文档库 最新最全的文档下载
当前位置:文档库 › 热学(李椿+章立源+钱尚武)习题解答_第二章 气体分子运动论的基本概念

热学(李椿+章立源+钱尚武)习题解答_第二章 气体分子运动论的基本概念

热学(李椿+章立源+钱尚武)习题解答_第二章   气体分子运动论的基本概念
热学(李椿+章立源+钱尚武)习题解答_第二章   气体分子运动论的基本概念

第二章 气体分子运动论的基本概念

2-1

目前可获得的极限真空度为10-13

mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。 解: 由P=n K T 可知

n =P/KT=)

27327(1038.11033.1101023

213+?????-- =3.21×109(m –3

) 注:1mmHg=1.33×102

N/m 2

2-2

钠黄光的波长为5893埃,即5.893×10-7

m ,设想一立方体长5.893×10-7

m , 试问在标准状态下,其中有多少个空气分子。 解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105

N/m 2

∴N=6

23375105.5273

1038.1)10893.5(10013.1?=?????=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5

mmHg 的真空。为了提高其真空度,

将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。若烘烤后压强增为1.0×10-2

mmHg ,问器壁原来吸附了多少个气体分子。

解:设烘烤前容器内分子数为N 。,烘烤后的分子数为N 。根据上题导出的公式PV = NKT 则有:

)(0

110011101T P T P K V KT V P KT V P N N N -=-=

-=? 因为P 0与P 1相比差103

数量,而烘烤前后温度差与压强差相比可以忽略,因此

T P 与

1

1

T P 相比可以忽略 1823

2

23111088.1)

300273(1038.11033.1100.1102.11??+???????=?=?---T P K N N 个

2-4 容积为2500cm 3

的烧瓶内有1.0×1015

个氧分子,有4.0×1015

个氮分子和3.3×10-7

g

的氩气。设混合气体的温度为150℃,求混合气体的压强。 解:根据混合气体的压强公式有 PV=(N 氧+N 氮+N 氩)KT

其中的氩的分子个数:

N 氩=

152310

01097.410023.640

103.3?=???=-N M 氩

μ(个)

∴ P=(1.0+4.0+4.97)1015

2231033.22500

423

1038.1--?=???

Pa 4

1075.1-??mmHg

2-5

一容器内有氧气,其压强P=1.0atm,温度为t=27℃,求 (1) 单位体积内的分子数:

(2) 氧气的密度; (3) 氧分子的质量; (4) 分子间的平均距离; (5) 分子的平均平动能。 解:(1) ∵P=nKT

∴n=252351045.2300

1038.110013.10.1?=????=-KT P m -3

(2) l g RT

P /30.1300

082.032

1=??=

=

μρ

(3)m 氧=23

25

3103.510

45.2103.1-????=n ρ

g (4) 设分子间的平均距离为d ,并将分子看成是半径为d/2的球,每个分子的体积为v 0。 V 0=

336

)2(34d d ππ= ∴7

19

3

1028.410

44.266-?=??==ππn d cm (5)分子的平均平动能ε为:

ε 14161021.6)27273(1038.12

3

23--?=+??==

KT (尔格)

2-6 在常温下(例如27℃),气体分子的平均平动能等于多少ev?在多高的温度下,气体分子的平均平动能等于1000ev?

解:(1)21231021.63001038.12

3

23--?=??==

KT ε(J ) ∵leV=1.6×10-19

J

∴2

19

211088.310

6.11021.6---?=??=ε(ev) (2)T=K K 623

19

3107.710

38.13106.110232???????=--ε

2-7 一摩尔氦气,其分子热运动动能的总和为3.75×103

J,求氦气的温度。:解:

KT N E A 2

3

==

ε ∴K R E KN E T A 30131

.831075.3232323????===

2-8

质量为10Kg 的氮气,当压强为1.0atm,体积为7700cm 3

时,其分子的平均平动能是多少? 解: ∵MR

PV T μ=

而 kt 2

3

=

ε ∴

24

23

4

0104.510

022.610228

770010013.132323--?????????==

=

MN PV MR

KPV μμ

εJ

2-9 质量为50.0g ,温度为18.0℃的氦气装在容积为10.0L 的封闭容器内,容器以

v=200m/s 的速率作匀速直线运动。若容器突然静止,定向运动的动能全部转化为分子热运动的动能,则平衡后氦气的温度和压强将各增大多少? 解:由于容器以速率v 作定向运动时,每一个分子都具有定向运动,其动能等于

22

1

mv ,

当容器停止运动时,分子定向运动的动能将转化为分子热运动的能量,每个分子的平均热运动能量则为122

3

2123KT mv KT +=

∴△T=K

R v K m v T T 42.631

.83104104334

32

212=????==

=--μ 因为容器内氦气的体积一定,所以

T

P T T P P T P T P ??=

--==121

21122 故△P=

T T P ?1

1

,又由11RT M V P μ=

得:V RT M

P /11μ

=

∴△P=1

3

1058.610

10442.6082.005.0--??????=?V T MR μ(atm )

2-10 有六个微粒,试就下列几种情况计算它们的方均根速率:

(1)

六个的速率均为10m/s ;

(2) 三个的速率为5m/s,另三个的为10m/s ; (3) 三个静止,另三个的速率为10m/s 。 解:(1)

s m V

/1061062

2

=?=

(2)s m V

/9.76531032

22

=?+?=

(3)s m V

/1.76

1032

2

=?=

2-11 试计算氢气、氧气和汞蒸气分子的方均根速率,设气体的温度为300K ,已知氢

气、氧气和汞蒸气的分子量分别为2.02、32.0和201。

解:

s

m RT

V H H /109.110371002.2300

81.333353

2

2

2???=

???=

=

2

3

2

021083.4103230031.83?????=

-V m/s s m V H g /1093.110

201300

31.8323

2

?????=

-

2-12 气体的温度为T = 273K,压强为 P=1.00×10-2atm,密度为ρ=1.29×10-5

g

(1) 求气体分子的方均根速率。

(2) 求气体的分子量,并确定它是什么气体。 解:(1)

s m P

RT

V

/485332

==

=

ρ

μ

(2)mol g mol kg P

RT

n PN A /9.28/109.283=?===

-ρμ m=28.9

该气体为空气

2-13 若使氢分子和氧分子的方均根速率等于它们在月球表面上的逃逸速率,各需多高的温

度?

