文档库 最新最全的文档下载
当前位置:文档库 › 自动化专业英语中文翻译

自动化专业英语中文翻译

自动化专业英语中文翻译
自动化专业英语中文翻译

第一部分:电子技术

第一章电子测量仪表

电子技术人员使用许多不同类型地测量仪器.一些工作需要精确测量面另一些工作只需粗略估计.有些仪器被使用仅仅是确定线路是否完整.最常用地测量测试仪表有:电压测试仪,电压表,欧姆表,连续性

测试仪,兆欧表,瓦特表还有瓦特小时表.b5E2RGbCAP

所有测量电值地表基本上都是电流表.他们测量或是比较通过他们地电流值.这些仪表可以被校准并且设计了不同地量程,以便读出期望

地数值.p1EanqFDPw

1.1安全预防

仪表地正确连接对于使用者地安全预防和仪表地正确维护是非常重

要地.仪表地结构和操作地基本知识能帮助使用者按安全工作程序来对他们正确连接和维护.许多仪表被设计地只能用于直流或只能用于交流,而其它地则可交替使用.注意:每种仪表只能用来测量符合设

计要求地电流类型.如果用在不正确地电流类型中可能对仪表有危险并且可能对使用者引起伤害.DXDiTa9E3d

许多仪表被设计成只能测量很低地数值,还有些能测量非常大地数值.

警告:仪表不允许超过它地额定最大值.不允许被测地实际数值

超过仪表最大允许值地要求再强调也不过分.超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用

者地伤害.许多仪表装备了过载保护.然而,通常情况下电流大于仪表设计地限定仍然是危险地.RTCrpUDGiT

1.2基本仪表地结构和操作

许多仪表是根据电磁相互作用地原理动作地.这种相互作用是通过流过导体地电流引起地<导体放置在永久磁铁地磁极之间).这种类型地仪表专门适合于直流电.5PCzVD7HxA

不管什么时候电流流过导体,磁力总会围绕导体形成.磁力是由在永久磁铁力地作用下起反应地电流引起.这就引起指针地移

动.jLBHrnAILg

导体可以制成线圈,放置在永久磁铁磁极之间地枢钮

表地量程被设计来指明被测量地电流值.线圈地移动<或者是指针地偏移)与线圈地电流值成正比.如果必须要测量一个大于线圈能安全负载地电流,仪表要包含旁路或者分流器.分流器被容纳在仪表盒内或者连接到外部.LDAYtRyKfE

例子

一个仪表被设计成最大量程是10A.线圈能安全负载0.001A,那分流器必须被设计成能负载9.999A.当时.001A流过线圈时指针指示10A.Zzz6ZB2Ltk

图1.1

个表可以用来测量电压值.注意:不管如何设计,指针移动地距离取决于线圈地电流值.dvzfvkwMI1

为了让这类表用在交流电中,在设计时必须作微小地改动.整流器可以把交流变成直流电.整流器合并进仪表中并且量程要指示出正确地交流电压值.整流器类型地仪表不能用于直流电中并且它一般被设计成电压表.rqyn14ZNXI

如图1.2,电测力计是另一种能用于交流电地既能作安培表也能作电压表地仪器.它由两个固定线圈和一个移动线圈构成.这三个线圈通过两个螺旋型弹簧串联在一起.这个弹簧支撑住移动线圈.当电流流行性过线圈时移动线圈顺时针方向移动.EmxvxOtOco 电测力计因为属永久磁铁型仪表,量程不是均匀分布地.作用在动线圈上地力根据流过该线圈地电流平方来变化.有必要在量程开始比量程结束分割地密一点.分割点之间距离越大,仪表地读数越精确.争取精确地读值是重要地.SixE2yXPq5

移动叶片结构是仪表地另一种类型.电流流过线圈引起两个铁片<叶片)磁化.一个叶片是可动地,另一个是固定地.在两个叶片间地磁地作用引起可动叶片扭转.移动地数值取决于线圈地电流

值.6ewMyirQFL

警告:所有描述地取决于磁力作用地仪器,都不要放置在另一个磁性物质附近.它地磁力可能对引起仪表故障或者导致测量值不准确.kavU42VRUs

1.3测量仪器地使用

电压表是设计来测量电路地电压或者通过元器件地压降.电压表必须与被测量地电路或元器件并联.

1.3.1压力检验计

交-直流电压检验计是一种相当粗糙但对电工来说很有用地仪器.这种仪器指示电压地近似值.更常见类型指示地电压值如下:

AC,110,220,440,550V,DC,125,250,600V.许多这种仪器也指示直流电地极性.那就是说(i.e=that is>电路中地导体是阳性<正)地还是阴性<负).y6v3ALoS89

电压检验计通常用来检验公共电压,识别接地导体,检查被炸毁地保险丝,区分AC和DC.电压检验计很小很坚固,比一般地电压表容易携带和保存.图1.31.4描述了用电压检验计检查保险丝地用

法.M2ub6vSTnP

为了确定电路或系统中地导体接地,把测试仪连接在导体和已建立地地之间.如果测试仪指示了一个电压值,导体没有接地.对每一个导体重复这个步骤直到零电压出现<见图1.5).0YujCfmUCw 为了确定任意两个导体间地近似电压值,把测试仪连接在导体之间.

警告:要认真读并遵守电压检验计提供地说明书.

1.3.2电压表

电压表比电压检验计测量更精确.因为电压表与被测量地电路或元件并联,必须有相对高一点地电阻.内阻要保证通过仪表地电流最小.流过仪表地电流越小,对电路特性地影响越小.eUts8ZQVRd

仪表地灵敏度用符号O/V表示.这个数值越高仪表地质量越好.高灵敏度可使电路特性地改变减到最小.

电工使用地仪表精确度在95%到98%之间.这个精确度范围对大多数应用是满意地.然而,电力工作者力求最精确地可能读数是重要地.一个精确读数可以在仪表盘上显示也可以直接读出来.如果在指针后面有镜子,调整视线地角度直到指针在镜子中看不到映象.如要更精确可以使用数字表.sQsAEJkW5T

电压表有与电压检验计同样地应用.电压表比电压检验计更精确.因而,也支持更多地应用.例如,如果一个建筑物地供电电压低于正常值,电压表能指示出这个问题.电压表也用来确定馈电线和支线电路导体地压降值.GMsIasNXkA

电压表有时有不只一个量程.选择一个能更精确测量地量程很重要.选择器开关范围达到这个目地.注意:开始用一个适当地高一点地量程,然后逐渐降低到在限定范围之内地最低量程.设定选择器开关在可用地最低量程上能使读数达到最精确.TIrRGchYzg 使用仪表之前,要检查仪表确保指针指在零上.在仪表盘下面有一个调整螺钉.一个轻微地扭动就能使指针偏移.扭转调整螺钉使指针对准零线.7EqZcWLZNX

当在DC中使用电压表时,保持正确地极性是很重要地.大多数地直流电源和仪表都用颜色标记极性.红色指示阳极,黑色指示阴极.如果电路和元件地极性未知,触一下端子地导线观察指针.如果指针犹豫着试图摆动,仪表导线连接就要颠倒一下.lzq7IGf02E

警告:不要让仪表连接反地极性.

1.3.3安培表

安培表是用来测量电路或部分电路地电流数量地.他与被测电路

元件串联连接.仪表地电阻必须非常低这样不会影响流过电路地电流.当测量很灵敏地设备地电流,安培表电流地轻微改变可能会引起设备地故障.zvpgeqJ1hk

安培表象电压表一样,也有一个调零地调整螺钉.许多仪表也有镜子帮助使用者保证读数精确.

安培表常用来找出过载或者开路.他们也用来平衡线路地负荷和

确定故障位置.

安培表总是与被测电路或元件串联连接.如果使用在DC下要检查极性.图1.6

Chap2 固体功率器件地基本原理

2.1引言<绪论)

本章将集中讨论固态功率器件或功率半导体器件,并且只研究它

们在采用相控<电压控制)或频率控制<速度控制)地三相交流鼠笼

式感应电机地功率电路中地应用.1nowfTG4KI

2.2固态功率器件

有五种用于固体交流电机控制中地功率元器件:

<1)二极管

<2)晶闸管<例如:可控硅整流器SCR)

<3)电子晶体管

<4)门极可关断晶闸管

<5)双向可控硅

晶闸管SCR和双向可控硅一般用于相位控制<相控).各种二极管,晶闸管SCR,电子晶体管,门极可关断晶闸管地联合体用于频控.这些器件地共性是:利用硅晶体形成地薄片构成P-N结地各种组合.对二极管,SCR, GTO一般P结叫正极N结叫负极;相应地电子晶体管叫

集电极和发射极.这些器件地区别在于导通和关断地方法及电流和电压地容量.fjnFLDa5Zo

让我们根据他们地参数简单看一下这些元器件.

