文档库 最新最全的文档下载
当前位置:文档库 › 南阳市主导风向及风速分布

南阳市主导风向及风速分布

南阳市主导风向及风速分布
南阳市主导风向及风速分布

南阳市主导风向及风速分布

温 洛,陈建新,陈 燕

(南阳市专业气象台,河南 南阳 473000)

摘 要:利用南阳市1954~1999年风历史资料,分析了南阳市年、季主导风向及风速的分布情况,并分析了地形对风向风速的影响。

关键词:主导风向;风速;分布;地形影响

中图分类号:P425.3文献标识码:B文章编号:1004-6372(2004)03-0022-02

风是城市规划和工程建筑必须考虑的气象因子。为更好地服务于城市工程建设,提高专业气象服务质量,利用南阳市40年风观测资料,分析了南阳市的主导风向和各级风速出现的频率,并分析了地形对风向风速的影响。

1资料来源和处理

所用资料是南阳市观测站1954~1999年逐日风向风速观测资料,利用Visual Foxpro6.0和Visual basic6.0对40年逐日风向风速资料进行统计分析和自动处理,最后绘制出40年的年平均、季平均风向频率玫瑰图以及年、季平均风速和年大风日数分布折线图,为分析风资料提供更加直观和定量化的科学依据。

2风向统计分析

2.1 年风向频率

由南阳市40年平均风向频率玫瑰图(图略)可以看出:南阳市年平均主导风向为东北风,年平均频率为17.63%;年频率次于东北风的是西南风,年频率为6.53%;年频率最小的是西西北风,年频率仅1.07%。

2.2 季风向频率

2.2.1 春季风向频率

春季是冬季风向夏季风的过渡时期,大陆气团逐渐减弱,太平洋副热带高压加强北上,西南气流不断向北输送,故南阳市在春季南风开始增多,但由于受盆地地形的影响,出现频率最大的仍然是东北风向,其出现频率高达16.92%。

2.2.2 夏季风向频率

夏季南阳高空西风带减弱北退,副热带高压西伸北抬,主要受热带海洋气团控制,因而是夏季风鼎盛时期,南风、西西南风频率达到最大,分别为7.20%、7.87%,但它们仍不是该季节的主导风向,主导风向仍然是东北风,其频率为15%。

2.2.3 秋季风向频率

秋季是夏季向冬季的过渡时期,也是夏季风向冬季风转换时期,东北风出现的频率接近冬季,频率为18.9%,所以该季节的主导风向仍是东北风。

收稿日期:2004-04-122.2.4 冬季风向频率

冬季南阳市主要受极地大陆气团影响,高空处于西风带控制之下,在高空西北气流的引导下,大陆气团和变性极地大陆气团不断向南侵袭,受其影响,冬季盛行偏北风。东北风频率为19.75%,达到了最大;其次是东东北风,其频率为12.41%。

3 风速统计分析

3.1 平均风速年际分布

由南阳市40年年平均风速分布折线图(图略)可以看出:年平均风速20世纪50~60年代较70年代大,为3m/s左右;80年代的年平均风速最小,在2m/s之下;90年代有所回升,但仍没有超过50~60年代。

3.2 平均风速季节分布

四季中,冬、春两季的平均风速较大,分别为2.4m/s和2.6m/s;秋季的平均风速最小,只有2m/s;夏季的平均风速介于冬、春和秋季平均风速之间。

由于春季是南北暖空气和冷空气交换最为频繁活跃的季节,西风带和副热带高压在南阳市上空势力相当,天气时冷时暖,阴晴多变,大风日数较多,所以春季的平均风速比较大。

3.3 大风日数年际分布

南阳市年大风日数从20世纪70年后明显下降,80年代在10次以下,90年代在5次以下,1997~1998年间则无大风日出现。

3.4 各级风出现的频率

南阳市2级风出现的频率最大,0级次之,1级和3级风出现的频率最小。

4 地形对风向的影响

南阳市的主导风向为东北风的原因是多方面的,一方面是受大气环流形势和季风活动的影响,另一方面也与南阳的地形条件有着密切的关系。南阳位于河南省西南部,全区三面环山,素有“南阳盆地”之称,西北部有伏牛山,东南部有桐柏山,呈自盆地东北向西南方向倾斜的扇形地带,在盆地的东北角有一缺口,新野、邓州为盆地南部的出口。这种特殊的地形,也是造成南阳市东北风异常活跃的原因。