解:在地球表面的逃逸速率为 V 地逸=

s m gR /1012.11063708.92243?????=

在月球表面的逃逸速率为 V 月逸=

s

m R g R g /104.210370.627.08.917.0227.017.0223

5

???????=

??=地

地月月

又根据

μ

RT

V

32

=

∴R

v T 32

μ=

当s m V

/1012.142

?=时,则其温度为

T H2=

K

R

v H 42

432

21001.131

.831012.11023??????=

?-)

(地逸μ T O2=

K

R

v O 52

432

2106.131

.831012.110323??????=

?-)

(地逸μ 当

s m V

/104.232

?=时

T H2=K

R v H 22

332

2106.431

.83104.21023?=????=?-)(月逸

μ T O2=

K

R

v O 32

332

2104.731

.83104.210323??????=

?-)

(月逸μ

2-14 一立方容器,每边长1.0m ,其中贮有标准状态下的氧气,试计算容器一壁每秒受到的

氧分子碰撞的次数。设分子的平均速率和方均根速率的差别可以忽略。 解:按题设4611032273

3.8333

2

=???=

=

=

RT

V

v 米/秒

设标准状态下单位容器内的分子数为n ,将容器内的分子按速度分组,考虑速度为v i

的第i 组。说单位体积内具有速度v i 的分子数为n i ,在时间内与dA 器壁相碰的分子数为n i ·v ix dt ·dA ,其中v ix 为速度v i 在X 方向上的分量,则第i 组分子每秒与单位面积器壁碰撞次数为n i ·v ix ,所有分子每秒与单位面积器壁碰撞次数为:

2

2

322212

1/21

v n v n v n n

v n n v n n v

n D x

x i

i

i

ix

i ix

i

i i

ix

i ===

=

==

∑∑∑∑

即μ

RT

n D 33

2=

在标准状态下n=2.69×1025m -3

)

(1058.31032273

81.831069.23

21

1273

25--??????

??=

s D

2-15 估算空气分子每秒与1.0cm 2

墙壁相碰的次数,已知空气的温度为300K ,压强为1.0atm ,

平均分子量为29。设分子的平均速率和方均根速率的差别可以忽略。 解:与前题类似,所以每秒与1cm 2

的墙壁相碰次数为:

1

231059.333

21332-?????

=

=S S RT

KT

P

S RT

n D μ

μ

2-16 一密闭容器中贮有水及饱和蒸汽,水的温度为100℃,压强为1.0atm ,已知在这种状

态下每克水汽所占的体积为1670cm 3

,水的汽化热为2250J/g (1) 每立方厘米水汽中含有多少个分子? (2) 每秒有多少个水汽分子碰到水面上?

(3) 设所有碰到水面上的水汽分子都凝结为水,则每秒有多少分子从水中逸出? (4) 试将水汽分子的平均动能与每个水分子逸出所需能量相比较。 解:(1)每个水汽分子的质量为:0

N m μ

=

每cm 3

水汽的质量v

M 1

=

则每cm 3

水汽所含的分子数

3

260102-?===

m v N m M

n μ

(2)可看作求每秒与1cm 2

水面相碰的分子数D ,这与每秒与1cm 2

器壁相碰的分子数方法相同。

在饱和状态n 不变。

个)

(1015.433

213

21232

?=?=

=

μ

RT

s

n s v n D

(3)当蒸汽达饱和时,每秒从水面逸出的分子数与返回水面的分子数相等。 (4)分子的平均动能

)

(1072.72

321J KT

-??=

∈ 每个分子逸出所需的能量

)(1073.62250200

J N Lm E -???

==μ

显而易见E ?,即分子逸出所需能量要大于分子平均平动能。

2-17 当液体与其饱和蒸气共存时,气化率和凝结率相等,设所有碰到液面上的蒸气分子都

能凝结为液体,并假定当把液面上的蒸气分子迅速抽去时液体的气化率与存在饱和蒸气

时的气化率相同。已知水银在0℃时的饱和蒸气压为 1.85×10-6

mmHg ,汽化热为80.5cal/g ,问每秒通过每平方厘米液面有多少克水银向真空中气化。 解:根据题意,气化率和凝结率相等

P=1.85×10-6

mmHg

=2.47×10-4Nm -2

气化的分子数=液化的分子数=碰到液面的分子数N ,由第14题结果可知:

个)

(1049.333

213

21142

?=?=

=

μ

RT

s

n s v n N

则每秒通过1cm 2

液面向真空气化的水银质量

)

(1016.11049.310022.6201

71423

g N N m N M -?????=

=

2-18 已知对氧气,范德瓦耳斯方程中的常数b=0.031831mol -1

,设b 等于一摩尔氧气分子体

积总和的四倍,试计算氧分子的直径。

解:2)2

(344d N b O π?

= ∴)

(1093.2)(1093.2231083

m cm N b d O

--?=??=

π

2-19 把标准状态下224升的氮气不断压缩,它的体积将趋于多少升?设此时的氮分子是一

个挨着一个紧密排列的,试计算氮分子的直径。此时由分子间引力所产生的内压强约为

多大?已知对于氮气,范德瓦耳斯方程中的常数a=1.390atm ﹒l 2mol -2,b=0.039131mol -1

解:在标准状态西224l 的氮气是10mol 的气体,所以不断压缩气体时,则其体积将趋于10b ,即0.39131,分子直径为:

)

(1014.32383

cm N b d O

-??=

π

内压强P 内=

8.90703913.039.12

2?=V a atm 注:一摩尔实际气体当不断压缩时(即压强趋于无限大)时,气体分子不可能一个挨一

个的紧密排列,因而气体体积不能趋于分子本身所有体积之和而只能趋于b 。

2-20 一立方容器的容积为V ,其中贮有一摩尔气体。设把分子看作直径为d 的刚体,并设想分子是一个一个地放入容器的,问:

(1) 第一个分子放入容器后,其中心能够自由活动的空间体积是多大? (2) 第二个分子放入容器后,其中心能够自由活动的空间体积是多大? (3) 第N A 个分子放入容器后,其中心能够自由活动的空间体积是多大? (4) 平均地讲,每个分子的中心能够自由活动的空间体积是多大?