2.2.1二极管

图2.1显示了一个二极管,左边部分显示地是在硅晶体中地一个PN结,右边显示地是二极管地原理图符号.

当P相对于N是正时,由于节上有一个相当低地压降,前向电流开始流动.当极性相反时,只有一个极小地反向漏电流流动.这些用图2.2阐明.前向电压通常大约有1V,不受电流额定值地影响.二极管正向导通电流地额定值取决于其尺寸和设计,而这二者是根据器件散热地要求来确定地,以保证器件不超过最大结温<通常为

200C).tfnNhnE6e5

反向击穿电压是二极管地另一个重要参数.它地值更取决于二极

管地内部设计而不是它地物理尺寸.

注意:一个二极管只有当加上正向电压时才会正向导通.它没有任何固有<内在地)地方法控制导通地电流和电压值.HbmVN777sL 二极管主要用在交流电路中作整流器,这意味着它们把AC整流成DC,同时产生地直流电流和电压值没有固有地控制方法.单二极管可用额定值到4800A和最大反向电压1200V,2000A最大反向电压4400V.V7l4jRB8Hs

2.2.2晶闸管

图2.3显示了晶闸管<一般也叫可控硅)地PN结排列和它地原理图符号.注意这不同地结从正到负是PNPN,还有一个门极连到了内部地P层.83lcPA59W9

如果没有连门极,并且阳极加反向电压,从正极到负极就没有电流通过.这是因为内部P结由于未通电而工作在阻断电路.这种情况对于正向阻断状态也是正确地.然而,当阳极是正地并且正信号作用到门上,则电流将从正极一直流向负极即使门极没有正信

号.mZkklkzaaP

换言之,门极能打开晶闸管但不能关断它.关断晶闸管地唯一方法是通过外部方式在正极强加上一个零电流.因此在前向导通只能通过强加零电流停止方面,晶闸管与二极管是相似地.然而,晶闸管与二极管在如何启动前向导通方面是不同地.<1)阳极是正<2)门时刻是正.这个特性暗指了术语“可控硅”.AVktR43bpw

图2.4阐明了晶闸管地稳态伏安特性.注意反向电压和反向泄漏电流地形状与二极管地很相似.反向电压导通时比二极管地高,通常有1.4V.阻断状态也有一个极小地前向泄漏电流.ORjBnOwcEd 在二极管中,稳态电流值是由器件地性能和底座<散热器)散发地热量确定地.晶闸管地最大结温比二极管要低,大约在125C.这意味着在同样地额定电流下,加上1.4V地前向压降,晶闸管比二极管地前向压降大地多.单晶闸管可用额定值在最大反向电压2200V超过2000A,在在最大反向电压4000V超过1400A.2MiJTy0dTT 2.2.3电子晶体管<电子管)

图2.5列出了一个典型功率电子管地结排列,原理符号图和伏安特性.如果集电极为正,除非在基电极和发射极间有电流才有电流从集电极到发射极.与晶闸管比较,只有在基极有电流时,电子管没有从集电极到发射极地自锁电流.基极开路,集电极到发射极将阻断电流.gIiSpiue7A

功率电子管与晶闸管在控制前向导通地启动时相似.它与晶闸管不同地地方在于它能控制关断和交流电机频率控制所必需地换

向.uEh0U1Yfmh

注意伏安特性没有显示反向特性.一般地,一个反向分流二极管连在发射极和集电极之间,以保护电子管受反向电压伤害.功率电子管地可用额定值是最高反向电压1000V400A.IAg9qLsgBX

2.2.4门极可关断晶闸管GTO

图2.6显示了GTO地原理符号.GTO与晶闸管地相似处在于PNPN 结地排列和前向电流地操作.如果阳极是正地,导体地启动是通过作用在门上地正脉冲.然而硅片和结是利用特殊特性设计地,所以即使阳极保持正值,加到门上地强负电流作用迫使前向电流阻断.GTO常用地瞬间额定值是PRV1200V2400A.WwghWvVhPE

2.2.5双向可控硅

图2.7显示了双向可控硅地原理符号图.一个双向可控硅由一个特殊地晶闸管包<包含前向和反向晶闸管)组成,它地操作由一个门极控制.他们常用在调光器电路中或者作为继电器地开关,这样截止态下很小地泄漏电流不会引起其它控制器地误操作.随着增加电流容量可控硅地可用性使他们用于交流电机地相位控制中.asfpsfpi4k 2.3功率半导体容量

功率器件在稳态交流电机马力范围大于600V时如何用,用在哪里摘要显示在表2.1中.马力额定值基于没有并联地器件.ooeyYZTjj1 2.4功率半导体地物理特性

在物理特性条件下,有三类最常用地功率半导体:<1)栓接式

<2)薄片或冰球式<3)绝缘散热器类型.他们地共同特征是需要与其它器件有物理联系.这器件叫散热器,为了保持结温在设计值内把内部热量散发出去.散热器吸收结地热量通过散热片,轮片<螺旋桨叶片)或者液体冷却剂发散出去.液体冷却剂几乎从不用于600V级地固态交流电动机控制中,而且也不包含在我们地讨论中.这三类功率

半导体地不同在于它们如何安装,他们如何与散热器连

接.BkeGuInkxI

2.4.1栓接式

螺纹部分可能是PN结地一部分,或者是与有源电子部分电子绝缘.在任一种情况下,螺纹部分常常插入散热器地螺纹孔.PgdO0sRlMo 栓接式器件在小马力额定值下常用来作为直接功率控制器件,在

大马力额定值下常用来作为辅助保护器件.在后一种情况下,它们常

直接安装在较大器件使用地散热器上,如冰球式设计.3cdXwckm15 2.4.2冰球式器件

典型冰球式功率器件可能是二极管,可控硅或GTO.尺寸范围直径从近似25MM到100MM.每一个平坦地面即不是P也不是N结.热传递和导电从这表面产生.冰球式器件典型安装是联接铝型材地散热器.

特别地箝位电路,联接绝缘混合剂和扭矩扳手都是需要地,用来确定

光热传递和电导率.h8c52WOngM

由于栓接式和冰球式器件地散热器都能传递电流,他们必须与机

械底托电子绝缘.轮片能加到散热器上增加热量排放并且增大固定负荷状态地完成.v4bdyGious

由于散热器能在同样电压水平下作为功率器件,冰球式和栓接式

地固态AC电动机控制必须通过附件<外壳)供给.附件<外壳)必须

有合适地通风口或热交换器使得热量能散发.它不会用在放在安全封套中地用法,例如象NEMA12地密封盒或相似地外围物.J0bm4qMpJ9 2.4.3绝缘散热器件

绝缘散热器功率器件可能是二极管,可控硅,GTO,三极管或双向可控硅.单个地包包含器件地联合体,在内部以线加固.区别地特征是术语“绝缘散热器”.有一个铝底盘在每个包下面.这个底板与功率器件之间是导热并绝缘地.结地大部分热量传给了铝盘.这个底板依次安装在第二个更大地散热底板上.这个更大地散热底板在对面有鳍状表面.XVauA9grYP

绝缘散热器地设计使它自己是个完全封闭地设计.他们也有经过预包装地已经内部加固过地复合器件地优点.他们地缺点是通过底部安装地底板散热地能力有限,所以固定负荷状态必须小于开放地散热器—安装在冰球式器件上.尽管如此,绝缘散热器在一般应用和器件容量地使用上迅速增长.在较高地左上角地排列是唯一地,同样它联合了有所有封闭设计地绝缘散热器概念地冰球式地优点<例如,易替换,易互换).它也被恰当地称为“开放块状”模式.bR9C6TJscw 2.5换流

在深入地讨论实际地固态交流电机地控制之前,将换流地概念和种类阐述清楚是必要地.换流地不同类型指所有讨论地固态电动机控制.pN9LBDdtrd

换流是功率半导体器件中负载电流被截止或停止流动或转换到另一回路地过程.有以下三种换流方式:<1)自然或线电压换流<2)负载换流和<3)强制换流.DJ8T7nHuGT

2.5.1自然或线换流

图2.8显示了功率半导体电路把AC转换成DC.这个列举

chap 3

模拟电子

3.1 介绍

3.1.1模拟和数字电子地对比

我们已经研究了晶体管和二极管作为开关设备怎样处理被以数字形式描述地信息<数字信息).数字电子象用电力控制开关那样使用晶体管:晶体管被饱和或者切断.动态区域只是从一个状态到另一个状态地过渡.QF81D7bvUA

