文档库 最新最全的文档下载
当前位置:文档库 › 石煤提钒钠化焙烧过程复合添加剂的研究

石煤提钒钠化焙烧过程复合添加剂的研究

石煤提钒钠化焙烧过程复合添加剂的研究
石煤提钒钠化焙烧过程复合添加剂的研究

Serial No .468Ap ril .2008

矿 业 快 报

EXPRESS I N F OR MATI O N

OF M I N I N G I N DUSTRY

总第468期

2008年4月第4期

李建华(1981-),男,在读硕士研究生,430081湖北省武汉市。

石煤提钒钠化焙烧过程复合添加剂的研究

李建华 张一敏 刘 涛 黄 晶 陆 岷 杨建祥

(武汉科技大学资源与环境工程学院)

摘 要:针对目前含钒石煤钠化焙烧转浸率低的特点,采用NaCl 和MX 3作为复合添加剂,具有降低反应温度、缩短反应时间、降低盐量及提高焙烧转浸率的优点。取得了熟样最佳转浸率为

71.19%的效果。

关键词:石煤;提钒;焙烧;复合添加剂中图分类号:T D913 文献标识码:A 文章编号:100925683(2008)0420043202

Study on Com posite Add iti ves of Roa sti n g i n Extra ti n g Vanad i a n from Stone Coa l

L i J ianhua ZhangYi m in L iu Tao Huang J ing Lu M in Yang J ian xiang (School of Res ources and Envir onment Engineering,W uhan University of Technol ogy )

Abstract:I n vie w of the p resent l o w r oasting conversi on leaching rate in extracting vanadium contai 2ning st one coal,NaCl and MX 3were used as the co mposite additives in this article .These additives had the advantage of reducing the reacti on te mperature and reacti on ti m e,l owing the quantity of NaCl and en 2hancing the r oasting conversi on leaching rate .The op ti m u m conversi on leaching rate of the sa mp le was 71.19%.A better effect had been achieved .

Keywords:St one coal;Extracting vanadiu m;Roasting;Composite additive

目前,对于低品位含钒石煤的提钒工艺,焙烧方法主要有:无盐氧化焙烧、钠化焙烧及钙化焙烧等。

其中,以钠化焙烧的效果较好,因其焙烧转化率高、工艺简单,在实际生产中得到普遍的应用。文中对湖北某地石煤采用复合盐焙烧,通过改变焙烧转浸率影响因素,探索了适合此石煤的焙烧工艺。1 试验原理与流程1.1 试验原理

湖北某地石煤钒矿矿床储量十分丰富,V 2O 5平均品位为1.23%,试样的化学成份分析结果见表1。

表1 湖北某地石煤化学成分

(%)

Si O 2A l 2O 3Fe 2O 3Ca O Mg O 66.239.25 1.85

0.12

1.20

K 2O Na 2O Ti O 2V 2O 5C 烧失

2.41

0.053

0.055

1.23

14.40

17.02

该石煤由硅质岩、含钒碳质页岩、含磷结核硅质

岩及含碳砂质泥岩组成,为一中型钒矿床。含钒矿石中的矿物绝大部分是含钒水云母,仅见少量的钒云母、硫钒铜矿。矿石中亦含石英、碳质成分及少量方解石、重晶石、胶磷矿、黄铁矿与碳酸盐等,结构坚

固。只有在高温和添加NaCl 的作用下,硅氧四面体和铝氧八面体的晶格结构被破坏,使不溶于水的三价和四价钒发生氧化,转变为可溶性的五价钒,再和Na +

结合生成可溶性钒酸钠盐。

NaCl 在石煤提钒中的作用主要有二个方面

[1]

:

①NaCl 分解产生Cl 2,Cl 2有强氧化性,可显著破坏含钒矿物的晶体结构,使钒摆脱束缚而解脱出来,加

速了钒价态转化,提高了V (Ⅴ)的转化率;②NaCl 钠化反应生成可溶性钒的化合物Na VO 3,提高了钒焙烧的转化率。

MX 3是一种无机盐,在高温下分解后产生X 2,

使矿样疏松多孔,有利于矿样与气体的充分接触,提高反应效率。且当有NaCl 存在时,生成低共熔点物质,可降低NaCl 的添加量,降低反应温度和缩短反应时间。

焙烧过程中的主要反应为[2]

:

2NaCl +3/2O 2+V 2O 3=2Na VO 3+Cl 2

MX 3=MX +X 2↑

Na 2O +V 2O 5=Na 2O ?V 2O 51.2 试验流程

将石煤原矿破碎到0~3mm ,每次取500g 脱碳,

3

4

加入添加剂,磨至0.125mm 左右,采用马弗炉焙烧,水浸熟样,用亚铁容量法测点水浸液中五价钒的含量,通过现象观察和数据分析,进而调整影响因素水平,最终确定其值。2 结果与讨论

因每次试验的浸出条件(液固比、时间、温度、强度等)保持不变,故钒的焙烧转浸率可用下式表示:

y =

g Q

×100%,式中,g 为可溶钒量;Q 为全钒量。

原料经破碎、脱碳后备用,焙烧阶段影响钒转化

率的主要因素有:添加剂配比、焙烧温度、焙烧时间等,改变单个因素的值,通过分析焙烧转浸率随各因素的变化趋势,最终得到较好的试验结果。2.1 复合添加剂试验

NaCl 为离子键化合物,具有较高的熔点及溶解

度,空气中加热至高温也不能分解,纯NaCl 在800~900℃下才能溶解,而MX 3的反应温度为900~1200℃。单独以NaCl 作为添加剂时,反应温度较高。试验发现,以NaCl 和MX 3作为复合添加剂时,有降低反应温度、缩短反应时间、降低盐量及提高焙烧转浸率的优点。

实际上,这两种钠盐组成的二元相图中有低共熔点。NaCl 与MX 3能在较低温度下发生反应,生成低共熔点物质[3]

,使焙烧的条件得到优化。2.1.1 固定NaCl 配比,改变MX 3配比试验当NaCl 添加量为25%,焙烧温度为790℃,焙烧时间为1h 时,改变MX 3用量分别为3%、4%、5%、6%和7%时,试验结果见图1

图1 MX 3用量对转浸率的影响

由图1可知,随着MX 3用量增加,转浸率先升

高再降低。焙烧转浸率在MX 3用量为5%时达到最大值,焙烧转浸率为67.95%。故试验中选择MX 3用量为5%。低于或高于5%的转浸率不高,主要是因为水浸出的V (Ⅴ)属可溶性钒。在MX 3用量过低时,钠盐作用不够充分,钒的氧化和转价不够,焙烧转浸率低;当MX 3用量过高时,试样开始板结,物料的透气性降低,钒的氧化和转价随之降低,部分已经被氧化的钒被牢牢包裹,无法浸出,导致焙烧转浸率的降低。2.1.2 固定MX 3配比,改变NaCl 配比试验

MX 3用量为5%,焙烧温度790℃,焙烧时间1h 。当NaCl 用量分别为12%、14%、16%、18%和20%时,试验结果见图2

图2 NaCl 用量对转浸率的影响

由图2可知,当NaCl 的添加量增加时,焙烧转

浸率增加。在NaCl 为16%,焙烧转浸率为71.19%,降低或增加NaCl 盐量都达不到最佳效果。NaCl <16%时,加入量太少起不到氧化催化的作用。NaCl 为18%时,转浸率为72.26%。但NaCl 加入量