由此证明,范德瓦耳斯方程中的改正量b 约等于一摩尔气体所有分子体积总和的四倍。 解:假定两分子相碰中心距为d ,每一分子视直径为d 的小球,忽略器壁对分子的作用。

(1) 设容器四边长为L ,则V=L 3

,第一个分子放入容器后,其分子中心与器壁的距离

应2

d ≥

,所以它的中心自由活动空间的体积V 1=(L-d )3

。 (2) 第二个分子放入后,它的中心自由活动空间应是V 1减去第一个分子的排斥球体积,

即:

2123

4

d V V π-

= (3)第N A 个分子放入后, 其中心能够自由活动的空间体积:

213

4

)

1(d N V V A A π--= (4) 平均地讲,每个分子的中心能够自由活动的空间为:

2

134

)]}1(321[3

4

{1]}3

4

)1([)342()34({131********--

=-+??+++-=

--??+?-+-+=A A A A A A N d V N d V N N d N V d V d V V N V πππππ因为d L ≥,1≥A N ,所以

33)2

(344234d

N V N d V V A A ππ?-=?-

= 容积为V 的容器内有N A 个分子,即容器内有一摩尔气体,按修正量b 的定义,每个分子自由活动空间b V V -=,与上面结果比较,易见:

3)2

(344d N b A π?

= 即修正量b 是一摩尔气体所有分子体积总和的四倍。

高中物理《热学》3.5典型例题分析

§3.5 典型例题分析 例1、绷紧的肥皂薄膜有两个平行的边界,线AB 将薄膜分隔成两部分(如图3-5-1)。为了演示液体的表面张力现象,刺破左边的膜,线AB 受到表面张力作 用被拉紧,试求此时线的张力。两平行边之间的距离为d ,线AB 的长度为l (l >πd/2),肥皂液的表面张力系数为σ。 解:刺破左边的膜以后,线会在右边膜的作用下形状相应发生变化(两侧都有膜时,线的形状不确定),不难推测,在l >πd/2的情况下,线会形成长度为 ) 2/(21 d l x π-=的两条直线段和半径为d/2的半圆, 如图3-5-2所示。线在C 、D 两处的拉力及各处都垂直于该弧线的表面张力的共同作用下处于平衡状态,显然 ∑=i f T 2 式中为在弧线上任取一小段所受的表面张力,∑i f 指各小段所受表面张力的合力,如图3-5-2所示,在弧线上取对称的两小段,长度均为r △θ,与x 轴的夹角均为方θ,显然 θσ??==r f f 221 而这两个力的合力必定沿x 轴方向,(他们垂直x 轴方向分力的合力为零),这样 θθσ??==cos 221r f f x x 所以 图3-5-1 图3-5-2

∑∑==?=d r r f i σσθθσ24cos 2 因此d T σ= 说明对本题要注意薄膜有上下两层表面层,都会受到表面张力的作用。 例2、在水平放置的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈圆饼形状(侧面向外凸出),过圆盘轴线的竖直截面如图3-5-3所示。为了计算方便,水银和玻璃的接触角可按180o计算,已知水银密度 33106.13m kg ?=ρ,水银的表面张力系数m N a 49.0=。当圆饼的半径很大时,试估算厚度h 的数值大约是多少(取一位有效数字)? 分析:取圆饼侧面处宽度为△x ,高为h 的面元△S ,图3-5-3所示。由于重力而产生的水银对△S 侧压力F ,由F 作用使圆饼外凸。但是在水银与空气接触的表面层中,由于表面张力的作用使水银表面有收缩到尽可能小的趋势。上下两层表面张力的合力的水平分量必与F 反向,且大小相等。△S 两侧表面张力43,f f 可认为等值反向的。 解: x gh S p F ?= ??=2121 ρ F f f =+21cos θ x gh x a ?= +?221 )cos 1(ρθ g a h ρθ)cos 1(2+= 由于0<θ<90o,有 m h m 3 3104103--?<

热学试题1---4及答案

热学模拟试题一 一、 填空题 1. lmol 的单原子分子理想气体,在1atm 的恒定压强下,从0℃加热到100℃, 则气体的内能改变了_____J .(普适气体常量R=·mol -1·k -1)。 2. 右图为一理想气体几种状态变化过程的p-v 图,其中MT 为等温线,MQ 为绝热线,在AM,BM,CM 三种准静态过程中: (1) 温度升高的是___ 过程; (2) 气体吸热的是______ 过程. 3. 所谓第二类永动机是指 _______________________________________ ;它不可能制成是因为违背了___________________________________。 4. 处于平衡状态下温度为T 的理想气体, kT 2 3 的物理意义是 ___________________________.(k 为玻尔兹曼常量). 5. 图示曲线为处于同一温度T 时氦(原子量 4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。其中: 曲线(a)是______ 分子的速率分布曲线; > 曲线(b)是_________气分子的速率分布曲线; 曲线(c)是_________气分子的速率分布曲线。 6. 处于平衡态A 的一定量的理想气体,若经准静态等体过程变到平衡态B ,将从外界吸收热量416 J ,若经准静态等压过程变到 与平衡态B 有相同温度的平衡态C ,将从外界吸收热量582J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中气体对外界所作的功为_____________________。 7. 一定量的某种理想气体在等压过程中对外作功为200J .若此种气体为单原子分子气体,则该过程中需吸热__________J ;若为双原子分子气体,则需吸热_____________J 。 8. 一定量的理想气体,在p —T 图上经历一个如图所示的循环过程(a→b→c→d→a ),其中a→b ,c→d 两个过程是绝热过程,则该循环的效率η=_________________。 9. 某种单原子分子组成的理想气体,在等压过程中其摩尔热容量 为 ;在等容过程中其摩尔热容量为 ;在等温过程中其摩尔热容量为 ;在绝热过程中其摩尔热容量为 。 10. — 11. 理想气体由某一初态出发,分别做等压膨胀,等温膨胀和绝热膨胀三个过程。其中:等压膨胀 过程内能 ;等温膨胀过程内能 ;绝热膨胀过程内能 。 二、 选择题 1. 有一截面均匀两端封闭的圆筒,中间被一光滑的活塞分隔成两边,如果其中一边装有1克的氢气,则另一边应装入: (A ) 16 1 克的氧气才能使活塞停留在中央。 (B ) 8克的氧气才能使活塞停留在中央。 (C ) 32克的氧气才能使活塞停留在中央。 (D ) 16克的氧气才能使活塞停留在中央。 [ D ] 2. 按经典的能均分原理,每个自由度上分子的平均动能是: (A ) kT ; (B )kT 2 3 ; (C )kT 2 1 ; (D )RT 。 [ C ] 3. ! 4. 有二容器,一盛氢气,一盛氧气,若此两种气体之方均根速率相等,则: P(atm) T(K) ~ a b c d —