5结 语

①南阳市一年四季东北风出现的频率均为最大,年主导风向为东北风,其次为西南风。

②一年四季中,春季的平均风速最大,秋季的平均风速最小。

③年平均风速自20世纪50年代到80年代一直呈下降趋势,90年代略有回升,但仍没有超过50~60年代。

④年大风日数自20世纪50年代到90年代一直呈下降的趋势。年平均风速和年大风日数呈下降趋势的原因,可能与近年来全球气候变暖、冷空气的势力渐弱有关,另外也与城市高层建筑的增多和树木绿化面积的增大有关。

2003年6月19~20日河南省强风暴天气分析

张一平,席世平,康文瑛

(河南省气象台,河南 郑州 450003)

摘 要:从大尺度天气形势、省区域小天气图、物理量场、层结稳定度等方面,分析了2003年6月19~20日河南区域强风暴天气过程的成因,并从反射率因子和平均径向速度场上分析了雷达回波的演变和典型特征,特别是超级单体回波典型特征及移动特征、外流边界(弧状云线)回波特征等,找出了两次过程的异同点。

关键词:强风暴;中尺度系统;稳定度;强天气警戒指数;雷达回波特征

中图分类号:P458.3文献标识码:B文章编号:1004-6372(2004)03-0023-02

1 天气概况

2003年6月19日13~20时,焦作、济源、洛阳、三门峡、平顶山、南阳、许昌7市出现了强对流风暴,瞬时最大风速20.6 m/s,冰雹最大直径20mm,3h最大降水量88mm(禹州16~19时);20日13~20时,南阳、周口、平顶山、许昌、郑州、开封、商丘、新乡、鹤壁、安阳10市出现了强对流风暴,瞬时最大风速28 m/s,冰雹最大直径30mm,18站出现了短时暴雨,7站出现短时大暴雨,降水范围和平均降水量均比19日显著。

2 大尺度天气形势

500hPa图上,19日08时,周口、平顶山、灵宝至陕西中部有一高空辐合线。20日08时,延安、安康到成都一线有一浅槽,沿黄河北有一条弱辐合线,到20时在河南中部出现一弱的三合点,郑州到长沙为槽线,开封到日照为辐合线。

700hPa图上,19日08时可以看到,河南未来有可能转入弱高压脊后部,20日08时转入高压脊后部弱的偏南气流里,沿黄河北岸有一较短的切变,内蒙古西部负变温区逐渐向东南移动,降温不太明显。

850hPa图上,19日08时河南西部有一浅槽,20日08时河南位于沿海高压后部偏南到偏西南气流里,沿海高压略有加强。

地面图上,19日08时大兴安岭到中蒙边境上有一条冷锋缓慢东移,西端尾部不断有小股冷空气扩散南下,影响山西、陕西和河南,河北中部到河南西北部有一条冷锋,锋后在山、陕中部已出现一个小高压。

收稿日期:2004-03-183 省区域小天气图分析

19日11时,河南西部山区为一大片辐合区,辐合中心在卢氏、嵩县之间,3h负变压中心和辐合中心相对应;14时南阳北部、三门峡和登封为3个辐合中心;17时辐合中心在济源和焦作之间。以上中尺度系统和强风暴的发生有很好的对应关系,20时强风暴结束后,辐合中心变为辐散中心。

20日11、14、17时河南东部均有4~6m/s的偏南风;11时,新乡、登封、宝丰到邓州有一风向风速辐合线,平顶山、许昌有明显的风速辐合,宝丰、方城、舞阳出现了3h负变压中心; 14时,洛阳、南阳、平顶山、许昌、周口等地区出现大面积较大的3h负变压区,其中心在襄城,为-2.6hPa,风场上鲁山、宝丰和汝阳之间及襄城、许昌、临颍之间各有一气旋性辐合中心,这两个气旋性辐合中心位于3h负变压中心附近。地面图上的风向风速辐合和气旋性辐合触发了20日的强对流天气。

4 物理量场诊断

4.1 K指数

K值越大,表示大气越温暖,水汽越充分,层结越不稳定。K≥30℃可发生分散雷暴,≥35℃可产生成片雷暴和暴雨。19日08时32℃线包围河南京广线以西大部分地区,和19日河南发生强风暴的区域吻合。20日08时,K值继续增大,32℃线控制河南大部分地区,36℃线位于河南中部。实况为20日河南不但出现强对流天气,而且降水量普遍增大, K值大值区和强天气区基本吻合。

