemp=temp1.*temp2 %matlab所谓的向量点击,结果还是向量!!!!!!! xtemp = 3 8 3 >> te=temp1*temp2' %这是数学上两个向量点击,然后在matlab里面的计算方法,结果就是一个值了,含义是两个向量的相似度!!不过没有归一化(没有 按照方差归一) te = 14 >> 2.相关和协方差的关系:如函数: function rou=calcuateSimilary(Beye,data_new) %Beye,data_new前者是去噪前的18*751的数据,后者去去噪后的18导的 %%下面是用概率论里面的相关系数来做的,分别计算比如18导各自的相关系数,结果是18*1的向量 [m,n]=size(Beye); rou=zeros(m,1); for i=1:m temp=cov(Beye(i,:),data_new(i,:));%没有办法,cov函数不像数学公式,matlab的cov函数得到的一定是一个协方差矩阵 %所以对两个向量而言,取反斜对角的任何一个(对称的)就是他们两个的方差。然后按照下面的其实是一个归一化公式 %就是得到了两个向量的相关系数,也其实是衡量的两个变量的相似程度(而且是归一化以后的,否者不好衡量),注意 %注意和信号处理里面的相关函数区分,相关函数在0点的值就是两个变量没有归一化的协方差也就是上面的那个temmp值(如果去了均值,内积就是协方差 %见信号处理里面的什么交流功率和直流功率和相关函数的关系那个图),而相关函数在其它点的值是为了衡量信号如果错位后的相似程度。如果错位后两个 %信号居然达到最大的值,那表示这两个信号时间上延迟后才最像或者说有可能是同一个信号的延迟再现,所以用在衡量寻找信号的潜在周期嘛。 rou(i)=temp(1,2)/(sqrt(cov(Beye(i,:)))*sqrt(cov(data_new(i,:)))); end

三次样条函数的自动求法(学院+专业+学号)

三次样条函数的自动求法 摘要:在MATLAB 的The Spline Toolbox 中,没有给出三次样条函数表达的求法,可在教学过程中,或在实际问题中,我们需要知道样条插值函数的分段表达式。在现行数值分析教材中,一般都是通过解方程确定三次样条插值函数的表达式,但这种方法的工作量很大。在本文中,我们用MATLAB 语言编制了三个程序,给出在三种边界条件下,三次样条插值函数表达式的自动求法。 关键词:三次样条函数;边界条件;插值 0 引言 分段低次插值多项式具有计算简单、收敛性有保证、数值稳定等优点,但它不能保证整条曲线的光滑性甚至连续性,从而不能满足一些工程技术的要求。从20 世纪60 年代开始,由航空、造船等工程设计的需要而发展起来的样条插值方法,既保留了分段低次插值多项式的各种优点,又保证了插值函数的光滑性,已在许多领域里得到越来越广泛的应用。在教学过程中,或在实际问题中,我们需要知道样条插值函数的分段表达式。可在MATLAB 的The Spline Toolbox 中,没有直接给出三次样条函数表达式的求法,在现行数值分析教材中,一般都是在给定条件下,通过解方程而确定三次样条插值函数的表达式,尽管在计算过程中可借助数学软件来完成,但这种方法的工作量仍然很大。本文中,利用数学软件MATLAB ,我们给出了三次样条插值函数表达式的自动求法,这样不但解决了上述问题,而且给出了用数学软件解决实际问题的一个范例。 1 计算方法 定义对于给定的函数值 ),,1,0)((n k x f y k k == 其中b x x x a n =<<<= 10,如果函数)(x S 满足条件: (1))(x S 在每个子区间[k k x x ,1-](k=1,2,n , )上都是不高于三次的多项式; (2))(x S 、)(x S '、)(x S ''在[a,b]上都连续; (3)),2,1,0()(n k y x S k ==。 则称)(x S 为函数)(x f 关于节点n x x x ,,,10 的三次样条插值函数。 要求三次样条插值函数)(x S ,只需在每个子区间[k k x x ,1-]上确定一个三次多项式k k k k k d x c x b x a x S +++=23)( )(x S k 共有4个系数, 确定它们需要4个条件,因此要完全确定)(x S 共需4n 个条件。由)(x S 所满足的条件(1)、(2)、(3),可确定4n-2个条件,还缺少两个条件。这两个条件通常由实际问题对三次样条插值函数在端点的状态要求给出,称之为边界条件,常用的边界条件有以下三类。