工程热力学例题答案解

例1:如图,已知大气压p b=101325Pa ,U 型管内 汞柱高度差H =300mm ,气体表B 读数为0.2543MPa ,求:A 室压力p A 及气压表A 的读数p e,A 。 解: 强调: P b 是测压仪表所在环境压力 例2:有一橡皮气球,当其内部压力为0.1MPa (和大气压相同)时是自由状态,其容积为0.3m 3。当气球受太阳照射而气体受热时,其容积膨胀一倍而压力上升到0.15MPa 。设气球压力的增加和容积的增加成正比。试求: (1)该膨胀过程的p~f (v )关系; (2)该过程中气体作的功; (3)用于克服橡皮球弹力所作的功。 解:气球受太阳照射而升温比较缓慢,可假定其 ,所以关键在于求出p~f (v ) (2) (3) 例3:如图,气缸内充以空气,活塞及负载195kg ,缸壁充分导热,取走100kg 负载,待平 衡后,不计摩擦时,求:(1)活塞上升的高度 ;(2)气体在过程中作的功和换热量,已 知 解:取缸内气体为热力系—闭口系 分析:非准静态,过程不可逆,用第一定律解析式。 计算状态1及2的参数: 过程中质量m 不变 据 因m 2=m 1,且 T 2=T 1 体系对外力作功 注意:活塞及其上重物位能增加 例4:如图,已知活塞与气缸无摩擦,初始时p 1=p b ,t 1=27℃,缓缓加热, 使 p 2=0.15MPa ,t 2=207℃ ,若m =0.1kg ,缸径=0.4m ,空气 求:过程加热量Q 。 解: 据题意 ()()121272.0T T m u u m U -=-=? 例6 已知:0.1MPa 、20℃的空气在压气机中绝热压缩后,导入换热器排走部分热量,再进入喷管膨胀到0.1MPa 、20℃。喷管出口截面积A =0.0324m2,气体流速c f2=300m/s 。已知压气机耗功率710kW ,问换热器的换热量。 解: 稳定流动能量方程 ——黑箱技术 例7:一台稳定工况运行的水冷式压缩机,运行参数如图。设空气比热 cp =1.003kJ/(kg·K),水的比热c w=4.187kJ/(kg·K)。若不计压气机向环境的散热损失、动能差及位能差,试确定驱动该压气机所需功率。[已知空气的焓差h 2-h 1=cp (T 2-T 1)] 解:取控制体为压气机(不包括水冷部分 流入: 流出: 6101325Pa 0.254310Pa 355600Pa B b eB p p p =+=+?=()()63 02160.110Pa 0.60.3m 0.0310J 30kJ W p V V =-=??-=?=斥L ?{}{}kJ/kg K 0.72u T =1 2T T =W U Q +?=()()212211U U U m u m u ?=-=-252 1.96010Pa (0.01m 0.05m)98J e W F L p A L =??=???=???={}{}kJ/kg K 0.72u T =W U Q +?=g V m pq q R T =()f 22g p c A R T =620.110Pa 300m/s 0.0324m 11.56kg/s 287J/(kg K)293K ???==??()111 11111m V m P e q p q P q u p v ++?++() 1 2 1 22222m V m e q p q q u p v ++Φ?Φ++水水

2019中考物理经典易错题100例-热学部分

2019中考物理经典易错题100例-热学部分 一、物理概念(物理量):比热(C)、热量(Q)、燃烧值(q)、内能、温度(t)。 二、实验仪器:温度计、体温计。 三、物理规律:光在均匀介质中沿直线传播的规律,光的反射定律,平面镜成像规律,光的折射规律,凸透镜成像规律,物态变化规律,内能改变的方法,热量计算公式: Q=cmDt及燃烧值计算Q=qm,分子运动论。 第一类:相关物理量的习题: 例1:把一杯酒精倒掉一半,则剩下的酒精() A. 比热不变,燃烧值变为原来的一半 B.比热和燃烧值均不变 C. 比热变为原来的一半,燃烧值不变 D.比热和燃烧值均变为原来的一半 [解析]:比热是物质的一种特性。它与该种物体的质量大小无关;与该种物体的温度高低无关;与该种物体吸热还是放热也无关。这种物质一旦确定,它的比热就被确定。酒精的比热是2.4×103焦/(千克?℃),一瓶酒精是如此,一桶酒精也是如此。0℃的酒精和20℃的酒精的比热也相同。燃烧值是燃料的一种性质。它是指单位质量的某种燃烧完全燃烧所放出的热量。酒精的燃烧值是3.0×107焦/千克,它并不以酒精的质量多少而改变。质量多的酒精完全燃烧放出的热量多,但酒精的燃烧值并没有改变。所以本题的准确答案应是B。 例2:甲、乙两个冰块的质量相同,温度均为0℃。甲冰块位于地面静止,乙冰块停止在10米高处,这两个冰块()。 A. 机械能一样大 B.乙的机械能大 C.内能一样大 D. 乙的内能大 [解析]:机械能包括动能、势能,两个冰块的质量相同,能够通过它们的速度大小、位置高度,判断它们的动能和势能的大小,判断物体内能大小的依据是温度和状态。根据题意,两个冰块均处于静止状态,它们的动能都是零,两冰块质量相同,乙冰块比甲冰块的位置高,乙冰块的重力势能大。结论是乙冰块的机械能大。两个冰块均为0℃,质量相同,物态相同,温度相同,所以从它们的内能也相同。选项B、C准确。 第二类:相关温度计的习题: 例1:两支内径粗细不同下端玻璃泡内水银量相等的合格温度计同时插入同一杯热水中,水银柱上升的高度和温度示数分别是() A. 上升高度一样,示数相等。 B. 内径细的升得高,它的示数变大。