4.2 Sweat指数

Sweat指数主要用于监测强对流天气,也称强天气威胁

测量风速的方法

测量风速的方法 20091343107 陈茜茜 环境工程09级1班

高空风观测 测量近地面直至30公里高空的风向风速。通常将飞升气球作为随气流移动的质点,用地面设备(经纬仪或雷达)跟踪气球的飞升轨迹,读取其时间间隔的仰角、方位角、斜距,确定其空间位置的坐标值,可求出气球所经过高度上的平均风向风速。 高空风的测量一般指从地面到空中30km各高度上的风向、风速的测定。其测量方法有:一.利用示踪物随气球漂浮,观测示踪物位移来确定空中的风向和风速; 常用测风气球作为气流示踪物,使用地点跟踪设备观测其运动轨迹,测定其在空间各个时刻的位置,再用图解法、解析法或矢量法确定相应大气层中的平均风向、风速。 气球空间位置的确定需要测定三个参数:仰角δ、方位角α和球高H。测风经纬仪是一种跟踪观测和测定空中测风气球仰角、方位角的光学仪器。 在实际测量中,可以采用单经纬仪测风,也可采用双经纬仪测风(基线测风法)。其中后者准确度较高,可用来鉴定其它测风方法的准确性,但这种方法的观测和计算较复杂。用双经纬仪测风计算高度时,可采用投影法(包括水平面投影法、铅直面投影法和矢量投影法)。 二.利用大气中的质点或湍流团块与无线电波、声波、光波的相互作用,由多普勒效应引起的频率变化推算空中的风向、风速; 在我国,目前主要采用59型探空仪和701型二次测风雷达组成59—701高空探测系统,进行高空温、压、湿、风的综合测量。 三.利用系留气球、风筝、飞机、气象塔等观测平台,使测风仪器安置在不同高度上,根据气流对测风仪器的动力作用来测量空中的风向、风速。

导航测风就是借助导航台信号,由气球携带的探空仪自身确定其位置,并将位置信号、气 象资料信号一起发回基站,然后在基站进行处理,计算高空风的方法。 近地面层以上大气风场的探测。通常用气球法测风。高空风探测也是气象飞机探测、气象火箭探测、大气遥感的内容之一。气球法测风是把气球看作随气流移动的质点,用仪器测量气球相对于观测点的角坐标、斜距或高度,确定它的空间位置和轨迹;根据 气球在某时段内位置的变化,就可以简易地算出它的水平位移,从而求出相应大气层中的平均水平风向、风速。在气球的上升过程中,可测得它所经各高度上的风向、风速。1809年英国J.沃利斯和T.福雷斯特首创测风气球观测高空风。气球法测风常用光学经 纬仪、无线电经纬仪、一次雷达和二次雷达,以及导航系统等。 光学经纬仪测风 有单经纬仪测风和双经纬仪测风两种。单经纬仪只能测定气球的角坐标(方位、仰角)。气球高度一是根据气球升速(决定于气球净举力、气球大圆周长和地面空气密度)和升空历经的时间来确定。但由于大气湍流、铅直气流速度和空气密度随高度变化等因 素对气球升速的影响,这种方法确定的高度误差大,测风精度低,一般只在数千米高度 以下使用。二是根据无线电探空仪测得的气压、温度和湿度资料,通过计算推得高度。 这种方法测风精度较高。用双经纬仪测风,是根据位于选定基线两端的两个经纬仪同步 观测获得的角坐标值,通过几何图解或计算,得出各高度上的平均风向、风速。 光学经纬仪测风一般只适用于能见度好的少云晴天,夜间必须在气球上挂灯笼或其 他可见光源,阴雨天气则只能在可见气球的高度内测风。 无线电经纬仪测风 它是利用无线电定向原理,跟踪气球携带的探空发射机信号,测得角坐标数据。气球所在的高度则由无线电探空仪测量的温、压、湿值算出。因此无线电经纬仪测风适用 于全天候,但当气球低于无线电经纬仪最低工作仰角时,测风精度迅速降低。 雷达测风 一次雷达测风是雷达跟踪气球携带的无源反射靶,接收反射靶的反射信号来实现定位并计算风向、风速。二次雷达测风是跟踪气球携带的工作于应答状态的探空发射机信 号来实现定位的。此法可以获取角坐标和斜距数据,从而计算出高空风,无需依赖无线 电探空仪探测的温、压、湿数据计算气球高度。二次雷达测风当气球低于雷达最低工作 仰角时,要放弃仰角数据。此外,气象多普勒雷达更可测量云中流场的细微结构。 导航测风 利用导航系统来测定风。气球携带微型导航接收机,检出导航信号,并调制探空发射机将信号转发到地面而被接收,根据这些信号,可确定气球的轨迹,并计算出各相应

温度和风速测量方法总结

第一章风速测量 1.1风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 1.2 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图1.1 风杯风速计

1.3 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图1.2 KIMO原理 1.4 热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。 金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:

风向和风速教学设计

第四课风向和风速 【教学目标】 科学概念: 风可以通过自然界中事物的变化来感知,可以用风向和风速来描述。 过程与方法: 自制建议风向标和小风旗。用自制的风向标和小风旗测量风向和风速,并使用适当的方法纪录观察结果。 情感、态度、价值观: 感受到使用简单工具能对天气观察活动提供很大的帮助。进一步提高观察天气现象的兴趣和好奇心。 【教学重点】能描述风向和风速 【教学难点】用自制的风向标和小风旗测量风向和风速,并使用适当的方法纪录观察结果。 【教学准备】分组材料:制作风向标的材料;制作小风旗的材料。 【教学过程】 一、导入 师:你们觉得风是什么?能听到,看到风吗?能用能想到的描述风的词语来描述风吗? 二、探究内容: (一)风向和风向标 1、出示风向图,简单介绍 简单介绍,风向是指风吹来的方向,可以用八个方位来描述风向。 2、你能通过风水动旗面的情况来辨别风向吗?简单练习。 小结:风向可以用风向标来测量,风向标的箭头指向的是风吹来的方向。 3、制作风向标,并测量风向 (1)出示自制风向标。介绍制作方法 (2)小组讨论:风向标的使用方法 (3)问:我们如何将风向结果添加到当天的天气日历上呢? (4)我们还可以用哪些方法确定方位和测量风向? (二)风速和风速等级 1、问:风向可以用风向标进行测量,那么风速也可以测量吗? 2、介绍科学家利用风速仪测量风速,熟悉“蒲福风力等级”表。我们制作小风旗来测量。 3、分组制作小风旗,研究使用方法 (三)实地观察 1、测量风向和风速 2、记录到天气日历中 教学反思:“风向和风力”一课室内外结合学习。我们的实验室楼就在大操场边,实验室就在底楼,这为我们的室外观察提供了方便。我带学生到气象站,明确方位,利用风向标看风向,到气象室观察风向风速仪,像科学家那样去观察;再带学生到操场,看国旗认风向和风力;用身体、用红领巾感受风向风力。学习用简化的风力等级描述风力。感受风向和风力的观测可以因地制宜,有不同的方法,

中国大陆风资源分布统计

中国大陆风资源分布统计 简介 1.中国大陆风资源总体介绍 中国幅员辽阔,海岸线长,风能资源丰富。在20世纪80年代后期和2004-2005年,中国气象局分别组织了第二次和第三次全国风能资源普查,得出中国陆地10m高度层风能资源的理论值,可开发储量分别为32.26亿kW和43.5亿kW、技术可开发量分别为2.53亿kW和2.97亿kW的结论。此外,2003-2005年联合国环境规划署组织国际研究机构,采用数值模拟方法开展了风能资源评价的研究,得出中国陆地上离地面50m高度层风能资源技术可开发量可以达到14亿kW的结论。2006年国家气候中心也采用数值模拟方法对中国风能资源进行评价,得到的结果是:在不考虑青藏高原的情况下,全国陆地上离地面10m高度层风能资源技术可开发量为25.48亿kW,大大超过第三次全国风能资源普查的数据[1]。 根据第三次风能资源普查结果,中国技术可开发(风能功率密度在150W/m2及其以上)的陆地面积约为20万km2。考虑风电场中风电机组的实际布置能力,按照低限3MW/km2、高限5MW/km2计算,陆上技术可开发量为6亿~10亿kW。根据《全国海岸带和海涂资源综合调查报告》,中国大陆沿岸浅海0~20m等深线的海域面积为15.7万km2。2002年中国颁布了《全国海洋功能区划》,对港口航运、渔业开发、旅游以及工程用海区等作了详细规划。如果避开上述这些区域,考虑其总量10%~20%的海面可以利用,风电机组的实际布置按照5MW/km2计算,则近海风电装机容量为1亿~2亿kW。综合来看,中国可开发的风能潜力巨大,陆上加海上的总量有7亿~12亿kW,风电具有成为未来能源结构中重要组成部分的资源基础[2]。 但是由于我国国土面积广大,地形地貌十分复杂,故而风能资源状况及分布特点随地形、地理位置不同而有所不同。本文将借助Interface Vortex在线分析