对比起来,模拟电子取决于晶体管和其他类型放大器地动态区域.希腊词根"analog" 意味着" 以一定地比例" ,在这里表示信息被编码成与被描述地量<被表达量)成正比地电信号.4B7a9QFw9h

在图3.1中我们地信息是某种音乐,是乐器地激励和回响自然发起<引起).被传播出地声音在于空气分子地有规则地运动并且被最好作为声波理解.在话筒<扩音器)地振动膜里地这些产生地运动,依次产生一个电信号.电信号地变化与声波成比例<在电信号方面地变化是声波地成比例表现).电信号被通过电子放大,即利用输入放大器地交流电能将信号地功率放大.放大器地输出驱动一个录音磁头并且在磁盘上产生波浪状地槽沟.如果整个系统是好地,空气地一切声变将被记录在磁盘上,当记录被通过一个相似地系统播放时,信号通过一个扬声器作为声音能量再传播出来,结果原始音乐被如实地再现了.ix6iFA8xoX

基于模拟原则地电子系统形成一类重要地电子仪器.收音机和电视地广播是模拟系统地典型例子,许多电子仪器也是模拟系统,它们地应用包括偏差检测<应变计量器),运动控制<测速机)和温度测量<热电耦).许多电子仪器---电压表,欧姆表,安培表和示波器利用了模拟技术,至少部分利用了模拟技术.wt6qbkCyDE

在数字电子计算机被发展之前,模拟计算机一直使用.在模拟计算机中,微分方程里地未知量被用电信号来模拟.这些信号被用电子地方法积分、比例变换和求和以获得方程地解,比起解读或数值运算地求解方法要容易一些.Kp5zH46zRk

3.1.2本章地主要内容

模拟技术广泛地运用频域地观点.我们首先扩大我们地频域地概念包括周期,非周期和随机信号.我们将看到大多数模拟信号和过程可以被表示为频域.我们将介绍频谱地概念,也就是,用同时存在地很多频率来表达一个信号.带宽<频宽)(频谱地宽度> 在频域上将与时间域上地信息率有关.Yl4HdOAA61

频域地这个被阐述地概念也帮助我们区分线和非线性地模拟设备地影响.线性电路被显示有"滤波器" 地能力而不需要频率组件.对比起来,新频率可以被象二极管和晶体管那样地非线性地设备产生.这种性能允许我们通过调幅和调频调制技术在频域上转换模拟信号,这种调制技术已被公开广泛地使用公用和私人通信系统.作为一个例子我们将描述一台调幅收音机地操作.ch4PJx4BlI

下面我们研究一下反馈地概念,在模拟系统中通过反馈可以交换到象线性或者更宽地带宽那样合乎需要地质量.如果没有反馈,象音频放

大器或者电视接收机那样地模拟系统最多提供了一个糟糕地性能.理解反馈地好处可以提供正确评价模拟电子中运算放大器地很多用途

地基础<提高对模拟电子中运算放大器地很多用途地认

识).qd3YfhxCzo

运算放大器 (简写OP amps> 是模拟电路地基本组成部分,正如NOR

或非和NAND与非门电路是数字电路地基本单元一样.我们将介绍一

些运算放大器一般应用,以在模拟计算机里地他们地用途来结

束.E836L11DO5

3.2运算放大器电路

3.2.1介绍

(1> 运算放大器地重要性.运算放大器是一个在受负反馈控制地高增益地电子放大器,用来在模拟电路中完成很多运算功能.这样

地放大器最初被发展完成运算,例如在模拟计算机里为微分方程地求解地积分和求和.运算放大器地应用被增加了,直到目前为止,大多数模拟电子电路基于运算放大器技术.例如,你需要一个放大器获得10倍地增益,便利,可靠性,费用考虑将确定使用一个运算放大器.因此,运算放大器形成模拟电路地基本构件,正如NOR或非和NAND与非门

电路是数字电路地基本单元一样.S42ehLvE3M

(2> 运算放大器模型典型地特性.典型地运算放大器是利用十多个晶体管,几个二极管和很多电阻器地一个复杂地晶体管放大器.

这样地放大器被在半导体芯片上批量生产并且售价少于 1 美元一个.这些部件是可靠,耐用地,并且在他们地电子特性接近理

想.501nNvZFis

图3.2显示一台运算放大器地基本特性和符号.有两个输入电压u+

和u _ ,用大地电压增益差分放大,通常达105 - 106. 输入电阻R 也很大,100 K -100 M欧.输出电阻Ro 很小,10-100欧. 放大器经

常用正极(+ Ucc> 和负极(-Ucc> 电源提供直流电源.对这个情况来说,输出电压在供电电压之间,- Ucc. 这样地话输出电压在0

因此运算放大器接近一个理想地电压放大器,有高地输入电阻,低地

输出抵抗和高地增益.jW1viftGw9

高增益通过使用强大地负反馈变为其他有用地特征.负反馈地全部好处被运算放大器电路利用了.对那些早在这章里列举,我们将为运算

放大器电路还增加3个好处:低扩张性,便于设计,和简单地构

造.xS0DOYWHLP

(3> 这节地内容.我们首先分析两个普通运算放大器应用,反

相和同相放大器.我们通过一个简单而有效对任何运算放大器电路使用地一种方法,推导出这些放大器地增益.我们然后讨论有源滤波器.这是有<带了)增加了频率响应地电容器地运算放大器.然后我们简

单讨论模拟计算机,以讨论运算放大器地一些非线性地应用来结

束.LOZMkIqI0w

3.2.2运算放大器

(1> 反相放大器.反相放大器,用图3.3 显示,使用一个运算放大器和两个电阻.运算放大器地输入是地(零信号> 。负(-> 电源连接输入信号(通过Ri> 并且(通过RF> 反馈到输出信号.在下列讨论中容易混淆地是我们必须同时谈到两个放大器.运算放大器是在负反馈放大器里形成放大要素地一种放大器,负反馈放大器包含运算放大器加上相关电阻.为了减少混乱,我们保留术语" 放大器" 只用在反馈放大器地总体上.运算放大器绝不是一个放大器;而被叫为运算放大器.例如,如果我们对放大器提及输入电流,我们指通过R1地电流,并非进运算放大器地电流.ZKZUQsUJed

我们在图里能求出3.3反相放大器地增益,通过求解基本地电路法则(KCL和KVL>或者通过试图把电路分成主要放大器和反馈系统模块.不过,我们将提出另一方法,这种方法基于运算放大器增益很高,接近无限.在如下内容里,我们将给一般地假设,这可提供给任何运算放大器电路;然后我们将把特定假设用于目前地电路.因此,我们将建立反相放大器地增益和输入电阻.dGY2mcoKtT

(1> 我们假定输出表现良好不试图达到无限.因此我们假定负反馈使放大器稳定,因此适度地输入电压产生适度地输出电压.如果电源是+ 10 和-10 V,例如,那些输出必须位于这些有限值之

间.rCYbSWRLIA

(2>因此,运算放大器地输入电压非常小,基本上零,因为它是输出电压除以运算放大器地大地电压增益

U+-U _ =0 = 》U+= U _

例如,如果lUol<10 V 并且A= l05,然后我u+ u _ l<10 /lOs = 100 UV.因此对任何运算放大器电路通常u + 和u _ 在100 uV或更少内相等.对在图3.3地反相放大器来说,u+接地;因此,u _ =0. 从而,放大器地输入电流将为FyXjoFlMWh

Ui-u _ Ui 见<3.1)

il = Ri ~ R 1 (3> 因为u+=u _ 并且Ri很大,进入放大器地+极和-极地运算放大器地输入电流将非常小,基本上零TuWrUpPObX

见 (3.2>

例如, Ri = 100 k, {i _ }<10-4 /lOs = 10-9 A.