第四、五章气体动理论和热力学的补充题

第三、四章 气体动理论及热力学习题 一、选择题 1.某理想气体状态变化时,内能随压强的变化关系如图中 直线AB 所示,则A 至B 变化过程为:( ) (A )等温过程 (B )等容过程 (C )等压过程 (D )绝热过程 2. 一定量的理想气体,处在某一初始状态,现在要使它的温度经过一系列状态变化后回到初始状态的温度,可能实现的过程为 ( ) (A )先保持压强不变而使它的体积膨胀,接着保持体积不变而增大压强; (B )先保持压强不变而使它的体积减小,接着保持体积不变而减小压强; (C )先保持体积不变而使它的压强增大,接着保持压强不变而使它体积膨胀; (D )先保持体积不变而使它的压强减小,接着保持压强不变而使它体积膨胀。 3. 压强、体积和温度都相同(常温条件)的氧气和氦气在等压过程中吸收了相等的热量,它们对外作的功之比为 ( ) (A )1:1; (B )5:9; (C )5:7; (D )9:5。 4. 一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为0p ,右边为真空,今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是( ) (A )0p ; (B )0p /2; (C )02p γ; (D )γ2/0p 。 )/(v p C C =γ 5. 在V p 图上有两条曲线abc 和adc ,由此可以得出以下结论: ( ) (A )其中一条是绝热线,另一条是等温线; (B )两个过程吸收的热量相同; (C )两个过程中系统对外作的功相等; (D )两个过程中系统的内能变化相同。 6. 一定量的理想气体向真空作自由膨胀,体积由1V 增至2V ,此过程中气体的( ) (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 7. 一热机由温度为727℃的高温热源吸热,向温度为527 ℃的低温热源放热,若热机在最

哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而 对 于 能 量 方 程 来 说 ,其循环积分:

人教版初中物理经典易错题--热学部分

初三物理《热学》易错题分析 一:常规易错题 1:把一杯酒精倒掉一半,则剩下的酒精() A. 比热不变,燃烧值变为原来的一半 B.比热和燃烧值均不变 C. 比热变为原来的一半,燃烧值不变 D.比热和燃烧值均变为原来的一半 2:甲、乙两个冰块的质量相同,温度均为0℃。甲冰块位于地面静止,乙冰块停止在10米高处,这两个冰块()。 A. 机械能一样大 B.乙的机械能大 C.内能一样大 D. 乙的内能大 3:两支内径粗细不同下端玻璃泡内水银量相等的合格温度计同时插入同一杯热水中,水银柱上升的高度和温度示数分别是() A. 上升高度一样,示数相等。 B. 内径细的升得高,它的示数变大。 C. 内径粗的升得低,但两支温度计的示数相同。 D. 内径粗的升得高,示数也大。 4下列说法中正确的是() A. 某一物体温度降低的多,放出热量就多。 B.温度高的物体比温度低的物体含有热量多。 C. 温度总是从物体热的部分传递至冷的部分。 D.深秋秧苗过夜要灌满水,是因为水的温度高。 5:一个带盖的水箱里盛有一些0℃的冰和水,把它搬到大气压为1标准大气压0℃的教室里,经过一段时间后,水箱里()。 A. 都变成冰了,连水气也没有 B.都变成水了,同时也有水气 C. 只有冰和水,不会有水气 D.冰、水和水气都存在 6:下列现象中,不可能发生的是() A. 水的沸点低于或高于100℃ B. 湿衣服放在温度低的地方比放在温度高的地方干得快 C. -5℃的冰块放在0℃的水中会溶化 D. 物体吸收热量温度保持不变 7:质量和初温相同的两个物体() A吸收相同热量后,比热大的物体温度较高B.放出相同的热量后比热小的物体温度较低 C. 吸收相同的热量后,比热较小的物体可以传热给比热较大的物体 D. 放出相同的热量后,比热较大的物体可以向比热较小的物体传播 8:指明下列事物中内能改变的方法:⑴一盆热水放在室内,一会儿就凉了________;⑵高温高压的气体,迅速膨胀,对外做功,温度降低________;⑶铁块在火炉中加热,一会热得发红________;⑷电烙铁通电后,温度升高________;⑸用打气筒给车胎打气,过一会儿筒壁变热。⑹两手互相摩擦取暖________。 9:甲、乙两金属球,质量相等,初温相同,先将甲球投入冷水中,待热平衡后水温升高t℃,取出甲球(设热量与水均无损失),再迅速把乙球投入水中,这杯水热平衡后水温又升高t℃,设甲、乙两球的比热分别为C甲和C乙,则有() A. C甲=C乙 B.C甲>C乙 C.C甲