风速风向检测

基于单片机的风速风向检测系统设计 时间:2011-03-01 16:46:08 来源:电源技术应用作者: 摘要:介绍了一种风速风向传感器原理,选用LPC921单片机设计了数据采集和数据传输的检测系统,给出了系统硬件电路图和软件流程图,分析了硬件设计和软件编程中的一些问题。 1 引言 风速风向测量是气象监测的重要组成部分, 测量风速风向对人类更好地研究及利用风能和改善生活生产有积极的影响。 本系统针对传感器的特点选用了LPC921 单片机,通过I/O 口输出高低电平,通过放大电路驱动继电器,控制传感器电源的开关。利用单片机的两个通用定时计数器, 对风速脉冲进行定时和计数, 通过计算单位时间内的脉冲数计算出风速。风向则是检测输入的风向格雷码, 将格雷码转换成二进制码, 通过查表的方式求出风向角度, 最终确定风向。最后设计RS485 通信协议,保证通信可靠性, 将风速风向数据送往上位机进行显示和发布。 2 传感器工作原理 本系统采用长春气象仪器研究所的EC9 -1 系列高收稿日期:2010-03-05动态性能测风传感器。EC9 - 1 系列传感器具有动态性能好、线性精度高、灵敏度高、测量范围宽、互换性好、抗风强度大等特点。 风速传感器的感应组件为三杯式风杯组件, 当风速大于0.4m/s 时就产生旋转, 信号变换电路为霍尔集成电路。在水平风力驱动下风杯组旋转, 通过主轴带动磁棒盘旋转, 其上的数十只小磁体形成若干个旋转的磁场, 通过霍尔磁敏元件感应出脉冲信号, 其频率随风速的增大而线性增加。 计算公式:V=0.1F。 V:风速,单位:m/s; F:脉冲频率,单位:Hz风向传感器的感应组件为前端装有辅助标板的单板式风向标。角度变换采用的是七位格雷码光电码盘。 当风向标随风旋转时, 通过主轴带动码盘旋转, 每转动2.8125°,位于码盘上下两侧的七组发光与接收光电器件就会产生一组新的七位并行格雷码,经过整形、倒相后输出。方位- 角度- 格雷码- 二进制码对照表是风向测量单片机编程的重要依据。传感器结构组成如图1 所示。

风速分布函数简介

● 韦伯分布 概率密度函数:()1()(),0,,0k v k c k v f v e v k c c c --= ≥> 累计分布函数:()0()1k v c F v v e -≤=- 式中:x 为随机变量,c 为比例参数(scale parameter ),k 为形状参数(shape parameter ) ● Gamma 分布 ()1()exp v v f v ααβαβ -??=- ?Γ?? MATLAB 实现:

彰武的weibull分布拟合结果(逐年数据拟合)①以0.5m/s为组距

Dec 2.6205 1.5180 1.6710 0.9836 1.91449 1.2363 4.7080 0.9648

?密集城市高层建筑屋顶风资源评估大纲 ①introduction 介绍风资源评估的手段,城市建筑风能利用的潜力,有哪些人做了研究(可列表) ②method 介绍用到的方法与公式,主要集中在风速分布的不同模型密度函数与累计函数,然后是参数的估计方法,然后是拟合的检验方法。 2.1 weibull distribution; gamma distribution; ….Distribution; beta distribution; wakepy distribution 2.2 maximum likelihood method 2.3 Chi-square error 和R2检验的原理、公式,结果的含义 ③results 3.1 逐年,逐月,总计的各种分布函数参数估计的值,及图(2~3个左右的图或表);参数跟平均风速的关系(经验公式) 3.2 风速分析,逐月的平均风速+平均风向日分布曲线(12张图或者2张图) 3.3 风向分析(玫瑰图) 3.4 湍流强度分析(一到两张图) 3.5 most energy-carrying wind speed analysis(公式和计算结果图表) ●用韦伯分布进行风能密度估计 ●

温度和风速测量方法总结

第一章风速测量1.1风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 1.2 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图1.1 风杯风速计 1.3 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图1.2 KIMO原理 1.4 热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。

金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。热线风速计用于0至5m/s的精确测量,使用温度约为±70℃。 当在湍流中使用热线风速计时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式风速计。因此,风速仪测量过程应尽量在通道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面应不得有遮挡(棱角,重悬,物等)。 图1.3 热线风速计 1.4.1 恒流式热线风速计 通过热线的电流保持不变,温度变化时,热线电阻改变,因而两端电压变化,由此测量流速。利用风速探头进行测量。风速探头为一敏感部件。当有一恒定电流通过其加热线圈时,探头内的温度升高并于静止空气中达到一定值。此时,其内测量元件热电偶产生相应的热电势,并被传送到测量指示系统,此热电势与电路中产生的基准反电势相互抵消,使输出信号为零,风速仪指针也能相应指于零点或显示零值。若风速探头端部的热敏感部件暴露于外部空气流中时,由于进行热交换,此时将引起热电偶热电势变化,并与基准反电势比较后产生微弱差值信号,此信号被测量仪表系统放大并推动电表指针 变化从而指示当前风速或经过单片机处理后通过显示屏显示当前风速数值。 1.4.2 恒温式热线风速计 风速仪热线的温度保持不变,给风速敏感元件电流可调,在不同风速下使处于不同热平衡状态的风速敏感元件的工作温度基本维持不便,即阻值基本恒定,该敏感元件所消耗的功率为风速的函数。 恒温风速仪则是利用反馈电路使风速敏感元件的温度和电阻保持恒定。当风速变化时热敏感元件温度发生变化,电阻也随之变化,从而造成热敏感元件两端电压发生变化,此时反馈电路发挥作用,使流过热敏感元件的电流发生相应的变化,而使系统恢复平衡。