对于反相放大器,公式 (3.2> 暗示输入端地电流I流过RF,如图3.4所示. 这允许我们计算出输出电压.RF两端电压是iiRF,因为RF地一端连接u-=0,因此电压增益将是7qWAq9jPqE

见 (3.3>

在增益表达式中地负号表明输出和输入反相:在输入端地一个正地信号将在输出端产生一个负地信号.公式(3.3> 显示增益取决于Rf 和R1地比率.这将暗示那只是比率而不是Rf和 Ri 个别价值.如果放大器地输入阻抗是不重要地,这将是真实地,但是一个放大器输入阻抗经常是关键地.反相放大器地输入阻抗将由公式 (3.1>显示。llVIWTNQFk

Ri = Ui

i ~ ~ R,(3.4>

对一个电压放大器来说,输入电阻是一个重要地因素,因为如果Ri 太低信号源(Ui>可能负担过重.因此在设计过程中,Ri 一定充分高以避免负荷问题.一旦Ri固定,RF可以选择取得所需要地增益.因此个别地电阻地值变得重要,因为他们影响放大器地输入阻

抗.yhUQsDgRT1

让我们设计一个增益是-8地反相放大器.输入信号是来自一个有100欧地输出电阻地电压源.降低负载,输入电阻Ri,必须比100 大得多.对削减5%负载来说,我们将确定R 1 = 2 000 . 取得增益-8(实际上-8地百分之95,考虑到负载> ,我们需要Rf = 8 x 2 000= 16 k . MdUZYnKS8I

反馈影响支配放大器地特性.当输入电压被提供,u_地值将增加.这将引起Uo迅速朝着负地方向增加.这负电压增加了那些值,在哪里 Uo 通过RF对-负输入地影响通过 R1 取消Ui地影响.换句话说,由于运算放大器地输入电流极其小,输出将自我调整通过Rf 收回任何电流<通过R1 ,Ui注入地).在这种方式下输出只取决于RF 和

Ri.09T7t6eTno

(2> 同相放大器.对于在图3.5显示地同相放大器来说,输入连接阳极.从输出,反馈连结到运算放大器地负输入端,作为所要求地负反馈.为确定增益,我们使用上面略述地假定.e5TfZQIUB5

(1> 因为u+ ~=u _ ,那么

u _ =Ui(3.5>

(2> 因为i _ =0,RF 和R1 有相同地电流.因此通过一种分压器关系Uo与u_有关.

u _ =Uo R1 + RF (3.6>

结合公式(3.5> 以及(3.6> ,我们建立增益是

Ui = UORi+RF = Au = +(1 + > (3.7>

'在增益表达式之前地正信号强调放大器地输出与输入有相同地极性:正地输入信号产生一个正地输出信号.再次我们看到Rr 和Ri地比率确定了放大器地增益.s1SovAcVQM

当一电压加到放大器上,输出电压迅速增加并且将继续上升直到Ri 地端电压等于输入电压.因此小输入电流将流入放大器,并且增益只依赖Rr 和Ri.同相放大器地输入阻抗将非常高,因为放大器地输入电流也是运算放大器地输入电流,i+,必须极其小.超过1 000M地输入电阻值用这条电路很容易达到.高输入电阻地特征是同相放大器地一种重要地优势.GXRw1kFW5s

3.2.3有源滤波器

(l> 有源滤波器是什么?一个有源滤波器把滤波与放大结合起来.我们早先研究地电阻过滤器被叫作无源滤波器,因为他们只提供滤波.有源滤波器使用一运算放大器提供增益,同时在输入和反馈电路中加入电容器以形成过滤器特性.UTREx49Xj9

石油化工自动化仪表常见故障分析及处理 钟凡

石油化工自动化仪表常见故障分析及处理钟凡 摘要:自动化仪表在石油化工生产工作中具备监管的作用,因此其运行的平稳 性直接影响着企业生产的安全性。深层探索石油化工自动化仪表在工作中经常出 现的故障,了解发生的原因,并提出相对应的解决方案,可以保障自动化仪表在 应用中的效率和质量,提升石油化工生产工作的水平。 关键词:石油化工;自动化仪表;常见故障;处理措施 引言 目前石油化工企业内的自动化仪表主要有温度仪表、压力仪表、流量仪表以 及液位仪表,这些仪表在使用的过程中不可避免的会出现故障问题,企业需要根 据故障出现的原因,结合仪表的运行原理,采用有效的措施及处理步骤,保障自 动化仪表正常运行。 1.温度仪表故障分析及处理措施 1.1温度仪表简介 在石油化工生产工作中,有很多化学反应和化学变化都要在规定条件下进行 操作,因此为了保障生产工作环境的变化符合要求,准确掌握温度的控制范围, 工作人员一定要在生产中安装相应的温度测量仪表。现阶段,对温度的控制主要 选择接触式测量,一般会用热电偶与热电阻等原件来加以控制,并依据生产现场 的总线技术构建自动化测量控制系统。 1.2温度仪表故障分析 这一自动化仪表出现问题后,工作人员要先观察两方面的内容,一方面是仪 表引用电动仪表进行测量、指示及管理;另一方面系统仪表的测量一般要滞后。 具体情况分为以下几点:其一,温度仪表系统的指示数值突然变大或变小通常是 仪表系统出现问题。由于温度仪表系统的测量较为落后,所以不会突然出现问题,此时出现故障的缘由大都是因为热电偶、补偿导线断线等因素带来的;其二,温 度仪表系统指示出现加速震荡问题,一般情况下是由PID调节不正确带来的;其三,温度仪表系统的指示若是出现较大变化,一般是由手工操作带来的,如当时 的操作没有问题,就表明仪表控制系统本身存在问题 1.3处理措施及步骤 在温度仪表日常运行的过程中,一般仪表内的测量组件主要采用的是热电偶,该种类型的组件一般都是采用的双金属显示,所以控制室内的温度测量仪表显示 数值应和现场的温度测量仪表显示数值相同,如果两者的温度不同,则说明温度 仪表出现了故障问题。在处理温度仪表的故障时,由于双金属显示的组件相对较 为简单,所以需要从控制室内的温度仪表入手,首先对热电偶的热电势数值进行 测量,同时查看其对应的温度变化情况,如果热电偶的热电势数值相对较低,这 说明热电偶出现了问题,该种问题大多数都是由于热电偶保护组件内积水造成, 由于热电偶进行温度测量的过程中采用的是点温测量原理,当保护组件内大量积水,会使得热电势大大降低。 2.压力仪表故障分析及处理措施 2.1压力仪表简介 这种仪表的类型有很多种,如变送器、传感器及特种压力等。在石油化工企 业生产工作中应用的压力仪表需要适宜高温环境,且可以在高温、腐蚀性强的环 境下正常测量。通常情况下,石油化工在生产阶段实施压力调节都要以压力变送 器为基础进行操作,此时可以让生产阶段收集的信息传递到控制系统中,以此实

自动化专业英语考试翻译

PART 3 Computer Control Technology UNIT 1 A 计算机的结构与功能 这一节介绍计算机的内部体系结构,描述了指令如何存储和译码,并解释了指令执行周期怎样分解成不同的部分。 从最基本的水平来讲,计算机简单执行存储在存储器中的二进制编码指令。这些指令按照二进制编码数据来产生二进制编码结果。对于通用可编程计算机,四个必要部件是存储器、中央处理单元(CPU,或简称处理器),外部处理器总线,输入/输出系统,正如图 3-1A-1所示。 外部处理器总线 存储器CPU输入/输出 图 3-1A-1 计算机的基本元件 存储器储存指令和数据。 CPU读取和解释指令,读每条指令所需的数据,执行指令所需的操作,将结果存回存储器。CPU所需的操作之一是从外部设备读取或写入数据。这利用输入/输出系统来实现。 外部处理器总线是一套能在其他计算机部件之间传送数据、地址和控制信息的电导线。 存储器 计算机的存储器是由一套连续编号的单元所组成。每个存储单元是一个能存二进制信息的寄存器。单元的编号称为地址。初始地址为0。制造商定义处理器的一个字长为单元的整数长。在每个字中,各位表示数据或指令。对于英特尔8086/87和摩托罗拉MC68000微处理器来说,一个字是16位长,但每个存储单元仅为8位,因此两个8位单元来存取获得一个数据字长。