(完整版)热学经典题目归纳附答案

热学经典题目归纳 一、解答题 1.(2019·山东高三开学考试)如图所示,内高H=1.5、内壁光滑的导热气缸固定在水 平面上,横截面积S=0.01m2、质量可忽略的活塞封闭了一定质量的理想气体。外界温度为300K时,缸内气体压强p1=1.0×105Pa,气柱长L0=0.6m。大气压强恒为p0=1.0×105Pa。现用力缓慢向上拉动活塞。 (1)当F=500N时,气柱的长度。 (2)保持拉力F=500N不变,当外界温度为多少时,可以恰好把活塞拉出? 【答案】(1)1.2m;(2)375K 【解析】 【详解】 (1)对活塞进行受力分析 P1S+F=P0S. 其中P1为F=500N时气缸内气体压强 P1=0.5×104Pa. 由题意可知,气体的状态参量为 初态:P0=1.0×105Pa,V a=LS,T0=300K; 末态:P1=0.5×105Pa,V a=L1S,T0=300K; 由玻意耳定律得 P1V1=P0V0 即 P1L1S=P0L0S 代入数据解得 L1=1.2m<1.5m 其柱长1.2m

(2)汽缸中气体温度升高时活塞将向外移动,气体作等压变化 由盖吕萨克定律得 10V T =2 2 V T 其中V 2=HS . 解得: T 2=375K. 2.(2019·重庆市涪陵实验中学校高三月考)底面积S =40 cm 2、高l 0=15 cm 的圆柱形汽缸开口向上放置在水平地面上,开口处两侧有挡板,如图所示.缸内有一可自由移动的质量为2 kg 的活塞封闭了一定质量的理想气体,不可伸长的细线一端系在活塞上,另一端跨过两个定滑轮提着质量为10 kg 的物体A .开始时,气体温度t 1=7℃,活塞到缸底的距离l 1=10 cm ,物体A 的底部离地h 1=4 cm ,对汽缸内的气体缓慢加热使活塞缓慢上升.已知大气压p 0=1.0×105 Pa ,试求: (1)物体A 刚触地时,气体的温度; (2)活塞恰好到达汽缸顶部时,气体的温度. 【答案】(1)119℃ (2)278.25℃ 【解析】 【详解】 (1)初始活塞受力平衡: p 0S +mg =p 1S +T ,T =m A g 被封闭气体压强 p 1()A 0m m g p S -=+ =0.8×105 Pa 初状态, V 1=l 1S ,T 1=(273+7) K =280 K A 触地时 p 1=p 2, V 2=(l 1+h 1)S 气体做等压变化,

第八章 热力学作业(答案)

第八章 热力学基础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0>?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真 空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 [ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. p 0

热学试题及答案

热学模拟试题一 一、 填空题 1. lmol 的单原子分子理想气体,在1atm 的恒定压强下,从0℃加热到100℃, 则气体的内能改变了_____J .(普适气体常量R=8.31J ·mol -1·k -1)。 2. 右图为一理想气体几种状态变化过程的p-v 图,其中MT 为等温线,MQ 为绝热线,在AM,BM,CM 三种准静态过程中: (1) 温度升高的是___ 过程; (2) 气体吸热的是______ 过程. 3. 所谓第二类永动机是指 _______________________________________ ;它不可能制成是因为违背了___________________________________。 4. 处于平衡状态下温度为T 的理想气体, kT 2 3 的物理意义是 ___________________________.(k 为玻尔兹曼常量). 5. 图示曲线为处于同一温度T 时氦(原子量 4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。其中: 曲线(a)是______ 分子的速率分布曲线; 曲线(b)是_________气分子的速率分布曲线; 曲线(c)是_________气分子的速率分布曲线。 6. 处于平衡态A 的一定量的理想气体,若经准静态等体过程变到平衡态B ,将从外界吸收热量416 J ,若经准静态等压过程变到 与平衡态B 有相同温度的平衡态C ,将从外界吸收热量582J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中气体对外界所作的功为_____________________。 7. 一定量的某种理想气体在等压过程中对外作功为200J .若此种气体为单原子分子气体,则该过程中需吸热__________J ;若为双原子分子气体,则需吸热_____________J 。 8. 一定量的理想气体,在p —T 图上经历一个如图所示的循环过程(a→b→c→d→a),其中a→b,c→d 两个过程是绝热过程,则该循环的效率 η=_________________。 9. 某种单原子分子组成的理想气体,在等压过程中其摩尔热容量 为 ;在等容过程中其摩尔热容量为 ;在等温过程中其摩尔热容量为 ;在绝热过程中其摩尔热容量为 。 10. 理想气体由某一初态出发,分别做等压膨胀,等温膨胀和绝热膨胀三个过程。其中:等压膨胀 过程内能 ;等温膨胀过程内能 ;绝热膨胀过程内能 。 二、 选择题 1. 有一截面均匀两端封闭的圆筒,中间被一光滑的活塞分隔成两边,如果其中一边装有1克的氢气,则另一边应装入: (A ) 16 1 克的氧气才能使活塞停留在中央。 (B ) 8克的氧气才能使活塞停留在中央。 (C ) 32克的氧气才能使活塞停留在中央。 (D ) 16克的氧气才能使活塞停留在中央。 [ D ] 2. 按经典的能均分原理,每个自由度上分子的平均动能是: (A ) kT ; (B )kT 2 3 ; (C )kT 2 1 ; (D )RT 。 [ C ] 3. 有二容器,一盛氢气,一盛氧气,若此两种气体之方均根速率相等,则: (A ) 它们的压强相同; P(atm) T(K) a b c d