过多,降低炉温,导致钒的转浸率下降。此外,还使

生产成本增加,产生过量的Cl 2和HCl 等有害气体;废液中盐含量增高,给后期的废水处理带来困难。综合考虑,NaCl 的添加量定为16%。2.2 焙烧温度试验

5%的MX 3和16%NaCl 的添加量不变,改变焙烧温度:760℃、790℃、820℃、850℃,试验结果见图3

图3 焙烧温度对转浸率的影响

由图3可知,焙烧温度为790℃时,转浸率最

高,为71.19%。温度高于或低于790℃的转浸率都下降。主要是由于石煤的成分和结构有其复杂性,温度过低,不足以破坏矿石的结构;而温度超过一定的数值后,硅铝酸盐,碱金属盐和二氧化硅等可以形成低共熔点玻璃相结构,物料出现烧结,烧结越严

重,钒被包裹的几率就越大,钒的转浸率越低[4]

。另外,温度过高时,焙烧的中间产物VOCl 3在高温下不稳定,在有空气(O 2)存在时,容易挥发逸失。温度过高或过低的试验结果都不理想,因此,选取试验的最佳的焙烧温度为790℃。2.3 焙烧时间试验

添加5%的MX 3、16%的NaCl 、焙烧温度为790℃,改变焙烧时间:0.5h 、1.0h 、1.5h 、2.0h,试验

4

4总第468期 矿业快报 2008年4月第4期

Serial No .468Ap ril .2008

矿 业 快 报

EXPRESS I N F OR MATI O N

OF M I N I N G I N DUSTRY

总第468期

2008年4月第4期

煤泥水微生物絮凝剂絮凝机理的研究

刘志勇 张东晨

(安徽理工大学材料科学与工程学院)

摘 要:针对望峰岗选煤厂的煤泥水性质特点,对其进行红外光谱及XRD 检测,根据微生物絮

凝剂结构和组成,建立了絮凝剂对煤泥水絮凝作用模型,分析了微生物絮凝剂在煤泥水中的作用机理,并在此基础上剖析了煤泥水微生物絮凝剂絮凝机理研究中存在的问题,提出煤泥水微生物絮凝剂絮凝机理今后的研究方向。

关键词:煤泥水;微生物絮凝剂;絮凝机理

中图分类号:T D923+

.3 文献标识码:A 文章编号:100925683(2008)0420045203

Study on Floccul a ti n g M echan is m of M i crob i a l floccul an ts for Coa l Slurry

L iu Zhiyong Zhang Dongchen

(School ofMaterials Science and Engineering,Anhui University of Science and Technol ogy )Abstract:I n vie w of the coal slurry features in W angfenggang Coal Preparati on Plant,the coal slurry was detected by infrared s pectru m and XRD.Based on the structure and compositi on of m icr obial fl occu 2lants,a model of fl occulati on effect of fl occulants on the coal slurry was established and fl occulating mechanis m of m icr obial fl occulants in the coal slurry was analyzed .Some p r oble m s in the research work of the fl occulating mechanis m were als o analyzed and research orientati on of mechanis m of the m icr obial fl occulants for the coal slurry was set f or ward .

Keywords:Coal slurry;M icr obial fl occulant;Fl occulating mechanis m

目前煤炭洗选工艺和方法绝大数是以水或水的混合物作为洗选介质,如重介选,跳汰选,浮选等,通 刘志勇(1985-),男,安徽宁国人,在读硕士研究生,232001安徽省淮南市。

结果见图4

图4 焙烧时间对转浸率的影响

从图4可知,焙烧时间1h 的总浸率71.19%,

达到最大值。焙烧时间少于或多于1h 的效果都不好,是因为反应时间过短,反应不充分,转价率低;反应时间过长,五价钒会与Si O 2发生二次反应,形成“硅束缚”,五价钒被包裹,无法浸出,从而导致转浸率降低。3 结 论

焙烧过程中,影响石煤钒转浸率的因素是多方

面的。其中,以添加剂的种类和用量、焙烧温度、焙

烧时间对钒的转浸率影响最大。试验采用NaCl 与MX 3作为复合添加剂时,有以下优点:①降低反应温度:反应温度由850℃降低为790℃;②缩短反应时间:反应时间由3h 缩短为1h;③降低NaCl 量:NaCl 由25%降为16%;④提高转浸率:转浸率由64.00%提高到71.19%。

参 考 文 献:

[1] 许国镇.氯化钠在石煤提钒中的作用[J ].矿冶工程,1988,8

(4):44~47.

[2] 陈新民,陈启元.冶金热力学导论[M ].冶金工业出版社,

1980:2.

[3] 郝 义.低共熔点和三相点[J ].牡丹江师范学院学报.2001

(1):9.

[4] 许国镇,王锐兵.八都、浙川石煤烧结、包裹与钒转化的研究

[J ].稀有金属,1994,11.

(收稿日期2007209209)

5

4

石煤提钒钠化焙烧与钙化焙烧工艺研究

第34卷 第2期Vol 134 No 12 稀 有 金 属 CH I N ESE JOURNAL OF RARE MET ALS 2010年3月 Mar 12010  收稿日期:2009-09-19;修订日期:2009-10-15  作者简介:别 舒(1983-),女,江苏盐城人,硕士;研究方向:提取冶金及冶金物理化学3通讯联系人(E -mail:zhangyg@tsinghua .edu .cn ) 石煤提钒钠化焙烧与钙化焙烧工艺研究 别 舒1 ,王兆军1 ,李清海2 ,张衍国 23 (1.北京热华能源科技有限公司,北京100084;2.清华大学热科学与动力工程教育部重点实验室,北京100084) 摘要:调研了石煤提钒钠化焙烧和钙化焙烧两种工艺的发展现状。高硅低钙含量的石煤宜采用钠化焙烧,高钙含量的石煤宜采用钙化焙烧,两种工艺各有所长。归纳了两种工艺下石煤提钒的最佳焙烧条件,得出最佳焙烧条件分别为:钠化焙烧温度区间800~850,焙烧时间2.0~ 2.5h,磨矿粒度106~180mm,氯化钠用量为矿石的10%~20%。钙化焙烧比钠化焙烧要高100℃,温度区间900~950℃,焙烧时间2~3h,磨 矿粒度106~180mm,石灰用量为矿石的6%~8%。两种焙烧都需要充足的氧化氛围,但钠化焙烧时氧气不宜过多。各最佳焙烧条件之间存在一定耦合关系,在生产实际中,宜针对不同石煤进行特定实验。最后,总结了石煤提钒的主要焙烧设备,其中流化床炉具有较好的发展前景。 关键词:石煤;钒;焙烧;最佳焙烧条件;流化床 doi:10.3969/j .issn .0258-7076.2010.02.023 中图分类号:TF841.3 文献标识码:A 文章编号:0258-7076(2010)02-0291-07 Rev i ew of Vanad i u m Extracti on fro m Stone Coa l by Roa sti n g Techn i que w ith Sod i u m Chlor i de and Ca lc i u m O x i de Bei Shu 1 ,W ang Zhaojun 1 ,L i Q inghai 2 ,Zhang Yanguo 23 (1.B eijing N o w va Energy Technology Co .,L td .,B eijing 100084,China;2.Key L aboratory for Ther m a l Science and Po w er Engineering of M inistry of Educa tion,Tsinghua U niversity,B eijing 100084,China ) Abstract:The devel opment of technol ogy on vanadiu m extracti on fr om st one coal by adding s odiu m chl oride and calciu m oxide was revie wed .St one coal with large a mount of silica and l ow in calciu m was suitable f or r oasting with s odiu m chl oride .St one coalwith large a mount of calciu m was suitable for r oasting with calciu m oxide .Both techniques had advantages .The op ti m u m additive dosage,r oast 2ing temperature and r oasting ti m e were concluded .W hen adding s odiu m chl oride,r oasting te mperature of 800~850℃,r oasting ti m e of 2.0~2.5h,granularity of 106~180mm,salt dosage of 10%~20%were f ound t o be the best conditi ons for r oasting .Compared with r oasting with s odiu m chl oride,r oasting te mperature of 900~950℃,r oasting ti m e of 2~3h,granularity of 106~180mm,calci 2u m oxide dosage of 6%~8%were the best conditi ons f or r oasting with calciu m oxide .Both techniques needed sufficient oxidizing at 2mos phere .W hen r oasting with s odiu m chl oride,it was by no means the more oxygen the better .There were coup ling relati onshi p s a 2mong different op ti m u m conditi ons .I n p ractical p r oducti on,s pecial experi m ents should be conducted for different kinds of st one coal .D ifferent r oasting furnaces were su mmarized that circulating fluidized bed (CF B )had more advantages than others .Key words:st one coal;vanadiu m;r oasting;op ti m u m conditi on;circulating fluidized bed 稀有金属元素钒,是一种重要的战略物资,因其具有优良的合金性能和催化作用,被广泛地应用于冶金、化工、机械、电子仪器仪表、汽车、船舶、轻工等国防尖端技术部门 [1] 。然而,钒没有可单独开采的富矿,总是以低品位与其他矿物共生。石煤是一种碳质页岩,是我国 一种独特的钒矿资源,其特点是发热量低、含有多种金属和非金属元素,一般石煤中含五氧化二钒约为0.5%~1.2%,在目前的技术经济条件下,品位达到0.8%以上的才具有工业开采价值 [2] 。 我国石煤资源分布于20多个省区,尤以湖南、湖北、江西、浙江等省含钒石煤资源丰富,目前国