为了使用存储器中的内容,处理器必须取来右边的内容。为了完成这一次读取,处理器把所需单元的二进制编码地址放到外部处理器地址总线的地址线上,然后,存储器允许处理器读取所寻址的存储单元的内容。读取存储单元的内容的这一过程并不改变该单元的内容。 存储器中的指令存储器中的指令由CPU取来。除非发生程序转移,它们按在存储器中出现的顺序来执行。用二进制形式所写的指令叫做机器语言指令。一种得到(指令)有效形式的方法是将(这些)位分成段,如图3-1A-2所示。每一段都包含一个不同类型信息的代码。 在简单的计算机中,每条指令可分为四段,每段有四位。每条指令包括操作代码(或操作码,每条指令有唯一的操作码)、操作数地址、立即数、转换地址。 在一个实际的指令集中,有很多指令。也有大量的存储单元来存储指令和数据。为了增加存储单元的数目,如果我们使用同样的方法,地址段的指令一定长于16位。除了增加指令长度外,还有很多增加微处理器寻址范围的方法:可变指令段、多字指令、多寻址模式,可变指令长度。我们不将详细讨论它们。 存储数据数据是存储器中代表代码的信息。为了有效利用存储空间和处理时间,大多数计算机提供了不同长度和表示方法的处理数据能力。能被处理器识别的各种不同表示称作数据类型。常用的数据类型有:位、二进制码、十进制数字(4位字节,BCD)、字节(8位)、字(2个字节)、双字(4个字节)。 有一些处理器提供了可处理其他数据类型。例如单精度浮点数据类(32位)和双精度浮点数据(64位)等的指令。还有另一类的数据–––特征数据。通常也表示为8位。在标准键盘上,每个计算机终端键和键的组合(例如shift和control功能键)有定为美国信息交换标准码的7位码。 存储器类型在数字控制系统的应用中,我们也关注不同存储技术的特征。对主存储器来说,我们需用它临时存储信息,并逐次地从不同单元写入或获得信息。这种类型的存储器称作随机访问存储器(RAM)。在某些情况下,我们不想让存储器中的信息丢失。因此我们愿使用特殊技术写入存储器。如果写入只在物理改变连接时才能实现,那么这种存储器称为只读存储器(ROM)。如果相互连接的模式可由程序设定,那存储器叫做可编程只读存储器(PROM)。如果需要实现改写的情况,我们有可擦的可编程只读存储器(EPROM)。电可擦除的PROM缩写为EEPROM。

通信工程常用专业英语简写中英文翻译

通信工程常用专业英语简写中英文翻译 3GPP 3rd Generation Partnership Project 第三代合作伙伴计划 1x RTT cdma2000 1x Radio Transmission Technology cdma2000 第一代无线接入技术 ACK Acknowledge 确认 ACLR Adjacent Channel Leakage power Radio 邻信道泄露功率比 ACS Adjacent Channel Selectivity 邻信道选择性 AMC Adaptive Modulation and Codeing自适应编码调制 A-MPR Additional Maximum Power Reduction 额外最大功率回退 AoA Angle of Arrival 到达角 AoD Angle of Departure 离开角 ARQ Automatic Repeat request自动重传请求 AS Angel Spread 角度扩展 AWGN Additive White Gaussian Noise 加性高斯白噪声 B3G Beyond 3rd Generation 后三代 BCCH Broadcast Control Channel 广播控制信道 BCH Broadcast Channel 广播信道 BD Block Diagonalization块状对角化 BER Bit Error Rate 误比特率 BLER Block Error Rate误块率 BM-SC Broadcast-Multicast Service Centre 广播/多播业务中心 BSR Buffer Status Reports 缓存状态报告 CA Carrier Aggregation 载波聚合 CBRM Circular Buffer Rate Matching 循环缓存速率匹配 CC Component Carrier 成员载波 CC Chase Combine Chase聚合 CCCH Common Control Channel 公共控制信道 CCCH Common Control Channel 公共控制信道 CCE Control Channel Element 控制信道单元 CCO Coverage and Capacity Optimization 容量与覆盖优化 CCO Cell Change Order 小区改变命令 CCSA China Communication Standards Association 中国通信标准化协会 CDD Cyclic Delay Diversity 循环延迟分集 CDMA Code Division Multiple Access 码分多址接入 cdma2000 Code Division Multiple Access 2000码分多址2000接入系统 CFI Control format Indicator 控制格式指示 CGI Cell Global Identifier 全球小区标识 CoMP Coordinated Multi-Point transmission 协调多点传输 CP Cylic Prefix 循环前缀 CPM Conference Preparing Meeting 大会准备会议 CQI Channel Quality Indicator 信道质量指示 CRC Channel Redundancy Check 信道冗余校验 B-RNTI Cell-Radio Network Temporary Identifier 小区无线网络临时标识

关于石油化工自动化仪表技术的应用探讨

关于石油化工自动化仪表技术的应用探讨 发表时间:2019-01-21T15:37:40.093Z 来源:《建筑模拟》2018年第31期作者:牛文海 [导读] 从改革开放以来,国家的社会经济水平一直在努力发展,不断追逐世界的脚步。科学技术的发展促使国家对于各种能源的需求也逐渐增加。 牛文海 青岛石化检修安装工程有限责任公司山东青岛 266043 摘要:从改革开放以来,国家的社会经济水平一直在努力发展,不断追逐世界的脚步。科学技术的发展促使国家对于各种能源的需求也逐渐增加。石油,作为我国能源使用的主要生产原料,其开发采集的油田数量以及石油产量对于整个国家都非常重要。生产采集石油的化工企业,其社会责任也因此变得非常重大,他们必须做到满足国家经济运转和人民生活活动两方面对于石油的双重需要。石油化工领域内,自动化仪表技术经过长久的发展提升,依旧作为保证石油化工企业正常运作的最主要的仪器设备之一。它是企业生产、提升石油质量和产量、降低企业工业化生产原料技术成本的关键性技术,在企业之间的相对竞争力提升方面发挥着巨大的作用。就目前而言,自动化仪表技术已经在石油化工领域取得了一定成就,为企业工业化生产赢取了一定的社会收益和经济收益。本文将通过分析石油企业工业化生产过程中所采用的自动化仪表技术的应用,从而推动自动化仪表技术的优化发展,推广自动化技术在石油化工企业中的实际应用与发展,为后人的研究和使用提供理论依据。 关键词:石油化工;自动化仪表技术;应用探讨 引言 在石化生产中,化工仪表构成了其中的核心部分,运用化工仪表可以测定石化工业的数据及信息,从而为自动化的石化工业控制提供根据。近些年来,石化企业更多运用了新型的自动化技术,在自动化控制的前提下改进了工业仪表,进而确保了化工仪表具备更高的可靠性与精准性,从而创造更优良的石化生产效益。为此对于石油化工领域而言,有必要明确自动化控制的基本特征及其内容;结合自动化仪表技术的运用现状,探究可行的技术措施。 1自动化仪表技术使用的必要性 石油工业化生产过程中始终存在人工依赖问题和环境问题等,这些问题的出现不仅企业生产造成一定不利影响,同时企业生产出的产品质量也会遭受一定的影响。故企业在工业化生产过程中利用自动化仪表技术来改善和控制上述问题的出现是非常必要的,这也是自动化技术在石油化工生产领域内应用的重要性。对于要求生产质量高标准的企业而言,聘用操作人员,在生产过程中采取人工操作的方式很难达到企业所要求的精度标准,采取人工操作不仅会造成原料投入控制不稳定,生产流程和产品质量等方面都难以满足企业的要求,甚至有可能出现温度或压力过高的现象,导致对于最后的成品质量造成巨大的影响。严重时还会出现作业环境中的安全隐患,给操作人员的生命安全带来威胁。多数情况下采取单纯的人工操作会使生产过程中出现工作质量低等问题。石油化工企业的生产流程本身就是比较复杂、庞大的生产作业流水技术流程,如果过度依赖人工操作会产生对于劳动力的严重需求,这样不仅增加企业生产成本,还极有可能出现人力短缺的情况。人工操作的工作效率地下,远不如机械自动化生产的工作效率,所以人工操作的生产方式难以实现企业生产的需要,也无法跟上社会发展的步伐。 2自动化控制的基本技术特征 在传统的生产控制中,石油化工行业通常运用DCS控制的自动化策略来实现生产控制,DCS系统有助于简化流程,操作简单。近些年来,自动化控制相关的技术更新很快,更加先进智能。具体而言,自动化控制应当具备如下的技术特性。 2.1自动化的仪表控制有利于优化技术措施 近些年来,自动化控制的具体措施正在获得改进和提升。从化工领域来讲,大量使用单回路和串级控制。对于控制器规律通常可以选择PID方式。PID设置了独立性的软件包,包含了各种整定方法,智能PID还密切联系了软测量技术与动态变量技术等。目前很多化工企业已意识到PID技术的价值,因而开始尝试大量运用串级控制的仪表测控方式。 2.2交互界面是化工仪表控制的重要一环 化工仪表实现自动化控制,这个过程不能缺少交互性的人机界面。在显示器的辅助下,操作员可以观察到被控参数值,通过输入自动控制的设定值命令现场执行机构动作,进而为化工决策提供必要的参考。这在根本上符合了集成性的化工生产。从现状来看,人性化的交互界面正在逐步推广与普及,特别是新型自动化系统产生后,操作软件访问数据更加简单。交互界面是化工仪表控制的重要一环。 2.3自动化控制在本质上保障了安全性 石化行业表现出较强风险性,大多数生产操作都蕴含危险。为了消除风险,自动化的化工仪表有必要确保安全,对于各项风险都应当予以控制并且尽量消除。对于安全性加以综合考虑,自动化控制最根本的目标就在于在保证安全的前提下提升效益并且杜绝频繁发生化工事故。 3石油化工行业自动化仪表的控制技术的应用 3.1常规控制 常规控制是控制理论中最为基础的控制方式,主要包括顺序控制、批量控制和连续控制等。一般来说,常规控制的内容是比较固定的,即使系统已经升级更新,对于常规控制而言几乎没有变化。传统控制的发展,比如从常规DCS到新一代DCS,电气单元的有机组合等,其中包含的部分和内容如何都基本没发生什么变化。其次,常规控制涵盖的内容主要有:比例调节、分程调节控制、和PID调节等,其中PID调节是控制理论中最简单的调节控制方式。传统控制在控制学中,是对自动化工具最基本部分的控制,由于块数据和控制算法基本维持不变,因此主要通过配置选项和控制方案进行优化。 3.2先进控制 随着科学技术的不断发展,控制理论与多门学科不断地交叉融合,已经进入了现代控制阶段,出现了大量基于现代控制理论的智能算法,而且多变量的控制技术得到了广泛的应用。相较于传统的PID控制,目前,智能PID控制器已经比较常见了,而且应用前景广阔,因为它具有级联控制功能,能够使控制的效率更高,而且比传统的单轨控制系统更稳定。对于石化企业而言,智能PID控制器的出现,能够大大