超声波风速风向仪设计

超声波风速风向仪设计 1.研究背景及意义 风速测量在工业生产和科学实验中都有广泛的应用,尤其在气象领域,风速测量更有着重要的价值。风速测量,常用的仪表有杯状风速计、翼状风速计、热敏风速计和超声波风速计。杯状风速计和翼状风速计使用方便,但其惰性和机械摩擦阻力较大,只适合于测定较大的风速。热敏风速计利用热敏探头,其工作原理是基于冷冲击气体带走热元件上的热量,借助一个调节开元器件保持温度恒定,此时调节电流和流速成正比。这种测量方法需要人为的干预,而且此仪表在湍流中使用时,来自各个方向的气流同时冲击热元件,会影响到测量结果的准确性。现阶段常采用基于超声波传播速度受风速影响因而增减原理制成的超声波风速仪表,与其它各类仪表相比较,其优势在于:安装简单,维护方便;不需要考虑机械磨损,精度较高;不需要人为的参与,可完全智能化。 2.国内外研究历史及发展状况 超声波可用于测量,是因为在超声波在传播过程中,会加载流体的流速信息,这些信息经过分离处理,便可以得到流体的流速。70年代中后期,大规模集成电路技术的飞速发展,高精度的时间测量成为一件轻而易举的事情,再加上高性能的、动作非常稳定的PLL(锁相环路)技术的应用,使得超声波流量计的稳定可靠性得到了初步的保证。同时为了消除声速变化对测量精度的影响,出现了频差法、锁相频差法等。该类方法测量周期短,响应速度快,而且几乎完全消除了声速对测量精度的影响。80年代,超声波测量出现了新的方法,比如射束位移法、多普勒法和相关噪声法等等。90年代才真正实现了高精度超声波气体流量计。 从国内、外超声波气体测量发展来看,国外机构开展这项工作的时间较早,到现在为止已经形成较为成熟的产品。当今世界,超声波流量计用于气体流量计的研究与开发方面,荷兰的工nstromet公司、英国的Dnaiel公司以及美国的Cnotrolotmo公司均做出了大量的工作并取得了较好的应用效果,其销售份额也排在前几位。日本在超声波气体流量计的设计方面也具有很大的优势,在消除管外传播时间、提高仪器精度和缩短响应时间方面有独到之处。我国的超声波流量

测量风速风向

仪器科学与电气工程学院 本科生科技学术实践“六个一”工程 调研报告 风速风向测量 ——“车载微型气象站”大创项目 学生姓名*** 班级** 学号**** 指导教师*** 学院********* 专业******

光电编码器测量风速风向 摘要: 由于气象事业已经和人们的民用和工业活动密不可分,在国防建设、社会进步、经济发展中,气象采集技术扮演着重要的角色,同时随着国家可持续发展战略的实施,气象采集技术对我们越来越重要;随着人们对气象信息需求的不断变化,传统的气象观测模式已经无法满足人们的需要,因此,自动气象数据采集技术在我国有了很好的发展;气象数据采集系统的物联性直接影响着数据实用性,从而,如何实现广泛地从全国各地以致世界各地采集数据信息并汇总,今后必然是极其有意义的一个研究方向。 本项目设计目的是研究物联网式、低成本、大范围地对各地风速风向数据进行采集。使用51单片机和光电编码器可以实现要求,故计划设计一套基于51单片机的光电编码器风速风向测量系统,以stc52芯片为核心,采用了模块化的设计思想,根据电路功能是的测量数据数字化,实现单片机对风速风向数据的接收、处理、校准等工作。同时在软件设计中采用了外部中断对接收信号进行计数和通过计时器进行定时数据处理的数据处理方法来精确定位计数脉冲经历的时间,对程序进行了整体优化。保证系统可实现风参数的精确测量、实时显示及与sd卡存储等功能。 关键词:风速风向;光电编码;单片机 一.调查方案与背景分析 1.调研主要内容、目标与方案(途径)简介 调研内容:(1)背景现状与发展前景,(2)测量方式,(3)工作原理(4)技术方案与技术指标,(5)优点和缺陷。 调研目标:(1)了解风速风向系统测量方法的设计原理和技术方案; (2)了解光电编码器的工作原理; (3)分析发现现有系统的优点以及存在的问题和缺陷。 调研方案:(1)网上搜寻关于风速风向的测量的研究现状; (2)咨询老师学长学姐; (3)与队友探讨原理和技术方案。 2. 研究背景与前景 转速是工程应用中非常广泛的一个参数,其测量方法较多。传统的转速测量方法主要采用直流测速机,其原理是由被测电机拖动测速发电机,再对测