提钒工艺

1 背景 1.1 钒的性质及应用 钒是高熔点金属之一,呈浅灰色。密度5.96克/厘米3。熔点1890±10℃,沸点3380℃,化合价+2、+3、+4和+5。其中以5价态为最稳定,其次是4价态。电离能为6.74电子伏特。有延展性,质坚硬,无磁性。具有耐盐酸和硫酸的本领,并且在耐气-盐-水腐蚀的性能要比大多数不锈钢好。于空气中不被氧化,可溶于氢氟酸、硝酸和王水。 我国是钒资源比较丰富的国家,钒矿主要分布在四川的攀枝花和河北的承德,大多数是以石煤的形式存在。 大约80%的钒和铁一起作为钢里的合金元素。只需在钢中加入百分之几的钒,就能使钢的弹性、强度大增,抗磨损和抗爆裂性极好,既耐高温又抗奇寒,在汽车、航空、铁路、电子技术、国防工业等部门,到处可见到钒的踪迹。此外,钒的氧化物已成为化学工业中最佳催化剂之一,有“化学面包”之称。其应用如下: (1)、用作合金元素,例如: 1)运用在医疗器械中的特别的不锈钢 2)运用在工具中的不锈钢 3)与铝一起作为钛合金物运用在高速飞机的涡轮喷气发动机中 4)含钒的钢经常被用在轴、齿轮等关键的机械部分中 (2)、在其它领域的应用: 1)钒吸收裂变中子的半径很小,因此被用在核工业中 2)在炼钢过程中钒被用来导致碳化物的形成 3)在给钢涂钛的时候钒往往被作为中介层 4)钒与镓的合金可以用来制作超导电磁铁,其磁强度可达175,000高斯 5)在制造缩苹果酸酐和硫酸的过程中钒被用来做催化剂 6)五氧化二钒(V 2O 5 )被用来制做特殊的陶瓷作为催化剂 1.2 五氧化二钒及金属钒的制备方法 (1)工业上金属钒的制备方法: 工业上常以各种含钒矿石为原料制备钒。如在钒炉渣中加入NaCl,经空气

石煤提钒的工艺和设备(钒渣-五氧化二钒-三氧化二钒-金属钒-钒铁-钒铝合金-碳氮化钒-钒电池)

石煤提钒的工艺和设备(钒渣-五氧化二钒-三氧化二钒-金属钒-钒铁-钒铝合金-碳氮化钒-钒电池) 原创邹建新崔旭梅教授等 石煤提钒 石煤是一种由菌藻类低等生物在还原环境下形成的黑色劣质可燃有机页岩,多属于变质程度高的腐泥无烟煤或藻煤,具有高灰分、高硫、低发热量和结构致密、比重大,着火点高等特点。石煤中除含Si、C和H元素外,还含有V、Al、Ni、Cu、Cr等多种伴生元素。石煤矿的含钒品位各地相差悬殊,一般品位在0.13%~1.00%,以V2O5计含量低于0.50%的占60%。我国各地石煤中钒品位差异较大,在目前技术条件下,只有品位达到 0.8%以上才有开采价值。 1 石煤提钒工艺现状 我国的石煤提钒工业起步于70年代末期,此后经历了两次大的发展时期(即八十年代的初步发展期,以及2004年到现在的大发展期),至今已有四十多年的历史,含钒石煤提钒的生产技术和科学研究已有了较大发展。 总的来说,石煤提钒工艺技术可以归纳为两种代表性的类型:焙烧提钒工艺(火法提钒工艺)和湿法提钒工艺。 (1)火法焙烧湿法浸出提钒工艺 矿石经过高温氧化焙烧,低价钒氧化转化为五价钒,再进行湿法浸出得到含钒液体实现矿石提钒的工艺过程。 (2)湿法酸浸提钒工艺 含钒原矿直接进行酸浸,包括在较高浓度酸性条件下,甚至是加热加压、氧化剂存在的环境下,实现矿物中钒溶解得到含钒液体的工艺过程。 (3)焙烧工艺分类 传统食盐钠化焙烧-水浸-沉钒工艺、无盐焙烧-酸浸-溶剂萃取工艺、复合添加剂焙烧-

水浸或酸浸-离子交换工艺、钙化焙烧-酸浸出工艺。 (4)石煤提钒的技术改革 一方面是焙烧添加剂的多样化、焙烧设备的优化、浸出工艺的变化以及从含钒稀溶液中分离富集钒的方法的改进等几个方面;焙烧添加剂的多样化:食盐添加剂、低氯复合添加剂、无氯多元添加剂、无添加剂。焙烧添加剂的多样化,使得钒浸出率得到了提高,但总的来说钒的浸出率还是偏低。 另一方面为湿法提取钒工艺的改进。 (5)石煤提钒工艺制定 由于不同地区含钒石煤矿的物质组成、钒的赋存状态、钒的价态等差异很大,故选择含钒石煤提钒工艺技术流程应根据不同地区石煤的物质组成、钒的赋存状态、价态等特性进行全面考察并以含钒石煤矿中钒的氧化、转化、浸出作为制定合适提钒流程的依据。 (6)石煤提钒技术关键 石煤中钒的氧化、转化和浸出,即石煤中钒怎样才能进入溶液实现固液分离是石煤提钒技术关键。 2 石煤提钒工艺路线 火法根据焙烧过程添加剂的不同或焙烧机理的区别,分为:钠盐焙烧提钒工艺、空白焙烧提钒工艺、钙化焙烧提钒工艺等。湿法分为酸浸法和碱浸法。 (1)钠化焙烧工艺 a.1912年Bleeker发明用钠盐焙烧一水浸工艺提矿中的钒。 b.工艺流程为:石煤一磨矿一食盐焙烧一水浸一酸沉钒一碱溶一铵盐沉淀—偏钒酸铵热解一精V2O5。 c.以氯化钠为添加剂,均匀混合在破碎至一定细度的含钒石煤矿中,通过高温氧化焙烧,将多价态的钒转化为水溶性五价钒的钠盐,用工艺水直接浸取焙烧产物(即水浸),得到含钒浓度较低的浸取液,然后加入氯化铵沉钒制得偏钒酸铵沉淀,煅烧后得到V2O5,再将粗钒经碱溶、除杂、氯化铵二次沉钒得偏钒酸铵,热分解后得到纯度大于98%的V2O5产品。