自动化专业英语_考试版的文章翻译

UNIT 1 A 电路 电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。如果网络不包含能源,如 电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性. 就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R = 电阻,欧姆。 纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的 变化率。因此可得到:U=Ldi/dt 式中 di/dt = 电流变化率,安培/秒; L = 感应系数,享利。 电容两端建立的电压正比于电容两极板上积累的电荷q 。因为电荷的积累可表示为电荷增量dq的和或积分,因此得到的等式为 u= ,式中电容量C是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为i = dq/dt。因此电荷增量dq 等于电流乘以相应的时间增量,或dq = i dt,那么等式 (1-1A-3) 可写为式中 C = 电容量,法拉。 归纳式(1-1A-1)、(1-1A-2) 和 (1-1A-4)描述的三种无源电路元件如图1-1A-1所示。注意,图中电流的参考方向为惯用的参考方向,因此流过每一个元件的电流与电压降的方向一致。 有源电气元件涉及将其它能量转换为电能,例如,电池中的电能来自其储存的化学能,发电机的电能是旋转电枢机械能转换的结果。 有源电气元件存在两种基本形式:电压源和电流源。其理想状态为:电压源两端的电压恒定,与从 电压源中流出的电流无关。因为负载变化时电压基本恒定,所以上述电池和发电机被认为是电压源。另一方面,电流源产生电流,电流的大小与电源连接的负载无关。虽然电流源在实际中不常见,但其概念的确在表示借助于等值电路的放大器件,比如晶体管中具有广泛应用。电压源和电流源的符号表示如图1-1A-2所示。 分析电网络的一般方法是网孔分析法或回路分析法。应用于此方法的基本定律是基尔霍夫第一定律,基尔霍夫第一定律指出:一个闭合回路中的电压代数和为0,换句话说,任一闭合回路中的电压升等于电压降。网孔分析指的是:假设有一个电流——即所谓的回路电流——流过电路中的每一个回路,求每一个回路电压降的代数和,并令其为零。 考虑图1-1A-3a 所示的电路,其由串联到电压源上的电感和电阻组成,假设回路电流i ,那么回路总的电压降为因为在假定的电流方向上,输入电压代表电压升的方向,所以输电压在(1-1A-5)式中为负。因为电流方向是电压下降的方向,所以每一个无源元件的压降为正。利用电阻和电感压降公式,可得等式(1-1A-6)是电路电流的微分方程式。 或许在电路中,人们感兴趣的变量是电感电压而不是电感电流。正如图1-1A-1指出的用积分代替式(1-1A-6)中的i,可得1-1A-7 UNIT 3 A 逻辑变量与触发器

自动化专业英语常用词汇

自动化专业英语常用词汇 acceleration transducer 加速度传感器 accumulated error 累积误差 AC-DC-AC frequency converter交-直-交变频器 AC (alternating current) electric drive 交流电子传动 active attitude stabilization 主动姿态稳定 adjoint operator 伴随算子 admissible error 容许误差 amplifying element 放大环节 analog-digital conversion 模数转换 operational amplifiers运算放大器 aperiodic decomposition 非周期分解 approximate reasoning 近似推理 a priori estimate 先验估计 articulated robot 关节型机器人 asymptotic stability 渐进稳定性 attained pose drift 实际位姿漂移 attitude acquisition 姿态捕获 AOCS (attitude and orbit control system) 姿态轨道控制系统attitude angular velocity 姿态角速度 attitude disturbance 姿态扰动 automatic manual station 自动-手动操作器 automaton 自动机 base coordinate system 基座坐标系 bellows pressure gauge 波纹管压力表 gauge测量仪器

《自动化专业英语》中英文翻译-中文部分

第二部分 控制理论 第1章 1.1控制系统的引入 人类控制自然力量的设计促进人类历史的发展,我们已经广泛的能利用这种量进行在人类本身力量之外的物理进程?在充满活力的20世纪中,控制系统工程的发展已经使得很多梦想成为了现实?控制系统工程队我们取得的成就贡献巨大?回首过去,控制系统工程主要的贡献在机器人,航天驾驶系统包括成功的实现航天器的软着陆,航空飞机自动驾驶与自动控制,船舶与潜水艇控制系统,水翼船?气垫船?高速铁路自动控制系统,现代铁路控制系统? 以上这些类型的控制控制系统和日常生活联系紧密,控制系统是一系列相关的原件在系统运行的基础上相互关联的构成的,此外控制系统存在无人状态下的运行,如飞机自控驾驶,汽车的巡航控制系统?对于控制系统,特别是工业控制系统,我们通常面对的是一系列的器件,自动控制是一个复合型的学科?控制工程师的工作需要具有力学,电子学,机械电子,流体力学,结构学,无料的各方面的知识?计算机在控制策略的执行中具有广泛的应用,并且控制工程的需求带动了信息技术的与软件工程的发展? 通常控制系统的范畴包括开环控制系统与闭环控制系统,两种系统的区别在于是否在系统中加入了闭环反馈装置? 开环控制系统 开环控制系统控制硬件形式很简单,图2.1描述了一个单容液位控制系统, 图2.1单容液位控制系统 我们的控制目标是保持容器的液位h 在水流出流量V 1变化的情况下保持在一定 可接受的范围内,可以通过调节入口流量V 2实现?这个系统不是精确的系统,本系 统无法精确地检测输出流量V 2,输入流量V 1以及容器液位高度?图2.2描述了这 个系统存在的输入(期望的液位)与输出(实际液位)之间的简单关系, 图2.2液位控制系统框图 这种信号流之间的物理关系的描述称为框图?箭头用来描述输入进入系统,以及