极端风速和发生时间隔分布的概率分布研究 文献翻译

极端风速和发生时间间隔分布的概率分布研究 摘要:这篇论文是基于香港记录的极端风速数据对极端风速及其发生时间间隔分布可能性的研究调查。I型极值分布、三参数Weibull分布、双参数Weibull分布都被这项研究所采用来匹配风速数据。假设检验发现,尽管这三种分布型都适合用来描述计算风速数据的分布可能性,但是I型极值分布和三参数Weibull分布比二参Weibull分布更加恰当一些。据观察,特定极端风速的发生时间间隔是随着三参数Weibull分布或二参Weibull分布的随机变量,而二参Weibull分布模型相对来说是一个更好的选择。给出一个研究案例来讨论可能性分析的结果。 1.介绍 对结构的风载荷评估需要对结构寿命内的预测对风知识有一个最全面深入的了解。Davenport是最早运用概率统计理论来决心风速设计的研究人员之一。各种分布可能性的模型已经被用于或者建议用于记录的风速的统计分析。在这些模型之间,I型极值分布就是众所周知的Gumbel分布,一个拟合最大值的经典模型。Gumbel促进了I型极值分布在特大洪水预报中的应用。1970年以后,很多研究人员都认为I型极值分布是适合于极端风速数据分布研究的。因此,I型极值分布是在世界各地结构设计规范和标准采用的最常用的方法。广义极值分布是由Jenkinson通过合并三个极值分布类型到一个简单的数学形式中来的,这一概念模型已经被广泛的使用于风工程当中。一个新的极值分布模型,实际上已经覆盖了I型极值分布的模型,被Li等人所建议提出来,这是最近应用到风行动下玻璃包层的时间依赖性可靠性分析。这些研究表明这个新的分布对于描述极值风速的可能性分布是一种有效的和灵活的工具。Gomes 和Vickery通过应用Gumbel极值分布提出了一种在混合天气状态下用于极值风速分析的新方法。与广义极值分布十分相近的广义帕累托分布被很多研究人员应用到适应极值风速。正如Holmes 和Moriarty所评论,她的最大优势在于利用感兴趣的风暴所产生的高阵风上的相关数据,而不仅仅是年最大风速,同时也没有必要为了一个值而每年进行分析。 威布尔分布是另一种广泛使用于适应风速数据的分布模型。Stewart 和Essenwanger通过威布尔分布研究地球近地层风速的频率分布,发现在极值预报中三参数模型比二参数模型要更好。Deaves和Lines展示了一种适应风速数据的提高方法到威布尔分布中,也证明了二参数威布尔分布可以适应于所有风速数据的全部范围,也证明风速计分辨率是足够的,十分钟平均风速也是适用的。Ulgen和Hepbasli通过使用Izmir的风速数据检查了两种风速分布功能的威布尔参数分布,同时也威布尔分布和瑞利分布相比较。威布尔分布被发现是最准确的分布为根的试验方法的均方误差,并适合于表示的风速数据密尔的实际概率分布。Lun和Lam计算出数值估计并用威布尔二参数分布功能去描述过去30年的一组风数据的风速频率分布,并检查了三个地方:一个城区、一个城市中心极其暴露的区域和香港一个开放的海域威布尔密度分布功能的两个参数。 很多先前的关于风速可能性分布分析的研究,包括上面所提及的,都主要关于风速概率分布的测定。据记录,一般在先前的研究当中都只是考虑了风速的大小和方向和发生频率;而强风发生间隔的可能性分布是常常被忽略的。在这项研究中将会呈现一个指定的强风速的发生间隔实际上是具有某种概率分布的随机变量。然而,这种现象是还没有调查以往概率分析的基础上。 为了精确的估计极值风速,同时考虑指定风速发生可能性和它的发生间隔是很合理的。在这篇文章中,风速的发生频率和发生间隔都将被考虑到极值风速可能性分析当中。一项案例研究展示是在基于香港记录的极端风速数据上。据作者所知,这项研究可能是风工程中的