matlab中常用的函数

A abs 绝对值、模、字符的ASCII码值 acos 反余弦 acosh 反双曲余弦 acot 反余切 acoth 反双曲余切 acsc 反余割 acsch 反双曲余割 align 启动图形对象几何位置排列工具 all 所有元素非零为真 angle 相角 ans 表达式计算结果的缺省变量名any 所有元素非全零为真area 面域图 argnames 函数M文件宗量名asec 反正割 asech 反双曲正割 asin 反正弦 asinh 反双曲正弦 assignin 向变量赋值 atan 反正切 atan2 四象限反正切 atanh 反双曲正切 autumn 红黄调秋色图阵axes 创建轴对象的低层指令axis 控制轴刻度和风格的高层指令 B bar 二维直方图 bar3 三维直方图 bar3h 三维水平直方图barh 二维水平直方图 base2dec X进制转换为十进制bin2dec 二进制转换为十进制blanks 创建空格串 bone 蓝色调黑白色图阵box 框状坐标轴 break while 或for 环中断指令brighten 亮度控制 C capture ;3版以前?捕获当前图形cart2pol 直角坐标变为极或柱坐标cart2sph 直角坐标变为球坐标cat 串接成高维数组 caxis 色标尺刻度 cd 指定当前目录 cdedit 启动用户菜单、控件回调函数设计工具 cdf2rdf 复数特征值对角阵转为实数块对角阵 ceil 向正无穷取整 cell 创建元胞数组 cell2struct 元胞数组转换为构架数组celldisp 显示元胞数组内容cellplot 元胞数组内部结构图示char 把数值、符号、内联类转换为字符对象 chi2cdf 分布累计概率函数 chi2inv 分布逆累计概率函数chi2pdf 分布概率密度函数 chi2rnd 分布随机数发生器 chol Cholesky分解

试求三次样条插值S(X)

给定数据表如下: 试求三次样条插值S(X),并满足条件: i)S’(0.25)=1.0000, S’(0.53)-0.6868; ii) S”(0.25)= S”(0.53)=0; 解: 由给定数据知: h0 =0.3-0.25 - 0.05 , h 1=0.39-0.30-0.09 h 2=0.45-0.39-0.06, h 3=0.53-0.45-0.08 由μ i=h i/(h i1+h i), λ i= h i/(h i1+h i) 得: μ1= 5/14 ; λ 1= 9/14 μ2= 3/5 ; λ 2= 2/5 μ3= 3/7 ; λ 3=4/7 0.25 0.5000 ﹨ ﹨ 1.0000 ∕﹨ 0.25 0.5000 ∕ -0.9200-f[x 0,x 0, x 1 ] ﹨∕ 0.9540 ∕﹨ 0.30 0.5477 -0.7193-f[x 0,x 1,x 2 ] ﹨∕

0.8533 ∕﹨ 0.39 0.6245 -0.5440-f[x1,x2,x 3 ] ﹨∕ 0.7717 ∕﹨ 0.45 0.6708 -0.4050-f[x 2,x 3,x 4 ] ﹨∕ 0.7150 ∕﹨ 0.53 0.7280 -0.3525-f[x 3,x 4,x 5 ] ﹨∕ 0.6868 ∕ 0.53 0.7280 i)已知一节导数边界条件,弯矩方程组 ┌┐┌┐ │ 2 1 │┌M 0 ┐│-0.9200 ︳ ︳5/14 2 9/14 ︳︳M ︳︳-0.7193 ︳ 1 ︳3/5 2 2/5 ︳︳M 2 ︳_6 ︳-0.5440︳ ︳ 3/7 2 4/7 ︳︳M ︳︳-0.4050 ︳ 3