矿物原料焙烧原理及方法

https://www.wendangku.net/doc/196440568.html, 矿物原料焙烧原理及方法 矿物原料焙烧是化学选矿的预处理作业或独立的化学选矿作业。即在适当的焙烧气氛和低于矿物原料熔点温度等相应条件下,通过加热升温焙烧使矿物原料中的目的矿物发生物理和化学变化的工艺过程。通过焙烧可使目的矿物转变为易于通过浸出或易于用物理选矿分选分离的矿物形态。焙烧使矿物发生化学变化的同时,也使物料(焙砂)的物理形态变得疏松、多孔,为后续作业处理创造了必要条件。焙烧还可除去(回收)易挥发的组分(杂质)。 根据矿物焙烧发生化学反应的条件和工艺参数,焙烧可以分为氧化焙烧、还原焙烧、氯化焙烧、钠化焙烧合硫化焙烧等。 在选矿中采用焙烧法处理的物料常为难选原矿以及物理选矿所得粗精矿和难选的中矿等。焙烧产品有焙砂、干烟尘剂湿法收尘集气产品等。并可相应使用适宜的方法分别处理,回收其中的有用组分。影响焙烧的主要因素有焙烧温度、反应氛围和时间、反应气氛的浓度、气流运动的絮流度以及物料的物理、化学性质,如物料粒度、孔隙率、化学组成及矿物组成等。焙烧法的不利因素是能耗较高,操作控制条件严格,环境污染与治理务必采取相应措施。 矿物热分解是将矿石或人造化合物加热到一定物度,使之分解为组成较为简单的化合物(含气体),或者是使原矿物晶型发生转变的工艺过程。矿物热分解液称款物的煅烧。碳酸盐的热分解有称为焙解,名称不同,实质一样。不论是金属矿还是非金属矿采用煅烧分解矿物都非常普遍。像碳酸盐、磷酸盐、硫酸盐、氢氧化物、硅铝酸盐等矿物往往都少不了通过煅烧分解矿物、改变晶型、构造与形态。高岭土等黏土矿物的煅烧生加工,在近20年来发展迅速。 化合物热分解的平衡常数等于该化合物的热分解压,此分解压可作为该化合物热稳定性的度量。化合物热分解压愈大,热稳定性愈小;反之,热分解压愈小,热稳定性愈大,愈难发生热分解。有些化合物加热至一定温度时,虽其组成未发生变化,但其晶型已产生了变化,物理化学性质液产生了相应的变化,氧化矿物、硫化矿物、硫酸盐、氢氧化物和各种含氧酸盐等各种不同化合物(矿物)的分解压不同,通过控制煅烧温度、气相组成,可选择性地使某些化合物产生热分解,或发生晶型转变,继而采用不同方法进行分选。 通过控制焙解温度和气相组成,即可选择性地分解、改变碳酸盐组成,然后用化学或物理方法选别,达到富集有价组分和去除杂质的目的。

钒及钒生产工艺

钒及钒生产工艺 第一章钒的性质及应用 一、钒的性质: 钒是一种十分重要的战略物资,在钢铁、电子、化工、宇航、原子能、航海、建筑、体育、医疗、电源、陶瓷等在国民经济和国防中占有十分重要的位置。 常温下钒的化学性质较稳定,但在高温下能与碳、硅、氮、氧、硫、氯、溴等大部分非金属元素生成化合物。例如:钒在空气中加热至不同温度时可生成不同的钒氧化物。在180℃下,钒与氯作用生成四氯化钒(VCl4);当温度超过800℃时,钒与氮反应生成氮化钒(VN);在800~1000℃时,钒与碳生成碳化钒(VC)。 钒具有较好的耐腐蚀性能,能耐淡水和海水的侵蚀,亦能耐氢氟酸以外的非氧化性酸(如盐酸、稀硫酸)和碱溶液的侵蚀,但能被氧化性酸(浓硫酸、浓氯酸、硝酸和王水)溶解。在空气中,熔融的碱、碱金属碳酸盐可将金属钒溶解而生成相应的钒酸盐。此外,钒亦具有一定的耐液态金属和合金(钠、铅、铋等)的腐蚀能力。 钒有多种氧化物。V2O3和V2O4之间,存在着可用通式V n O2n-1(3≤n≤9)表示的同族氧化物,在V2O4到V2O5之间,已知有V3O5、V3O7、V4O7、V4O9、V5O9、V6O11、V6O13等氧化物。工业上钒氧化物主要是以V2O5、V2O4和V2O3

形式存在,特别是V2O5和生产尤为重要。它们的主要性质列于下表: 二、钒的应用 三、五氧化二钒的性质 V2O5是一种无味、无嗅、有毒的橙黄色或红棕色的粉末,微溶于水(质量浓度约为L),溶液呈黄色。它在约670℃熔融,冷却时结晶成黑紫色正交晶系的针状晶体,它的结晶热很大,当迅速结晶时会因灼热而发光。V2O5是两性氧化物,但主要呈酸性。当溶解在极浓的NaOH 中时,得到一种含有八面体钒酸根离子VO43-的无色溶液。它与Na2CO3

钒渣钙化提钒技术研究

钒渣钙化提钒技术研究 传统“钠化焙烧-水浸提钒”工艺排出大量有害气体C12和HC1,严重污染环境;且对原料质量要求严格,处理高钙钒渣则钒回收率低,提钒后的废水、废渣综合治理成本较高,针对上述问题,本课题提出了“钒渣钙化焙烧-酸浸-水解沉钒”工艺。该工艺酸浸后渣不含钠盐,沉钒后溶液不含铵盐,可以实现废渣的综合回收利用及液态物料的闭路循环,且整个工艺过程中无废气产生,可以达到清洁提钒 的目标。 钙化焙烧实验表明:添加剂的配入量、焙烧温度、焙烧时间对焙烧过程中钒浸出影响较大,其较优的钙化焙烧工艺条件为:氧化钙的配入量为6%,焙烧温度 为900℃,焙烧时间为2h,焙烧粒度为48~75μm,在此条件下,钒浸出率达91.25%。酸浸实验考察了钒渣焙烧熟料粒度、浸出酸度、浸出温度、浸出时间、浸出液固比、搅拌强度对钒浸出率的影响,得出适宜工艺条件为:钒渣焙烧熟料的粒度为48~751μm、浸出酸度pH为2.5、浸出温度为65℃、浸出时间为90mmin、浸出液固比为4、搅拌强度对钒浸出率的影响不大。 关于酸性浸出溶液中除磷方法的研究目前未有文献报道,本课题研究了一种酸性条件下的除磷方法,考察了除磷剂的添加量、除磷温度、除磷时间对除磷效果的影响,得出适宜工艺条件为:添加量为4g/100mL酸浸液、除磷温度为55℃、除磷时间为30mmin,此时除磷率为46%,钒损失率为1.82%。本实验采用水解沉钒工艺,考察了沉钒前液的加入量、沉钒酸度、沉钒温度、沉钒时间对沉钒率的影响,得出较优的沉钒工艺条件:沉钒前液的加入量为25%、沉钒温度T为95℃, 沉钒pH为1.8,沉钒时间为180min。 经过煅烧水解产物去除结晶水,得到产品五氧化二钒纯度为95.48%,整个工