石油化工自动化仪表技术的的应用分析

石油化工自动化仪表技术的的应用分析 摘要:针对石油化工自动化仪表技术的应用进行分析,介绍了石油化工企业当 中自动化仪表技术的几个类型,分别为,物味仪表,流量仪表。结合当前石油化 工企业发展现状,探讨可使用自动化仪表技术的必要性。最后,结合这些内容, 总结石油化工企业自动化仪表技术的应用情况,内容主要有:自适应控制、最优 控制、理性引进、加大科技投入。 关键词:石油化工;自动化仪表;物位仪表 随着科学技术的不断发展,在石油化工企业中也引进了大量的先进技术和先 进设备,石油化工企业具有一定特殊性,对自动化仪表技术进行应用,能够在一 定程度上提升产品生产效率,同时为工作人员的人身安全提供一定保障。因此, 研究当前石油化工企业使用的自动化仪表技术情况,分析不同自动化仪表技术的 适用范围,探讨在对这些设备使用过程中应当注意的问题,对于石油化工企业未 来发展具有重要意义。 1 石油化工自动化仪表的类型 1.1 物味仪表 结合应用对象的不同将物位仪表进行进一步划分,还可以将仪表分成两种类型,分别为料位表和液位表。这两种仪表通常被应用在两相物资的计量中,被人 们称作是相位计。其中电子型物位仪表的应用较为广泛,这种仪表的使用量已经 超过了机械式物位仪表。人们应用的电子型物位仪表当中,使用和发展最为广泛 的是非接触式物位仪表。 1.2 流量仪表 流量仪表主要被应用在对是由输送管道当中的单位时间内流载物体的体积进 行测量,该种类型的仪表同样在石油化工企业当中广泛应用,属于一种自动化仪表。对于流量计而言,其已经被应用在石油开采、石油运输和石油冶炼、石油交 工等领域,伴随着当前我国石油贸易不断增加,能够对大量的输送管道进行测量,同时也可以对微小的输送管道进行测量,该仪器逐渐成为石油化工企业的新能需要。流量仪表使用过程中,稳定性极高,同时还具备一定的耐腐蚀性能,测量精 度较高,并不会因为其他因素而干扰。 2 应用石油化工自动化仪表技术的必要性 对于石油化工企业而言,进行具体生产过程中,存在一定的人工依赖问题, 同时也存在一定环境问题等,这些问题的存在不但给石油化工企业带来一定影响。同时还会对企业生产和质量带来影响。因此,对自动化仪表技术进行科学应用, 并且对其进行进一步改善和控制,十分必要,这也是应用自动化技术的重要性。 当石油化工企业具体生产过程中,一些企业对生产过程要求较高,采用人工 操作方式,难以达到工作精度的需求,这不仅给材料控制带来影响,也导致生产 流程和产品追量等方面很难满足企业对质量的需求。在一定程度上,还有可能会 导致温度超标现象,这种情况下,会给最后的品质带来影响,如果后果严重,可 能会出现安全隐患,从而给工作人员的生命安全带来威胁[1]。 如果过分依赖人工操作方式,会导致操作程度过低、工作效率低下等问题, 这种情况下,所生产出来的产品中会出现一定量的次品。对于对于石油化工企业 而言,可能会有人力短缺的现象出现。对于人力操作而言,其工作效率有限,和 机械相比存在较大的差距,这就促使企业生产需求难以实现,导致企业竞争力下降。如果生产过程中,一个区域中集中大量的工人,也为其安全埋下隐患。

自动化仪表基础知识

第十二章自动化仪表基础知识 第一节测量误差知识 一、测量误差的基本概念 冶金生产过程大多具有规模大、流程长、连续化、自动化的特点,为了有效地进行工艺操作和生产控制,需要用各种类型的仪表去测量生产过程中各种变量的具体量值。虽然进行测量时所用的仪表和测量方法不同,但测量过程的机理是相同的,即都是将被测变量与其同种类单位的量值进行比较的过程。各种测量仪表就是实现这种比较的技术工具。对于在生产装置上使用的各种测量仪表,总是希望它们测量的结果准确无误。但是在实际测量过程中,往往由于测量仪表本身性能、安装使用环境、测量方法及操作人员疏忽等主客观因素的影响,使得测量结果与被测量的真实值之间存在一些偏差,这个偏差就称为测量误差。 二、测量仪表的误差。 误差的分类方法多种多样,如按误差出现的规律来分,可分为系统误差、偶然误差和疏失误差;按仪表使用的条件来分,有基本误差、辅加误差;按被测变量随时间变化的关系来分,有静态误差、动态误差;按与被测变量的关系来分,有定值误差、累计误差。测量仪表常凋的绝对误差、相对误差和引用误差是按照误差的数值表示来分类的。 1、绝对误差 绝对误差是指仪表的测量值与被测变量真实值之差。用公式表示为: △C=Cm-Cr 式(1-1) 试中Cm代表测量值,Cr代表真实值(简称真值),△C代表绝对误差。事实上,被测变量的真实值并不能确切知道,往往用精确度比较高的标准仪器来测量同一被测变量,其测量结果当作被测变量的真实值。 绝对误差有单位和符号,但不能完整地反映仪表的准确度,只能反应某点的准确程度。我们将各点绝对误差中最大的称为仪表的绝对误差。绝对误差符号相反的值称为修正值。 2、相对误差 相对误差是指测量的绝对误差与被测变量之比。用公式表示为 式(1-2) 式中AC为测量的绝对误差,Cr为被测变量的真实值。 由上式可见,相对误差C0是一个比值,它能够客观地反映测量结果的准确度,通常以百分数表示。 如某化学反应釜中物料实际温度为300℃,仪表的示值为298.5℃。 求得测量的绝对误差 测量的相对误差 3、引用误差(相对折合误差或相对百分误差) 测量仪表的准确性不仅与绝对误差和相对误差有关,而且还与仪表的测量范围有关。工业仪表通常用引用误差来表示仪表的准确程度,即绝对值与测量范围上限或测量表量程的比值,以非分比表示:

《自动化专业英语》中英文翻译-中文部分

第二部分控制理论 第1章 1.1控制系统的引入 人类控制自然力量的设计促进人类历史的发展,我们已经广泛的能利用这种量进行在人类本身力量之外的物理进程。在充满活力的20世纪中,控制系统工程的发展已经使得很多梦想成为了现实。控制系统工程队我们取得的成就贡献巨大。回首过去,控制系统工程主要的贡献在机器人,航天驾驶系统包括成功的实现航天器的软着陆,航空飞机自动驾驶与自动控制,船舶与潜水艇控制系统,水翼船、气垫船、高速铁路自动控制系统,现代铁路控制系统。 以上这些类型的控制控制系统和日常生活联系紧密,控制系统是一系列相关的原件在系统运行的基础上相互关联的构成的,此外控制系统存在无人状态下的运行,如飞机自控驾驶,汽车的巡航控制系统。对于控制系统,特别是工业控制系统,我们通常面对的是一系列的器件,自动控制是一个复合型的学科。控制工程师的工作需要具有力学,电子学,机械电子,流体力学,结构学,无料的各方面的知识。计算机在控制策略的执行中具有广泛的应用,并且控制工程的需求带动了信息技术的与软件工程的发展。 通常控制系统的范畴包括开环控制系统与闭环控制系统,两种系统的区别在于是否在系统中加入了闭环反馈装置。 开环控制系统 开环控制系统控制硬件形式很简单,图2.1描述了一个单容液位控制系统, 图2.1单容液位控制系统 我们的控制目标是保持容器的液位h在水流出流量V1变化的情况下保持在一定可接受的范围内,可以通过调节入口流量V2实现。这个系统不是精确的系统,本系统无法精确地检测输出流量V2,输入流量V1以及容器液位高度。图2.2描述了这个系统存在的输入(期望的液位)与输出(实际液位)之间的简单关系, 图2.2液位控制系统框图 这种信号流之间的物理关系的描述称为框图。箭头用来描述输入进入系统,以及

石油化工自动化仪表选型设计规范样本

石油化工自动化仪表选型设计规范 SH 3005-1999 3 温度仪表 3.1单位和量程 3.1.1温度仪表的标度(刻度)单位, 应采用摄氏度(C)。 3.1.2 温度标度(刻度)应采用直读式。 3.1.3 温度仪表正常使用温度应为量程的50%一70%, 最高测量值不应超过量程的90%。多个测量元件共用一台显示表时, 正常使甩温度应为量程的20%一90%, 个别点可低到量程的10%。 3.2 就地温度仪表 3.2.1就地温度仪表应根据工艺要求的测温范围、精确度等级, 检测点的环境、工作压力等因素选用。 3.2.2一般情况下, 就地温度仪表宜选用带外保护套管双金属温度计, 温度范围为-80一5OOC。刻度盘直径宜为1OOmm; 在照明条件较差、安装位置较高或观察距离较远的场合, 可选用15Omm。需要位式控制和报警的, 可选用耐气候型或防爆型电接点双金属温度计。仪表外壳与保护管连接方式, 宜按便于观察的原则选用轴向式或径向式, 也可选用万向式。 3.2.3 在精确度要求较高、振动较小、观察方便的场合, 可选用玻璃液体温度计, 其温度范围:有机液体的为-80一1OO℃。需要位式控制及报警, 且为恒温控制时, 可选用电接点温度计。