二元函数插值的一般方法研究

《二元函数多项式插值的一般方法研究》的开题报告 一.课题研究的背景和意义 (一).插值问题的提出和发展过程 许多实际问题都用函数)(x f y =来表示某种内在规律的数量关系,其中相当一部分函数通过实验或观测得到的.虽然)(x f 在某个区间[]b a ,上是存在的,有的还是连续的,但却只能给出[]b a ,上一系列点i x 的函数值),...,1,0)((n i x f y i i ==,这只是一张函数表.有的函数虽有解析表达式,但由于计算复杂,使用不方便,通常也造一个函数表,如大家熟悉的三角函数表、对数表、平方根和立方根表等.为了研究函数的变化规律,往往需要求出不在表上的函数值.因此,我们希望根据给定的函数表做一个既能反应函数)(x f 的特性,又便于计算的简单函数)(x P ,用)(x P 近似)(x f .通常选一类较简单的函数(如代数多项式或分段代数多项式)作为)(x P ,并使)()(i i x f x P =对n i ,...,1,0=成立.这样确定的)(x P 就是我们希望得到的插值函数. 对于上述的)(x f y =的函数插值,前人们已经做过很多的研究,典型的有多项式插值、拉格朗日插值、牛顿插值、埃尔米特插值等.但是对于二元函数),(y x f z =的插值还没有一个较广的研究. (二).二元函数插值研究的意义 1. 理论意义: 一元函数插值主要有基函数法、拉格朗日插值法、牛顿插值法、埃尔米特插值等,但是对于二元函数插值乃至n 元插值是不能直接在一元函数插值的基础上直接推广的。多元插值是一个活跃的研究领域,至今已有非常多的多元插值公式,但是可供利用的公式十分少。 所以我们研究二元函数的插值时,可以为n 元函数插值提供新的研究思路,有助于复杂函数的偏导数的求解,也可以是对插值理论的完善。 2. 实际意义: 一元函数插值问题主要是平面的,而二元函数插值是在三维空间上的,这对我们构造三维空间图像有非常大的作用.例如,在现代机械工业中用计算机控制加工机械零件,根据设

作业4-回归模型的函数形式 (1)

习题4 回归模型的函数形式 姓名:____万瑜________;学号:______1157120_________ 9.下面的模型是参数线性的吗?如果不是用什么方法可以使他们成为参数线性模型? A .i i X B B Y 211 += b .221i i i X B B X Y += 14表5-13给出了德国1971年~1980年消费者价格指数Y (1980年=100)及货币供给X (10亿德国马克)的数据。 A 做如下回归: 1.Y 对X 2.lnY 对lnX 3。lnY 对X 4.Y 对lnX 解: 1.Y 对 X 2.lnY 对 lnX

3. lnY 对X 4.Y 对lnX 解:1.X Y ??=1 ?β斜率说明X 每变动一个单位,Y 的绝对变动量;

2. E X X Y Y =??=//?1 β斜率便是弹性系数; 3. X Y Y ??=/?1 β斜率表示X 每变动一个单位,Y 的均值的瞬时增长率; 4,. X X Y /?1 ??=β斜率表示X 的相对变化对Y 的绝对量的影响。 C 对每一个模型求Y 对X 的变化率 解:1. 2609.0?1=??=X Y β; 2. X Y X Y X Y 5890.0?1=?=??β; 3. Y Y X Y 0028.0?1=?=??β; 4. X X X Y /2126.54/?1==??β. D 对每一个模型求Y 对X 的弹性,对其中的一些模型,求Y 对X 的均值弹性。 解:1. Y X Y X X X Y Y E 2609.0?//1 =?=??= β; 均值弹性=5959.096.41176 220.19 2609.02609.0=?=?Y X 2. 5890.0?//1 ==??= βX X Y Y E ; 3. X X X X Y Y E 0028.0?//1=?=??=β; 均值弹性=6165.0220.190028.00028.0=?=?X 4. Y Y X X Y Y E /2126.54/?//1==??= β. 均值弹性=5623.096.41176 1 2126.5412609.0=?=?Y . E 根据这些回归结果,你将选择那个模型?为什么? 解:无法判断,因为只有当模型的解释变量的类型相同时,才可比较拟合优度检验数2 R ,对模型的选择还取决于模型的用途。 25表5-16给出了1995~2000年间Qualcom 公司(数字无线电信设计和制造公司)每周股票价格的数据。 a 做收盘价格对时间的散点图。散点图呈现出什么样的模式?