焙烧技术

焙烧技术 目录 焙烧技术-焙烧 把物料(如矿石)加热而不使熔化,以改变其化学组成或物理性质 焙烧:roasting 焙烧技术-简介 固体物料在高温不发生熔融的条件下进行的反应过程,可以有氧化、热解、还原、卤化等,通常用于无机化工和冶金工业。焙烧过程有加添加剂和不加添加剂两种类型。 不加添加剂的焙烧也称煅烧,按用途可分为:①分解矿石,如石灰石化学加工制成氧化钙,同时制得二氧化碳气体; ②活化矿石,目的在于改变矿石结构,使其易于分解,例如:将高岭土焙烧脱水,使其结构疏松多孔,易于进一步加工生产氧化铝;③脱除杂质,如脱硫、脱除有机物和吸附水等;④晶型转化,如焙烧二氧化钛使其改变晶型,改善其使用性质。 加添加剂的焙烧添加剂可以是气体或固体,固体添加剂兼有助熔剂的作用,使物料熔点降低,以加快反应速度。按添加剂的不同有多种类型: 焙烧技术-氧化焙烧 粉碎后的固体原料在氧气中焙烧,使其中的有用成分转变成氧化物,同时除去易挥发的砷、锑、硒、碲等杂质。在硫酸工业中,硫铁矿焙烧制备二氧化硫是典型的氧化焙烧。冶金工业中氧化焙烧应用广泛,例如:硫化铜矿、硫化锌矿经氧化焙烧得氧化铜、氧化锌,同时得到二氧化硫。 焙烧技术-还原焙烧 在矿石或盐类中添加还原剂进行高温处理,常用的还原剂是碳。在制取高纯度产品时,可用氢气、一氧化碳或甲烷作为焙烧还原剂。例如:贫氧化镍矿在加热下用水煤气还原,可使其中的三氧化二铁大部分还原为四氧化三铁,少量还原为氧化亚铁和金属铁;镍、钴的氧化物则还原为金属镍和钴。因为该过程中的三氧化二铁具有弱磁性,四氧化三铁具有强磁性,利用这种差别可以进行磁选,故此过程又称磁化焙烧。 焙烧技术-氯化焙烧 在矿物或盐类中添加氯化剂进行高温处理,使物料中某些组分转变为气态或凝聚态的氧化物,从而同其他组分分离。氯化剂可用氯气或氯化物(如氯化钠、氯化钙等)。例如:金红石在流化床中加氯气进行氯化焙烧,生成四氯化钛,经进一步加工可得二氧化钛。又如在铝土矿化学加工中,加炭(高质煤)粉成型后氯化焙烧可制得三氯化铝。若在加氯化剂的同时加入炭粒,使矿物中难选的有价值金属矿物经氯化焙烧后,在炭粒上转变为金属,并附着在炭粒上,随后用选矿方法富集,制成精矿,其品位和回收率均可以提高,称为氯化离析焙烧。 焙烧技术-硫酸化焙烧

煅烧 焙烧与烧结的区别

焙烧 焙烧与煅烧是两种常用的化工单元工艺。焙烧是将矿石、精矿在空气、氯气、氢气、甲烷和氧化碳等气流中不加或配加一定的物料,加热至低于炉料的熔点,发生氧化、还原或其他化学变化的单元过程,常用于无机盐工业的原料处理中,其目的是改变物料的化学组成与物理性质,便于下一步处理或制取原料气。煅烧是在低于熔点的适当温度下,加热物料,使其分解,并除去所含结晶水、二氧化碳或三氧化硫等挥发性物质的过程。两者的共同点是都在低于炉料熔点的高温下进行,不同点前者是原料与空气、氯气等气体以及添加剂发生化学反应,后者是物料发生分解反应,失去结晶水或挥发组分。 烧结也是一种化工单元工艺。烧结与焙烧不同,焙烧在低于固相炉料的熔点下进行反应,而烧结需在高于炉内物料的熔点下进行反应。烧结也与煅烧不同,煅烧是固相物料在高温下的分解过程,而烧结是物料配加还原剂、助熔剂的化学转化过程。烧结、焙烧、煅烧虽然都是高温反应过程,但烧结是在物料熔融状态下的化学转化,这是它与焙烧、煅烧的不同之处。 焙烧 1. 焙烧的分类与工业应用 矿石、精矿在低于熔点的高温下,与空气、氯气、氢气等气体或添加剂起反应,改变其化学组成与物理性质的过程称为焙烧。在无机盐工业中它是矿石处理或产品加工的一种重要方法。 焙烧过程根据反应性质可分为以下六类,每类都有许多实际工业应用。 (1) 氧化焙烧 硫化精矿在低于其熔点的温度下氧化,使矿石中部分或全部的金属硫化物变为氧化物,同时除去易于挥发的砷、锑、硒、碲等杂质。硫酸生产中硫铁矿的焙烧是最典型的应用实例。硫化铜、硫化锌矿的火法冶炼也用氧化焙烧。 硫铁矿(FeS2)焙烧的反应式为: 4FeS2+11O2=2Fe2O3+8SO2↑ 3FeS2+8O2=Fe3O4+6SO2↑ 生成的SO2就是硫酸生产的原料,而矿渣中Fe2O3与Fe3O4都存在,到底那一个比例大,要视焙烧时空气过剩量和炉温等因素而定。一般工厂,空气过剩系数大,含Fe2O3较多;若温度高,空气过剩系数较小,渣成黑色,且残硫高,渣中Fe3O4多。焙烧过程中,矿中所含铝、镁、钙、钡的硫酸盐不分解,而砷、硒等杂质转入气相。 硫化铜(CuS)精矿的焙烧分半氧化焙烧和全氧化焙烧两种,分别除去精矿中部分或全部硫,同时除去部分砷、锑等易挥发杂质。过程为放热反应,通常无需另加燃料。半氧化焙烧用以提高铜的品位,保持形成冰铜所需硫量;全氧化焙烧用于还原熔炼,得到氧化铜。焙烧多用流态化沸腾焙烧炉。 锌精矿中的硫化锌(ZnS)转变为可溶于稀硫酸的氧化锌也用氧化焙烧,温度850~900℃,空气过剩系数~,焙烧后产物中90%以上为可溶于稀硫酸的氧化锌,只有极少量不溶于稀酸的铁酸锌(ZnO·Fe2O3)和硫化锌。 氧化焙烧是钼矿化学加工的主要方法,辉钼矿(MoS2)含钼量大于45%,被粉碎至60~80目,在焙烧炉中于500~550℃下氧化焙烧,生成三氧化钼。三氧化钼是中间产品,可生成多种钼化合物与钼酸盐。 有时,氧化焙烧过程中除加空气外,还加添加剂,矿物与氧气、添加剂共同作用。如铬铁矿化学加工的第一步是纯碱氧化焙烧,工业上广泛采用。原料铬铁矿(要求含 Cr2O335%以上),在1000~1150℃下氧化焙烧为六价铬:

提钒的原理和工艺设计

攀枝花学院本科课程设计 提钒的原理及工艺设计 学生姓名:罗浩 学生学号:201111101041 院(系):材料工程学院 年级专业:2011级材料科学与工程指导教师:李亮 二〇一三年十二月

摘要 钒是一种重要的战略物资,具有广泛的用途。钒被称为“现代工业味精”,是发展现代工业、现代国防和现代科学技术不可缺少的重要材料,可以添加于钢中、铁中,并以钛-铝-钒合金的形式用于航天领域。钒的化合物也十分有用,可以被广泛地用来生产如催化剂、化妆品、燃料以及电池等。在其它领域的应用也在不断扩展,且具有良好发展前景。基于钒的广泛用途,以提取和使用钒为目的全球产业也随之得以发展。石煤是我国独特的一种矶矿资源,储量极为丰富。从石煤中提取v205是获得钒的重要途径。文中旨在对传统提钒工艺流程进行评价的基础上,总结了石煤提钒中的一些新工艺,并对石煤提钒工艺前景进行了展望。 关键词石煤,提钒,焙烧,浸出

ABSTRACT Vanadium is an important strategic material and has many uses. Vanadium is called "industrial monosodium glutamate", is an important material in the development of modern industry, modern national defense and indispensable part of the modern science and technology, can be added to thesteel, iron, and the titanium aluminum vanadium alloys form used in the field of aerospace. Vanadium compounds are very useful, can be widely used in the production of cosmetics, such as catalyst, and fuel cell. In other fields of application has been extended, and has good prospects for development.Based on the extensive use of vanadium in vanadium extraction, and used for the purpose of global industry also developed. Stone coal is a unique vanadium mineral resource in China and is abundant. Extracting V2O5 from stone coal is an important method to get vanadium. On the basis of evaluation of conventional vanadium extraction processes, some new vanadium extraction processes from stone coal were summarized and prospect of the vanadium extraction process from stone cal was forecasted. Key Words Stone coal, Vanadium extraction, Roasting, Leaching

含钒石煤提钒工艺研究

含钒石煤提钒工艺研究 2008级材料冶金2班郭宇行学号200811103018 一导言 我国有丰富的钒资源,除钒钛磁铁矿外,还有一低品位单一钒矿资源,即作为钒的单独矿床开采的含钒碳质页岩,俗称石煤。石煤既是一种含碳氢少,发热量低,灰分高的劣质煤,也是一种低品位多金属矿石,其中最具有商业意义的金属元素是钒。钒在石煤中价态分析结果表明【1】,绝大部分地区石煤中的钒都是以酸碱不溶的V( Ⅲ)和V( 1 V)为主,这就是在石煤提钒过程中需要采用氧化焙烧使低价钒变为V( V) 的原因。我国石煤中钒的总储量为钒钛磁铁矿中钒总量的6—7倍,超过世界上各国钒储量的总和【2】。因此,以石煤为原料生产钒制品在我国具有良好的发展前景。 二钒的性质、用途及赋存状态 钒的原子序数23、原子50.94,是一种过渡元素。熔点1890±1 0℃,沸点为3380℃,密度为4.6 g/c m。金属钒呈银白色,质软,可塑性好,在室温下不氧化,在高温下空气中可燃烧,抗腐蚀能力较强【3】。目前,钒主要应用于生产合金钢和化工催化剂等,在其它领域的应用也在不断扩展。我国各地石煤中钒品位差异较大,在目前技术条件下,只有品位达到0.8%以上才有开采价值【4】。含钒石煤的物质组成较复杂,钒的赋存状态和赋存价态因地各异,但大部分是以类质同象形式赋存于云母类及高岭石等黏土矿物中,部分取代硅氧四面体复网层和铝氧八面体单网层中的 A l(Ⅲ);其次是以有机物形式和离子吸附形式赋存的;极少以钒石榴石、砷硫钒铜矿等钒矿物形式存在【5】。 三提钒工艺 3.1 传统工艺 钠盐焙烧一水浸工艺提取钒矿中的钒,这种沿用近百年的传统工艺的基本原理是以氯化钠为添加剂,通过焙烧将多价态的钒转化为水溶性五价钒的钠盐,再对钠化焙烧产物直接水浸,可得含有钒及少量杂质的浸取液,然后加入铵盐沉得粗钒,再将粗钒经碱溶、除杂并用铵盐二次沉钒得偏钒酸铵,热分解可得纯度大于98%的五氧化二钒,工艺流程如图1所示。 某些提钒工艺采用复合添加剂焙烧,以减少N a C 1 的添加量【6,7】,本文将这类工艺也归为传统工艺。钠化焙烧工艺的优点在于【8】:传统石煤提钒工艺的优点在于:工艺流程较简单,工艺条件不苛刻,设备不复杂,投资较少,基建时间较短等。但是,其明显缺点是:1金属回收率低,不到4 5 %;2环境污

钒渣焙烧—浸出过程的实验研究

钒渣焙烧—浸出过程的实验研究 钒渣作为重要提钒的原料,其提钒工艺水平不仅代表一个企业的技术实力,更体现出一个国家钒冶金技术在世界上的整体水平。在钒渣提钒过程中最重要的是焙烧和浸出技术。 因此,有效控制焙烧过程中钒渣相转化行为以及浸出过程中钒渣浸出行为对于提钒工艺技术的改进具有重要的现实意义。本文以某钢厂钒渣为原料,借助XRD、激光粒度仪、荧光光谱等分析手段,系统研究了添加剂种类、焙烧温度、焙烧时间、原料粒度、以及浸出剂、浸出温度、浸出时间和液固比等工艺参数对钒渣浸出行为的影响。 在本实验条件下,得到如下结论:(1)采用复合钠化焙烧.复合氨浸工艺技术,钒渣一次焙烧浸出率可以达到93.1%,且钒渣中杂质元素浸出率可以控制在较低的范围内;(2)在单一焙烧工艺条件下,随着碳酸钠配入量的增加和焙烧时间的延长,钒浸出率呈逐渐升高的趋势;随着焙烧温度的升高和钒渣粒度的减小,钒浸出率呈先升高后降低的趋势。当碳酸钠配入量为20%,原料粒度为125μm,焙烧温度为860℃和焙烧时间为45min时,钒浸出率最大,其值为91.0%;(3)在复合焙烧工艺条件下,随着硫酸钠替代碳酸钠量的增加、焙烧温度的升高和原料粒度的减小,钒浸出率呈先升高后降低的趋势;随着焙烧时间的延长,钒浸出率呈逐渐升高的趋势。 当Na2CO3:Na2SO4为C,原料粒度为125μm,焙烧温度为880℃和焙烧时间为30min时,钒的浸出率达到最大,其值为92.1%;(4)在氨浸条件下,与单一钠化焙烧工艺相比,复合钠化焙烧由于焙烧温度升高,使焙烧时间由45min降至30min,从而缩短提钒周期,并且钒