(完整版)工程热力学习题集附答案

工程热力学习题集 一、填空题 1.能源按使用程度和技术可分为 能源和 能源。 2.孤立系是与外界无任何 和 交换的热力系。 3.单位质量的广延量参数具有 参数的性质,称为比参数。 4.测得容器的真空度48V p KPa =,大气压力MPa p b 102.0=,则容器内的绝对压力为 。 5.只有 过程且过程中无任何 效应的过程是可逆过程。 6.饱和水线和饱和蒸汽线将压容图和温熵图分成三个区域,位于三区和二线上的水和水蒸气呈现五种状态:未饱和水 饱和水 湿蒸气、 和 。 7.在湿空气温度一定条件下,露点温度越高说明湿空气中水蒸气分压力越 、水蒸气含量越 ,湿空气越潮湿。(填高、低和多、少) 8.克劳修斯积分 /Q T δ?? 为可逆循环。 9.熵流是由 引起的。 10.多原子理想气体的定值比热容V c = 。 11.能源按其有无加工、转换可分为 能源和 能源。 12.绝热系是与外界无 交换的热力系。 13.状态公理指出,对于简单可压缩系,只要给定 个相互独立的状态参数就可以确定它的平衡状态。 14.测得容器的表压力75g p KPa =,大气压力MPa p b 098.0=,则容器内的绝对压力为 。 15.如果系统完成某一热力过程后,再沿原来路径逆向进行时,能使 都返回原来状态而不留下任何变化,则这一过程称为可逆过程。 16.卡诺循环是由两个 和两个 过程所构成。 17.相对湿度越 ,湿空气越干燥,吸收水分的能力越 。(填大、小) 18.克劳修斯积分 /Q T δ?? 为不可逆循环。 19.熵产是由 引起的。 20.双原子理想气体的定值比热容p c = 。 21、基本热力学状态参数有:( )、( )、( )。 22、理想气体的热力学能是温度的( )函数。 23、热力平衡的充要条件是:( )。 24、不可逆绝热过程中,由于不可逆因素导致的熵增量,叫做( )。 25、卡诺循环由( )热力学过程组成。 26、熵增原理指出了热力过程进行的( )、( )、( )。 31.当热力系与外界既没有能量交换也没有物质交换时,该热力系为_______。 32.在国际单位制中温度的单位是_______。

高中热学经典题集

热学试题集 一、选择题(在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确) 1.下列说法正确的是[] A.温度是物体内能大小的标志B.布朗运动反映分子无规则的运动 C.分子间距离减小时,分子势能一定增大D.分子势能最小时,分子间引力与斥力大小相等 2.关于分子势能,下列说法正确的是[] A.分子间表现为引力时,分子间距离越小,分子势能越大 B.分子间表现为斥力时,分子间距离越小,分子势能越大 C.物体在热胀冷缩时,分子势能发生变化 D.物体在做自由落体运动时,分子势能越来越小 3.关于分子力,下列说法中正确的是[] A.碎玻璃不能拼合在一起,说明分子间斥力起作用 B.将两块铅压紧以后能连成一块,说明分子间存在引力 C.水和酒精混合后的体积小于原来体积之和,说明分子间存在的引力 D.固体很难拉伸,也很难被压缩,说明分子间既有引力又有斥力 4.下面关于分子间的相互作用力的说法正确的是[] A.分子间的相互作用力是由组成分子的原子内部的带电粒子间的相互作用而引起的 B.分子间的相互作用力是引力还是斥力跟分子间的距离有关,当分子间距离较大时分子间就只有相互吸引的作用,当分子间距离较小时就只有相互推斥的作用 C.分子间的引力和斥力总是同时存在的 D.温度越高,分子间的相互作用力就越大 5.用r表示两个分子间的距离,Ep表示两个分子间的相互作用势能.当r=r0时两分子间的斥力等于引力.设两分子距离很远时Ep=0 [] A.当r>r0时,Ep随r的增大而增加B.当r<r0时,Ep随r的减小而增加 C.当r>r0时,Ep不随r而变D.当r=r0时,Ep=0 6.一定质量的理想气体,温度从0℃升高到t℃时,压强变化如图2-1所示,在这一过程中气体体积变化情况是[] 图2-1 A.不变B.增大C.减小D.无法确定 7.将一定质量的理想气体压缩,一次是等温压缩,一次是等压压缩,一次是绝热压缩,那么[] A.绝热压缩,气体的内能增加B.等压压缩,气体的内能增加 C.绝热压缩和等温压缩,气体内能均不变D.三个过程气体内能均有变化 8.如图2-2所示,0.5mol理想气体,从状态A变化到状态B,则气体在状态B时的温度为[] 图2-2

第四章 化学热力学作业题

1.用来焊接金属的铝热反应涉及Fe 2O 3被金属Al 还原的反应 2 Al(s) + Fe 2O 3(s)→Al 2O 3(s) + 2 Fe(s), 试计算298K 时该反应的 。已知,Fe 2O 3 (s)和Al 2O 3(s)的 分别为-1676 KJ?mol -1和-824.2 KJ?mol -1。 2.已知298K 时,乙烯加H 2生成乙烷的反应焓变 ,乙烷的摩尔燃烧热 ,CO 2的摩尔生成热 ,H 2O 的摩尔生成热 。试计算乙烯的摩尔生成热。(52.7 KJ?mol -1) 3.已知下列热化学方程式: 12326.27);(3)(2)(3)(-?=?+→+mol kJ rH g CO s Fe g CO s O Fe m θ ① 1243326.58);()(2)()(3-?-=?+→+mol kJ rH g CO s O Fe g CO s O Fe m θ ② 12431.38);()(3)()(-?=?+→+mol kJ rH g CO s FeO g CO s O Fe m θ ③ 计算下列反应的 。 )()()()(2g CO s Fe g CO s FeO +→+ 4.碘钨灯泡外壳是用石英(SiO 2)制作的。试用热力学数据论证:“用玻璃取代石θm r H ?θm f H ?1 θm r 4.136-?-=?mol kJ H 162θm c 07.156),(-?-=?mol kJ g H C H 12θm f 5.393),(-?-=?mol kJ g CO H 12θm f 8.285),(-?-=?mol kJ l O H H θm r H ?

热力学习题及答案

9 选择题(共21 分,每题 3 分) 1、理想气体从p-V图上初态a分别经历如图所示的(1) 或(2) 过程到达末态b.已 知TaQ2>0; (B) Q 2>Q1>0; (C) Q 20. 2、图(a),(b),(c) 各表示连接在一起的两个循环过程, 其中(c) 图是两个半径相等的圆构成的两个循环过程, 图(a) 和(b) 则为半径不相等的两个圆. 那么: [ C ] (A) 图(a) 总净功为负,图(b) 总净功为正,图(c) 总净功为零; (B) 图(a) 总净功为负,图(b) 总净功为负,图(c) 总净功为正; (C) 图(a) 总净功为负,图(b) 总净功为负,图(c) 总净功为零; (D) 图(a) 总净功为正,图(b) 总净功为正,图(c) 总净功为负. abcda 增大为ab'c'da, 那 么循环abcda 4、一定量的理想气体分别由图中初态a 经①过程ab和由初态a' 经②过程初 3、如果卡诺热机的循环曲线所包围的面积从图 中的与ab'c'da 所做的净功和热机效率变化情 况是(A) 净功增大, 效率提高; [ D ] (B) 净功增大, 效率降低; (C) 净功和效率都不变; (D) 净功增大, 效率不变.