关于三次样条插值函数的学习报告(研究生)资料

学习报告—— 三次样条函数插值问题的讨论 班级:数学二班 学号:152111033 姓名:刘楠楠

样条函数: 由一些按照某种光滑条件分段拼接起来的多项式组成的函数;最常用的样条函数为三次样条函数,即由三次多项式组成,满足处处有二阶连续导数。 一、三次样条函数的定义: 对插值区间[,]a b 进行划分,设节点011n n a x x x x b -=<< <<=,若 函数2()[,]s x c a b ∈在每个小区间1[,]i i x x +上是三次多项式,则称其为三次样条函数。如果同时满足()()i i s x f x = (0,1,2)i n =,则称()s x 为()f x 在 [,]a b 上的三次样条函数。 二、三次样条函数的确定: 由定义可设:101212 1(),[,] (),[,]()(),[,] n n n s x x x x s x x x x s x s x x x x -∈??∈?=???∈?其中()k s x 为1[,]k k x x -上的三次 多项式,且满足11(),()k k k k k k s x y s x y --== (1,2,,k n = 由2()[,]s x C a b ∈可得:''''''()(),()(),k k k k s x s x s x s x -+-+== 有''1()(),k k k k s x s x -++= ''''1()(),(1 ,2,,1)k k k k s x s x k n -+ +==-, 已知每个()k s x 均为三次多项式,有四个待定系数,所以共有4n 个待定系数,需要4n 个方程才能求解。前面已经得到22(1)42n n n +-=-个方程,因此要唯一确定三次插值函数,还要附加2个条件,一般上,实际问题通常对样条函数在端点处的状态有要求,即所谓的边界条件。 1、第一类边界条件:给定函数在端点处的一阶导数,即 ''''00(),()n n s x f s x f == 2、第二类边界条件:给定函数在端点处的二阶导数,即

多源信息融合数字模型

多源信息融合数字模型 研究员、博导 岳天祥 研究员、博导 刘纪远 (中国科学院地理学与资源研究所, 北京100101) 摘 要:研究结果表明,在目前基础条件下,多源信息融合数字模型的实现需要解决现行数字地面 模型和空间插值模型的误差问题、点—面信息有效融合问题、多尺度转换问题和多维GIS面临的理 论问题。建立多源信息融合数字模型的基本步骤可归纳为:(a)建立基于曲面论数字模型的基本方程,(b)运用遥感数据反演数字模型的首次近似表达形式,(c)如果有更新信息,重复以上过程,直至 理论模型与实际需求完全相符。 关键词:曲面论 遥感反演 多源信息融合 数字模型 A Digital Model for Multi-Sources Information Fusion Professor YUE Tianxiang Professor LIU Jiyuan (Institute of Geographical Sciences and Natural Resources Research,C AS,Beijing100101) A bstract:Our re search re sult shows that realization of the digital m odel for multi-sourc es information fusion needs to solve problems of e rrors of existing digital te rrain model and spatial inte rpolation model,virtual fusion of point and surface information,information transformation at various scales,and multi-dimension G I S.The basic ste ps of constructing the digital model include,(a)establishing basic equations of the digital model by means of surface the ory,(b)retrie ving first approximate formulation using remote sensing data,(c)if the re are more available information,the ste p above is repeated until requirement is re ache d. Key words:surface the ory,remote se nsing retrie val,information fusion,digital model 1 引言 七十年代初,美国研究机构发现,利用计算机技术对多个独立的连续声纳信号进行融合后,可以自动检测出敌方潜艇的位置[1]。这一发现使信息融合作为一门独立的技术首先在军事应用中得到青睐,美国相继研究开发了几十个军事融合系统。进入八十年代,研制出了应用于大型战略系统、海洋监视系统和小型战术系统的第一代信息融合系统,它们包括军用分析系统(TCAC)、多平台多传感器跟踪信息相关处理系统(INCA)、全员分析系统(PAAS)、海军战争状态分析显示系统(TOP)、辅助空中作战命令分析专家系统(DAGR)、空中目标确定和截击武器选择专家系统(TATR)、自动多传感器部队识别系统(AMSUI)和目标获取与武器输送系统(TR-WDS)。九十年代研制的主要数据融合系统包括全源信息分 中国科学院知识创新工程项目(No.kzc x2-308-02)