钠化焙烧

https://www.wendangku.net/doc/196440568.html, 钠化焙烧 对难选的复杂氧化矿物原料的焙烧过程中加入钠盐,于一定的温度和气氛下使难溶的目的矿物转变成可溶性熔盐的工艺过程,称为钠化焙烧。 钠化焙烧多用作提取高溶点金属钒、钨、铬等的作业准备。如从钒钛磁铁矿中提钒,从黑钨矿石、白钨矿石中提取钨和从铬铁矿石中提取铬等。矿物原料中加入碳酸钠、氯化钠、苟性钠或硫酸钠等含钠盐添加剂,经高温焙烧使之生成相应的可溶性钠盐,用水、稀酸或碱浸出焙砂,使目的组分转入溶液而与杂志及脉石分离。 工业上提钒可分为直接提钒和间接提钒两种方法。间接提钒是将钒铁精矿先经高炉冶炼,70%-80%的氧化钒被还原进入生铁的液相中,含钒铁水用氧或空气吹练使钒氧化进入炉渣,钒渣含五氧化二钒达8%-12%,在用磁选除铁后加入钠盐在回转窑内进行钠化焙烧,钒渣中的三价钒氧化为五价的偏钒酸钠,用水浸出焙砂得偏钒酸钠溶液,加入硫酸沉淀出五氧化二钒,经过滤、干燥得五氧化二钒粉末。直接提钒是不经高炉冶炼,将钒铁精矿加入钠盐制成球团,在回转窑内进行钠化焙烧得偏钒酸钠,用水浸出焙砂使其转入溶液,与其他组分分离,钒的回收率可提高10%-15%。但水浸后的球团含有微量钠盐,不宜直接进高炉炼铁,只能做生产海绵铁的原料。对于难处理的钨精矿,由于其杂质含量较高,也常用钠化焙烧进行预处理。 难选的钨细泥精矿、钨锡中矿、含钨铁砂等矿物原料加入碳酸钠,在700-800℃高温下载回转炉内焙烧,使其生成可溶性的钨酸钠,用水浸出焙砂使钨酸钠转入溶液。浸出液经净化、沉淀、干燥和煅烧可制得三氧化钨产品。钠化焙烧还用于除去难选粗精矿中的杂质以提高精矿质量,如锰、铁、石墨、金刚石等粗精矿经钠化焙烧处理,其中的磷、硅、铝、铁、钒、钼等杂质生成可溶性钠盐而经浸出被除去。 铬铁矿是制备铬盐等铬金属的工业原料。传统工艺是将铬铁矿和碳酸钠(或钾)以及惰性烧结辅料加至温度为1200℃下的回转窑内,进行高温钠化与氧化焙烧。焙烧熟料经冷却、粉碎、水浸得络酸钠碱性溶液,再经中和除铝、硫酸化、蒸发脱去芒硝,得重络酸钠饱和液,冷却结晶析出红矾钠。

钒钛磁铁矿提钒工艺发展历程及趋势

2011年12月第6期付自碧:钒钛磁铁矿提钒工艺发展历程及趋势?29? 钒钛磁铁矿提钒工艺发展历程及趋势 付自碧 (攀钢集团研究院有限公司。四川成都611731) 【摘要】介绍了钒钛磁铁矿提钒工艺的发展历程及工艺现状,阐述了各种提钒工艺的优点、缺点、主要 工艺参数和技术指标,针对现有提钒工艺的不足,指出了下一步提钒工艺的研究方向。 【关键词】钒钛磁铁矿,提钒工艺,发展历程 [中图分类号】TF841.3【文献标识码】B【文章编号】1672-6103(2011)06-0029-05 钒是一种重要的合金元素,被称为“现代工业的味精”,广泛应用于钢铁、化工、航空航天等领域。目前工业生产钒产品的主要原料有钒钛磁铁矿、石油灰渣、废钒触媒、铝土矿和石煤等,其中,75%~85%的钒产品来源于钒钛磁铁矿”1。可见,钒钛磁铁矿在提钒领域具有极其重要的地位。 钒钛磁铁矿中的钒是在20世纪初研究发现了钒在钢中能显著改善钢材的力学性能之后才得到工业化开发的”1。在近80年的研究开发过程中,形成的钒钛磁铁矿提钒工艺主要有三种:第一种是钒钛磁铁精矿钠化焙烧一水浸提钒工艺,又称先提钒工艺,是第一代以钒钛磁铁矿为主要原料回收钒的工艺,铁作为副产品131;第二种是钒钛磁铁精矿冶炼一铁水提钒一钒渣生产氧化钒工艺,是第二代以钒钛磁铁矿为原料将钒作为副产品回收的工艺,也是目前从钒钛磁铁矿回收钒最主要、经济上最合理的工艺;第三种是钒钛磁铁精矿非高炉冶炼一电炉熔分(或电炉深还原)一熔分渣提钒(或铁水提钒)工艺,该工艺目前还处于试验研究阶段。由于前两种钒钛磁铁矿提钒工艺各有优点和缺点,不是单纯的工艺改进和完善,因此,第二种工艺并没有完全替代第一种工艺,而是以第二种提钒工艺为主,两种提钒工艺共存的方式存在。 【作者简介】付自碧(1980一),男,工程师,主要从事攀两地区钒钛资源综合利用和国内各种含钒原料提钒工艺研究。 【收稿日期】201卜04—221钒钛磁铁精矿钠化焙烧一水浸提钒工艺 1.1工艺现状及特点 采用钒钛磁铁精矿钠化焙烧一水浸提钒工艺的钒制品生产厂主要分布在南非和澳大利亚,全球仍有五六家公司采用该工艺生产氧化钒,其产量约占全球氧化钒总产量的25%~30%t41。 钒钛磁铁精矿钠化焙烧一水浸提钒工艺因物料处理量大,仅适用于钒钛磁铁精矿含钒量高(V:O,含量>1.0%),矿石、钠盐添加剂、燃料价格低的情况。为了使钒回收率高,钠盐添加剂用量少,一般会将钒钛磁铁精矿的粒度控制得很细,SiO:含量控制在很低的水平,如芬兰的奥坦梅基厂和莫斯塔瓦拉厂采用三段细磨磁选与水力旋流器组成闭路细磨精选的选矿工艺,获得的钒钛磁铁精矿粒度一0.074mm占85%。90%,SiO:含量0.4%t51。梁经冬等I”以承德钒钛磁铁精矿为原料进行提钒时,将钒钛磁铁精矿进一步磨细,使一0.074ram比例由62%提高到85%,SiO:含量由3.30%降低到1.32%。可见,该工艺对钒钛磁铁精矿粒度和SiO:含量有较高的要求。 在1978—1982年期间,国家组织国内多家单位共同合作,以攀西地区的钒钛磁铁精矿为原料,采用钒钛磁铁精矿钠化焙烧一水浸提钒工艺开展了实验室研究,在3000t/a的中试装置上进行了两次扩大试验。试验结果表明,采用钒钛磁铁精矿钠化焙烧—水浸提钒工艺直接提钒,钒总收率可达75%一80%171。以承德钒钛磁铁精矿为原料,采用该工艺的试验效 万方数据