态a' cb 到达相同的终态b, 如图所示, 则两个过程中气体从外界吸收的热量Q1,Q2的关系为[ B ] (A) Q 1<0,Q1>Q2 ; (B) Q 1>0, Q 1>Q2 ; (C) Q 1<0,Q10, Q 1

工程热力学习题解答

1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h p v =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者的数学本 质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+??? 虽然: 0du =? 但是: 0pdv ≠? 所以: 0q δ≠? 因此热量q 不是状态参数。 4. 用隔板将绝热刚性容器分成A 、B 两部分(图2-13),A 部分装有1 kg 气体,B 部分为高度真空。将隔板抽去后,气体热力学能是否会发生变化?能不能用 d d q u p v δ=+ 来分析这一过程?

热学第六章课后习题答案

第六章热学答案 1. 解 :由致冷系数2122T T T A Q -== ε ()J T T AT Q 421221025.121 102731000?=-?=-= 2.解:锅炉温度K T 4832732101=+=,暖气系统温度K T 333273602=+=,蓄水池温度 K T 288273153=+=。kg 0.1燃料燃烧放出的热量为1Q 热机的工作效率1212111T T Q Q Q A -=-== η,向制冷机做功)1(1 21T T Q A -=,热机向暖气系统放热分别为11212Q T T A Q Q = -=;设制冷机的制冷系数3 2343T T T A A Q A Q -=-==ε, A T T T T T T T T T A Q ?-?-=-+ =3 22 1213234)1( 暖气系统得到热量为: 112322112421Q T T T T T Q T T Q Q Q ??? ? ??--+= +=1123231Q T T T T T ?-T -= cal 41049.115000483 333 288333288483?=???--= 3.解:(1)两个循环都工作与相同绝热线,且低温T 不变,故放热相同且都为2Q ,在第一个循环 过程中22 1212111Q A Q Q Q T T +- =-=- =η,2 122T T AT Q -=;在第二个循环过程中高温热源温度提高到3T 的循环过程中2223232111Q A Q Q Q T T +-=-=- =η,2 32 22T T T A Q -=;因此2 32 22122T T T A T T AT Q -=-= 解得()()K T T A A T T 473173373800 106.12733 211223=-?+=-+= (2)效率增大为:3.42473 273 1132=-=- =T T η % 4.解:热机效率 1211T T Q A -≤,当取等号时1Q 最小,此时1 211T T Q A -=,

第二章热力学第一定律练习题及答案

第一章热力学第一定律练习题 一、判断题(说法对否): 1.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生 变化时,所有的状态函数的数值也随之发生变化。 2.在101.325kPa、100℃下有lmol的水和水蒸气共存的系统,该系统的状态 完全确定。 3.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完 全确定。 4.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。 5.从同一始态经不同的过程到达同一终态,则Q和W的值一般不同,Q + W 的值一般也不相同。 6.因Q P= ΔH,Q V= ΔU,所以Q P与Q V都是状态函数。 7.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力一定时;系统的体积与系统中水和NaCl的总量成正比。8.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。 9.在101.325kPa下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想气体,那么由于过程等温,所以该过程ΔU = 0。 10.一个系统经历了一个无限小的过程,则此过程是可逆过程。 11.1mol水在l01.325kPa下由25℃升温至120℃,其ΔH= ∑C P,m d T。12.因焓是温度、压力的函数,即H = f(T,p),所以在恒温、恒压下发生相变时,由于d T = 0,d p = 0,故可得ΔH = 0。 13.因Q p = ΔH,Q V = ΔU,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W。14.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。 15.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。16.(?U/?V)T = 0 的气体一定是理想气体。 17.一定量的理想气体由0℃、200kPa的始态反抗恒定外压(p环= 100kPa) 绝热膨胀达平衡,则末态温度不变。 18.当系统向环境传热(Q < 0)时,系统的热力学能一定减少。

经典热学题目解析

第一章温度例题 例题1:已知一个气球的体积为,充得温度的氢气。当温度升高到37时,原有压强和体积维持不变,只是跑掉部分氢气,其质量减少了0.052Kg。试求气球内氢气在、压强为P下的密度是什么? 解: 由,气体在两种条件下满足 (1) (2) 将代入(1)、(2)两式,得 时, 例题2:一个抽气机转速为400转/分,每分钟能够抽出气体。设容器的容积问经过多长时间后才能使容器的压强由降到 ?

解:将容器内的和抽出的气体看作一个系统,按等温过程处理。满足 其中 由于米/分,联立以上两式得 例题3:道尔顿提出一种温标:规定理想气体体积的相对增量正比于温度的增量,采用在标准大气压时,水的冰点温度为零度,沸点温度为100度,试用摄氏度t来表示道尔顿温标的温度。 解:设比例系数为,有 (1) 从(,)(,)积分得 (2) 另由等压条件,有 (3) 将代入(2)、(3)得

于是 第二章热力学第一定律例题 例题1:已知热力学系统在某一准静态过程中满足定值(其中为常数)。设压强由P1 到P2,体积由V1到V2。求过程中系统所作的功。 解: 例题2:已知系统进行某循环过程的过程曲线如图中ACBA所示,求此过程系统所作的功。解:利用体积功的几何意义求 =

例题3:讨论下列三个过程的正负. (1)等容降温过程: (2)等温压缩过程: (3)从某绝热线上一点开始,在绝热线左侧,至上而下与同一绝热线相交于另一点的任一过程: 由 例题4:质量,压强,温度氮气。先等体增压至。然后等温膨胀压强降至。最后等压压缩体积压缩一半。求整个过程中和,(氮 ) 解:(1)求,与过程无关

相关文档