三次样条函数

计算方法实验报告 1、实验题目 三次样条插函数。 2、实验内容 三次样条插值是建立在Hermite 插值的基础上的。Hermite 插值是在一个区间上的插值,而三次样条插则是建立多个区间上插值,构造一个具有二阶光滑度的曲线,在求出给定点上对应的函数。本实验就是建立一个能根据三次样条插值函数求根的程序。 3、算法思想 给定一个区间,并把它分成n 等份,并且给出了每个结点对就的横坐标和纵坐标。利用程序输出给定插值点对应的值。横坐标设为:X 0, X 1, X 2, X 3, …X n 纵坐标为Y 0, Y 1, Y 2, …Y n ,设插点为u 。则令h k =X k+1-X k ,λk =1-+k k k h h h , μk =11--+k k k h h h , g k =3(1 11--+-+-k k k k k k k k h y y h y y λμ), 其中k=1,2,…,n-1 再根据第一类边界条件则可以确定公式6.16,再根据6.17解出方程中的m 向量,最后代入公式6.8求解。 4、源程序清单 #include #define N 21/*最大结点个数减一*/ void sanCi() { /*定义过程数据变量*/ float x[N],y[N],h[N]; /*横纵坐标及区间长度*/ float rr[N],uu[N],gg[N]; /*计算m 用的中间数组rr 、uu 、gg 分别对应:λ、μ、g 数组*/

float aa[N],bb[N],tt[N]; /*矩阵分解时用到的中间变量aa、bb、tt分别对应:α、β数组以及A=LU时中间矩阵*/ float mm[N]; /*最后要用到的系数m*/ int n,k,kv,chose; /* n为实际结点个数,k为下标,kv为最后确定k的值*/ float s,u; /*最后计算u对应的值*/ printf("请输入区间段数:"); scanf("%d",&n); /*输入结点个数*/ /*输入所有横坐标:*/ printf("输入所有横坐标:"); for(k=0; k<=n; k++) scanf("%f",&x[k]); /*输入对应纵坐标:*/ printf("输入对应纵坐标:"); for(k=0; k<=n; k++) scanf("%f",&y[k]); for(k=0; k

均生函数与自回归模型的详细介绍

一、自回归模型定义 以上介绍的回归模型是根据与其它变量之间的关系来预测一个变量的未来的变化,但是在时间序列的情况下,严格意义上的回归则是根据该变量自身过去的规律来建立预测模型,这就是自回归模型。自回归模型在动态数据处理中有着广泛的应用。 自回归模型的一个最简单的例子是物理中的单摆现象。设单摆在第个摆动周期中最大 摆幅为,在阻尼作用下,在第()个摆动周期中的最大摆幅将满足关系式 ,(3-7-1) 其中为阻尼系数。如果此单摆还受到外界环境的干扰,则在单摆的最大幅值上叠加一个新的随机变量,于是(3-7-1)式为 ,(3-7-2) 上式称为一阶自回归模型。当式中满足时,为平稳的一阶自回归模型。将这些概念推广到高阶,有自回归模型 (3-7-3)

式中为模型变量,为模型的回归系数,为模型的随机误差,为模型阶数。 二、自回归模型参数的最小二乘估计 设有按时间顺序排列的样本观测值,阶自回归模型的误差方程为 …… , 记 ,,,, 得 ,(3-7-4) 的最小二乘解为 (3-7-5)

三、自回归模型阶数的确定 建立自回归模型,需要合理地确定其阶数,一般可先设定模型阶数在某个 范围内,对此范围内各种阶数的模型进行参数估计,同时对参数的显著性进行检验,再利用定阶准则确定阶数,下面采用的§2-4的线性假设法来进行模型定阶。其原理是: 设有观测数据,先设阶数为,建立自回归模型, (3-7-6) 再考虑模型,将 (3-7-7) 作为(3-7-6)式的条件方程,联合(3-7-6)、(3-7-7)两式,就是模型。 先对(3-7-6)式单独平差,可求得模型参数估计及其残差平方和,记为 ,再联合(3-7-6)、(3-7-7)两式,也就是对阶模型进行平差,求得 阶模型参数估计及其残差平方和,记为。按线性假设法的(2-4-14)式,它们的关系可写成 (3-7-8) 在§2-4线性假设法中已证明,在假设成立时,可作分布统计量为

样条函数(三次样条)