煅烧-焙烧与烧结的区别

煅烧-焙烧与烧结的区别

焙烧 焙烧与煅烧是两种常用的化工单元工艺。焙烧是将矿石、精矿在空气、氯气、氢气、甲烷和氧化碳等气流中不加或配加一定的物料,加热至低于炉料的熔点,发生氧化、还原或其他化学变化的单元过程,常用于无机盐工业的原料处理中,其目的是改变物料的化学组成与物理性质,便于下一步处理或制取原料气。煅烧是在低于熔点的适当温度下,加热物料,使其分解,并除去所含结晶水、二氧化碳或三氧化硫等挥发性物质的过程。两者的共同点是都在低于炉料熔点的高温下进行,不同点前者是原料与空气、氯气等气体以及添加剂发生化学反应,后者是物料发生分解反应,失去结晶水或挥发组分。 烧结也是一种化工单元工艺。烧结与焙烧不同,焙烧在低于固相炉料的熔点下进行反应,而烧结需在高于炉内物料的熔点下进行反应。烧结也与煅烧不同,煅烧是固相物料在高温下的分解过程,而烧结是物料配加还原剂、助熔剂的化学转化过程。烧结、焙烧、煅烧虽然都是高温反应过程,但烧结是在物料熔融状态下的化学转化,这是它与焙烧、煅烧的不同之处。 焙烧 1. 焙烧的分类与工业应用 矿石、精矿在低于熔点的高温下,与空气、氯气、氢气等气体或添加剂起反应,改变其化学组成与物理性质的过程称为焙烧。在无机盐工业中它是矿石处理或产品加工的一种重要方法。 焙烧过程根据反应性质可分为以下六类,每类都有许多实际工业应用。 (1) 氧化焙烧 硫化精矿在低于其熔点的温度下氧化,使矿石中部分或全部的金属硫化物变为氧化物,同时除去易于挥发的砷、锑、硒、碲等杂质。硫酸生产中硫铁矿的焙烧是最典型的应用实例。硫化铜、硫化锌矿的火法冶炼也用氧化焙烧。 硫铁矿(FeS2)焙烧的反应式为: 4FeS2+11O2=2Fe2O3+8SO2↑ 3FeS2+8O2=Fe3O4+6SO2↑ 生成的SO2就是硫酸生产的原料,而矿渣中Fe2O3与Fe3O4都存在,到底那一个比例大,要视焙烧时空气过剩量和炉温等因素而定。一般工厂,空气过剩系数大,含Fe2O3较多;若温度高,空气过剩系数较小,渣成黑色,且残硫高,渣中Fe3O4多。焙烧过程中,矿中所含铝、镁、钙、钡的硫酸盐不分解,而砷、硒等杂质转入气相。

石煤提钒工艺研究现状

石煤提钒工艺研究现状 石煤是我国储量巨大的钒矿资源,但大多数为低品位云母类及高岭土类粘土矿物,开发利用较为困难。石煤提钒工艺多种多样,浸出是石煤选矿中最为主要的分选方法,文章简单叙述了几种应用较为广泛的石煤提钒工艺,并分析了各自的优缺点及其优化改良。此外,介绍了相关新工艺,并对工艺进一步发展提出了看法。 标签:石煤;提钒;浸出;工艺 石煤是一种无机成分含量远超于有机成分的劣质“煤炭”,其主要性质[1,2]表现为:灰分高、燃烧值低、伴生元素种类多,因此石煤常作为有价元素的低品位多金属矿被提取利用。其中V2O5含量大于0.8%的石煤,可作为钒矿资源利用[3,4]。由于类质同像等原因,石煤中的钒通常以V(Ⅲ)与V(Ⅳ)等较低价态存在于层状硅酸盐矿物中,或以四次配位的钒氧四面体取代硅氧四面体或铝氧四面体,或以六次配位钒氧八面体取代铝氧八面体,属于难溶解物质。 目前,石煤提钒的应用常规工艺是先焙烧后浸出,即先破坏石煤的矿物结构,并将钒氧化成V(V)的可溶性钒酸盐,然后通过浸出,使其由固相转为液相,并从溶液中提取精钒[5]。目前种类繁多的石煤提钒工艺大致可分为火法-湿法联合提钒工艺与全湿法提钒工艺两大类。根据文献资料分析,文章主要综述了石煤浸出的工艺条件以及各自的优缺点,另外还介绍了相关的新工艺,并对此提出了看法。 1 火法-湿法联合提钒工艺 1.1 传统工艺 传统工艺为钠化焙烧水浸工艺,是高温条件下,由于金属氧化物的存在,氯化钠加速分解,产生活性氯和Na2O,活性氯与低价钒作用产生中间产物VOCl3,VOCl3高温条件下发生分解,反应生成可溶于水的钒酸钠盐[6]。传统工艺的基本流程为氯化钠焙烧→水浸出→酸沉粗钒→碱溶铵盐沉钒→热解脱氨制得精钒。该工艺的优点是工艺适用条件范围广,投资回收期短;其缺点是废气污染严重、回收率低、废液离子复杂。 传统工艺的焙烧一水浸的钒回收率仅45%-55%,究其原因是焙烧时V(V)与石煤中的钙、铁等反应生成如Fe(VO3)2、Fe(VO3)3、Ca(VO3)2等化合物及焙砂中有未完全氧化的V(IV)的化合物,它们均不溶于水,但溶于酸。因此邓庆云[7]等人提出了NaC焙烧一水浸一水浸渣酸浸——901树脂吸附提钒,钒总回收率达73%,比传统工艺提高25%以上。 石煤钠化焙烧提钒工艺缺点突出,但优势也很明显。如普适性强,成本低,钒浸出率高,并且浸出液中杂质含量少,钒易回收,废水也易处理和循环使用。

国内石煤提钒工艺现状分析及面临问题

国内石煤提钒工艺现状分析及面临问题 邹晓勇 (吉首大学化工学院副教授,吉首市诚技科技开发有限公司总经理,湖南省) 邹晓勇,男,41岁 从事石煤提钒新技术研究十多年,在石煤提钒领域发表论文十多篇; 主持研发的钙化焙烧低酸浸出离子交换法提钒技术已实现规模化工业运行两年多; 采用该项技术的石煤提钒项目已获得国内多个省市环保部门的项目批复。 石煤提钒,通常指以含钒碳质页岩、含钒煤矸石等为原料提取钒化合物的工业过程。 我国的石煤提钒工业起步于70年代末期,此后经历了两次大的发展时期,即八十年代的初步发展期,以及2004年到现在的大发展期。石煤提钒工业经过三十年的发展,在钒行业已经具有较重要的地位,产量估计已经达到钒总产量的40%左右。在工业行业里,石煤提钒是个较年轻的行业,在工艺、设备方面仍然处于较落后的状况,仍然存在较大的技术和经济提升空间。 1 石煤提钒工艺现状 经过三十年的发展,石煤提钒工艺发展为两大工艺路线,即火法焙烧湿法浸出提钒工艺和湿法酸浸提钒工艺。火法焙烧湿法浸出提钒工艺,指的是矿石经过高温氧化焙烧,低价钒氧化转化为五价钒,再进行湿法浸出得到含钒液体实现矿石提钒的工艺过程;湿法酸浸提钒工艺,指的是含钒原矿直接进行酸浸,包括在较高浓度酸性条件下,甚至是加热加压、氧化剂存在的环境下,实现矿物中钒溶解得到含钒液体的工艺过程。 1.1火法焙烧湿法浸出提钒工艺 火法焙烧湿法浸出提钒工艺,根据焙烧过程添加剂的不同或焙烧机理的区别,分为加盐焙烧提钒工艺、空白焙烧提钒工艺、钙化焙烧提钒工艺等。 1.1.1加盐焙烧提钒工艺 1976年,湖南冶金研究所与岳阳新开公社合作进行石煤提钒的试验研究并建厂生产。焙烧设备选用安化钒厂的平窑,并对之进行了改进。到1979年,石煤加盐氧化钠化焙烧—水浸—水解沉粗钒—粗钒碱溶精制—精钒的传统工艺流程己经形成,此工艺也就是行业传统上说的“钠法焙烧、两步法沉钒工艺”或“加盐焙烧提钒工艺”。

相关文档