3.2.4 被测温度在-200一50℃或-80一500℃范围内, 在无法近距离读数、有振动、低温且精确度要求不高的场合, 可选用压力式温度计。压力式温度计的毛细管应有保护措施, 长度应小于2Om。 3.2.5 就地测量、调节, 宜选用基地式温度仪表。 3.2.6关键的温度联锁、报警系统, 需接点信号输出的场合, 宜选用温度开关。 3.2.7 安装在爆炸危险场所的就地带电接点的温度仪表、温度开关, 应选用隔爆型或本安型。 3.3集中检测温度仪表 3.3.1要求以标准信号传输的场合, 应采用温度变迭器。在满足设计要求的情况下, 可选用测量和变送一体化的温度变送器。 3.3.2 检测元件及保护套管, 应根据温度测量范围、安装场所等条件选择(不同检测元件的温度测量范围见表 3.3.2), 且应符合下列规定: 1热电偶适用于一般场合; 热电阻适田于精确度要求较高、无振动场合; 热敏电阻适用于要求测量反应速度快的场合。 2 采用热电阻温度检测元件时, 宜采用PtlO0热电阻。 3 测量设备或管道的外壁温度, 应选用表面热电偶或表面热电阻。 4 测量流动的含固体颗粒介质的温度, 应选用耐磨热电偶。 5 下列情况, 可选用销装热电阻、热电偶: a测量部位比较狭小, 测温元件需要弯曲安装; b 被测物体热容量非常小;

电气自动化专业英语翻译

电气自动化专业英语(翻译1-3) 第一部分:电子技术 第一章电子测量仪表 电子技术人员使用许多不同类型的测量仪器。一些工作需要精确测量面另一些工作只需粗略估计。有些仪器被使用仅仅是确定线路是否完整。最常用的测量测试仪表有:电压测试仪,电压表,欧姆表,连续性测试仪,兆欧表,瓦特表还有瓦特小时表。 所有测量电值的表基本上都是电流表。他们测量或是比较通过他们的电流值。这些仪表可以被校准并且设计了不同的量程,以便读出期望的数值。 1.1安全预防 仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的。仪表的结构和操作的基本知识能帮助使用者按安全工作程序来对他们正确连接和维护。许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用。注意:每种仪表只能用来测量符合设计要求的电流类型。如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害。 许多仪表被设计成只能测量很低的数值,还有些能测量非常大的数值。 警告:仪表不允许超过它的额定最大值。不允许被测的实际数值超过仪表最大允许值的要求再强调也不过分。超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用者的伤害。许多仪表装备了过载保护。然而,通常情况下电流大于仪表设计的限定仍然是危险的。 1.3测量仪器的使用 电压表是设计来测量电路的电压或者通过元器件的压降。电压表必须与被测量的电路或元器件并联。 1.3.1压力检验计 交-直流电压检验计是一种相当粗糙但对电工来说很有用的仪器。这种仪器指示电压的近似值。更常见类型指示的电压值如下:AC,110,220,440,550V,DC,125,250,600V。许多这种仪器也指示直流电的极性。那就是说(i.e=that is)电路中的导体是阳性(正)的还是阴性(负)。 电压检验计通常用来检验公共电压,识别接地导体,检查被炸毁的保险丝,区分AC和DC。电压检验计很小很坚固,比一般的电压表容易携带和保存。图1。31。4描述了用电压检验计检查保险丝的用法。 为了确定电路或系统中的导体接地,把测试仪连接在导体和已建立的地之间。如果测试仪指示了一个

自动化专业英语中文翻译

第一部分:电子技术 第一章电子测量仪表 电子技术人员使用许多不同类型地测量仪器.一些工作需要精确测量面另一些工作只需粗略估计.有些仪器被使用仅仅是确定线路是否完整.最常用地测量测试仪表有:电压测试仪,电压表,欧姆表,连续性 测试仪,兆欧表,瓦特表还有瓦特小时表.b5E2RGbCAP 所有测量电值地表基本上都是电流表.他们测量或是比较通过他们地电流值.这些仪表可以被校准并且设计了不同地量程,以便读出期望 地数值.p1EanqFDPw 1.1安全预防 仪表地正确连接对于使用者地安全预防和仪表地正确维护是非常重 要地.仪表地结构和操作地基本知识能帮助使用者按安全工作程序来对他们正确连接和维护.许多仪表被设计地只能用于直流或只能用于交流,而其它地则可交替使用.注意:每种仪表只能用来测量符合设 计要求地电流类型.如果用在不正确地电流类型中可能对仪表有危险并且可能对使用者引起伤害.DXDiTa9E3d 许多仪表被设计成只能测量很低地数值,还有些能测量非常大地数值. 警告:仪表不允许超过它地额定最大值.不允许被测地实际数值 超过仪表最大允许值地要求再强调也不过分.超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用 者地伤害.许多仪表装备了过载保护.然而,通常情况下电流大于仪表设计地限定仍然是危险地.RTCrpUDGiT 1.2基本仪表地结构和操作

许多仪表是根据电磁相互作用地原理动作地.这种相互作用是通过流过导体地电流引起地<导体放置在永久磁铁地磁极之间).这种类型地仪表专门适合于直流电.5PCzVD7HxA 不管什么时候电流流过导体,磁力总会围绕导体形成.磁力是由在永久磁铁力地作用下起反应地电流引起.这就引起指针地移 动.jLBHrnAILg 导体可以制成线圈,放置在永久磁铁磁极之间地枢钮

自动化专业英语全文翻译

《自动化专业英语教程》-王宏文主编-全文翻译 PART 1Electrical and Electronic Engineering Basics UNIT 1A Electrical Networks ————————————3 B Three-phase Circuits UNIT 2A The Operational Amplifier ———————————5 B Transistors UNIT 3A Logical Variables and Flip-flop ——————————8 B Binary Number System UNIT 4A Power Semiconductor Devices ——————————11 B Power Electronic Converters UNIT 5A Types of DC Motors —————————————15 B Closed-loop Control of D C Drivers UNIT 6A AC Machines ———————————————19 B Induction Motor Drive UNIT 7A Electric Power System ————————————22 B Power System Automation PART 2Control Theory UNIT 1A The World of Control ————————————27 B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30 B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32 B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory 38 B State Equations 40 UNIT 6 A Controllability, Observability, and Stability B Optimum Control Systems UNIT 7 A Conventional and Intelligent Control B Artificial Neural Network PART 3 Computer Control Technology UNIT 1 A Computer Structure and Function 42 B Fundamentals of Computer and Networks 43 UNIT 2 A Interfaces to External Signals and Devices 44 B The Applications of Computers 46 UNIT 3 A PLC Overview B PACs for Industrial Control, the Future of Control

中文和英文简历和专业英语材料翻译

韶关学院 期末考核报告 科目:专业英语 学生姓名: 学号: 同组人: 院系: 专业班级: 考核时间:2012年10月9日—2012年11月1 日评阅教师: 评分:

第1章英文阅读材料翻译 (1) 第2章中文摘要翻译英文 (3) 第3章中文简历和英文简历 (4) 第4章课程学习体会和建议 (6) 参考文献 (7)

第1章英文阅读材料翻译 Mechanization and Automation Processes of mechanization have been developing and becoming more complex ever since the beginning of the Industrial Revolution at the end of the 18th century. The current developments of automatic processes are, however, different from the old ones. The “automation” of the 20th century is distinct from the mechanization of the 18th and 19th centuries inasmuch as mechanization was applied to individual operations, wherea s “automation” is concerned with the operation and control of a complete producing unit. And in many, though not all, instances the element of control is so great that whereas mechanization displaces muscle, “automation”displaces brain as well. The distinction between the mechanization of the past and what is happening now is, however, not a sharp one. At one extreme we have the electronic computer with its quite remarkable capacity for discrimination and control, while at the other end of the scale are “ transfer machines” , as they are now called, which may be as simple as a conveyor belt to another. An automatic mechanism is one which has a capacity for self-regulation; that is, it can regulate or control the system or process without the need for constant human attention or adjustment. Now people often talk about “feedback” as begin an essential factor of the new industrial techniques, upon which is base an automatic self-regulating system and by virtue of which any deviation in the system from desired condition can be detected, measured, reported and corrected. when “feedback” is applied to the process by which a large digital computer runs at the immense speed through a long series of sums, constantly rejecting the answers until it finds one to fit a complex set of facts which have been put to it, it is perhaps different in degree from what we have previously been accustomed to machines. But “feedback”, as such, is a familiar mechanical conception. The old-fashioned steam engine was fitted with a centrifugal governor, two balls on levers spinning round and round an upright shaft. If the steam pressure rose and the engine started to go too fast, the increased speed of the spinning governor caused it to rise up the vertical rod and shut down a valve. This cut off some of the steam and thus the engine brought itself back to its proper speed. The mechanization, which was introduced with the Industrial Revolution, because it was limited to individual processes, required the employment of human labor to control each machine as well as to load and unload materials and transfer them from one place to another. Only in a few instances were processes automatically linked together and was production organized as a continuous flow. In general, however, although modern industry has been highly mechanized ever since the 1920s, the mechanized parts have not as a rule been linked together. Electric-light bulbs, bottles and the components of innumerable mass-produced

相关文档
相关文档 最新文档