样条插值是一种工业设计中常用的、得到平滑曲线的一种插值方法,三次样条又是其中用的较为广泛的一种。 1. 三次样条曲线原理 假设有以下节点 1.1 定义 样条曲线是一个分段定义的公式。给定n+1个数据点,共有n个区间,三次样条方程满足以下条件: a. 在每个分段区间(i = 0, 1, …, n-1,x递增),都是一个三次多项式。 b. 满足(i = 0, 1, …, n ) c. ,导数,二阶导数在[a, b]区间都是连续的,即曲线是光滑的。 所以n个三次多项式分段可以写作: ,i = 0, 1, …, n-1 其中ai, bi, ci, di代表4n个未知系数。 1.2 求解 已知: a. n+1个数据点[xi, yi], i = 0, 1, …, n b. 每一分段都是三次多项式函数曲线 c. 节点达到二阶连续 d. 左右两端点处特性(自然边界,固定边界,非节点边界) 根据定点,求出每段样条曲线方程中的系数,即可得到每段曲线的具体表达式。 插值和连续性: , 其中i = 0, 1, …, n-1 微分连续性:

, 其中i = 0, 1, …, n-2 样条曲线的微分式: 将步长带入样条曲线的条件: a. 由(i = 0, 1, …, n-1)推出 b. 由(i = 0, 1, …, n-1)推出 c. 由(i = 0, 1, …, n-2)推出 由此可得: d. 由(i = 0, 1, …, n-2)推出 设,则 a. 可写为:

,推出 b. 将ci, di带入可得: c. 将bi, ci, di带入(i = 0, 1, …, n-2)可得: 端点条件 由i的取值范围可知,共有n-1个公式,但却有n+1个未知量m 。要想求解该方程组,还需另外两个式子。所以需要对两端点x0和xn的微分加些限制。选择不是唯一的,3种比较常用的限制如下。 a. 自由边界(Natural) 首尾两端没有受到任何让它们弯曲的力,即。具体表示为和 则要求解的方程组可写为: b. 固定边界(Clamped) 首尾两端点的微分值是被指定的,这里分别定为A和B。则可以推出

中图像函数大全2019年(版)

Matlab中图像函数大全 abs 绝对值、模、字符的ASCII码值acos 反余弦 acosh 反双曲余弦 acot 反余切 acoth 反双曲余切 acsc 反余割 acsch 反双曲余割 align 启动图形对象几何位置排列工具all 所有元素非零为真 angle 相角 ans 表达式计算结果的缺省变量名any 所有元素非全零为真 area 面域图 argnames 函数M文件宗量名 asec 反正割 asech 反双曲正割 asin 反正弦 asinh 反双曲正弦 assignin 向变量赋值 atan 反正切 atan2 四象限反正切 atanh 反双曲正切 autumn 红黄调秋色图阵 axes 创建轴对象的低层指令 axis 控制轴刻度和风格的高层指令 B b bar 二维直方图 bar3 三维直方图 bar3h 三维水平直方图 barh 二维水平直方图 base2dec X进制转换为十进制 bin2dec 二进制转换为十进制 blanks 创建空格串 bone 蓝色调黑白色图阵 box 框状坐标轴 break while 或for 环中断指令brighten 亮度控制

capture (3版以前)捕获当前图形 cart2pol 直角坐标变为极或柱坐标 cart2sph 直角坐标变为球坐标 cat 串接成高维数组 caxis 色标尺刻度 cd 指定当前目录 cdedit 启动用户菜单、控件回调函数设计工具cdf2rdf 复数特征值对角阵转为实数块对角阵ceil 向正无穷取整 cell 创建元胞数组 cell2struct 元胞数组转换为构架数组 celldisp 显示元胞数组内容 cellplot 元胞数组内部结构图示 char 把数值、符号、内联类转换为字符对象chi2cdf 分布累计概率函数 chi2inv 分布逆累计概率函数 chi2pdf 分布概率密度函数 chi2rnd 分布随机数发生器 chol Cholesky分解 clabel 等位线标识 cla 清除当前轴 class 获知对象类别或创建对象 clc 清除指令窗 clear 清除内存变量和函数 clf 清除图对象 clock 时钟 colorcube 三浓淡多彩交叉色图矩阵 colordef 设置色彩缺省值 colormap 色图 colspace 列空间的基 close 关闭指定窗口 colperm 列排序置换向量 comet 彗星状轨迹图 comet3 三维彗星轨迹图 compass 射线图 compose 求复合函数 cond (逆)条件数 condeig 计算特征值、特征向量同时给出条件数condest 范-1条件数估计 conj 复数共轭 contour 等位线 contourf 填色等位线

相关文档
相关文档 最新文档