全球风资源分布统计

全球风资源分布统计 简介 1.全球陆地风资源总体介绍 地球上的风能资源十分丰富,根据相关资料统计,每年来自外层空间的辐射能为1.5×1018kWh,其中的2.5%即3.8×1016kWh的能量被大气吸收,产生大约4.3×l0l2kWh的风能。据世界能源理事会估计,在地球1.07×108km2陆地面积中有27%的地区年平均风速高于5m/s(距地面10m处)。 风能资源受地形的影响较大,世界风能资源多集中在沿海和开阔大陆的收缩地带,如美国的加利福尼亚州沿岸和北欧一些国家。世界气象组织于1981年发表了全世界范围风能资源估计分布图,按平均风能密度和相应的年平均风速将全世界风能资源分为10个等级。8级以上的风能高值区主要分布于南半球中高纬度洋面和北半球的北大西洋、北太平洋以及北冰洋的中高纬度部分洋面上,大陆上风能则一般不超过7级,其中以美国西部、西北欧沿海、乌拉尔山顶部和黑海地区等多风地带较大。 表1 全球风能资源分布[1] 地区陆地面积(km2)风力为3~7级所占的 面积(km2) 风力为3~7级所占的 面积比例(%) 北美19339 7876 41 拉丁美洲和加勒比18482 3310 18 西欧4742 1968 42 东欧和独联体23049 6783 29 中东和北非8142 2566 32 撒哈拉以南非洲7255 2209 30 太平洋地区21354 4188 20 (中国)9597 1056 11 中亚和南亚4299 243 6 总计106660 29143 27

2.分析工具介绍 VORTEX公司是专门从事风能数据提供及风能地图的西班牙在线服务公司,主要服务是协助技术部门进行风资源的评估,产品范围包括: MAPS:在24小时内提供1或3公里分辨率内的风力资源数据。 MAST:可被WAsP使用的指定地点一年的测风数据。 FARM:用于WindPRO或Windfarmer软件的一个地区内无限个点(100m分辨率)长期(30年)的平均风速、湍流和极端风力数据。 SERIES:提供具体地点在3公里分辨率内,10年内每小时的风速及风向等长时间序列关联数据。 ICING:提供寒冷天气下的相关风资源数据以避免由于冷冻天气对产能带来的损耗。 表1 VORTEX公司产品信息[3] 产品分辨率测量项目 数据 (年) 报告交付期 限(小时) 报告格式备注 MAP1-3km风速3024KML, GIS MAST100m风速、风向1/ 2036PDF, TAB一个点 FARM100m风速、风向、湍 流、极端风力3072~96 KML, GIS, PDF, WRG 一个区域 无限个点 SERIES3km风速、风向1036TXT Interface Vortex是Vortex公司的一款在线风资源分析软件,可以将全球各个区域的风速分布状况以不同的颜色,直观地展示出来。本文借助Interface Vortex的免费账号(分辨率为9km),得到全球陆上及沿海地区的年平均风速分布图,如图1所示。

温度和风速测量方法总结

温度和风速测量方法总 结 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第一章风速测量风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图风杯风速计 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图 KIMO原理

热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。 金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至 40m/s;高速:40至100m/s。热线风速计用于0至5m/s的精确测量,使用温度约为 ±70℃。 当在湍流中使用热线风速计时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式风速计。因此,风速仪测量过程应尽量在通道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面应不得有遮挡(棱角,重悬,物等)。 图热线风速计 恒流式热线风速计 通过热线的电流保持不变,温度变化时,热线电阻改变,因而两端电压变化,由此测量流速。利用风速探头进行测量。风速探头为一敏感部件。当有一恒定电流通过其加热线圈时,探头内的温度升高并于静止空气中达到一定值。此时,其内测量元件热电偶产生相应的热电势,并被传送到测量指示系统,此热电势与电路中产生的基准反电势相互抵消,使输出信号为零,风速仪指针也能相应指于零点或显示零值。若风速探头端部的热敏感部件暴露于外部空气流中时,由于进行热交换,此时将引起热电偶热电势变化,并与基准反电势比较后产生微弱差值信号,此信号被测量仪表系统放大并推动电表指针变化从而指示当前风速或经过单片机处理后通过显示屏显示当前风速数值。

风速风向测量实验指导书与实验报告

风向风速测量实验 (一)实验目的 掌握风向风速测量方法及测量原理,学会使用数字风向风速表等测量仪器测定风向及风速。 (二)实验仪器设备及实验原理 1、实验仪器设备: 实验设备有HG-1低速风洞及测控系统、数字压力风速仪、数字风向风速表。图1为低速风洞,用于产生低速气流,图2为XDE I型数字风向风速表。 图1 HG-1低速风洞图2 数字风向风速表 HG-1低速风洞是一座回流式低速风洞(见图1),气流速度最高60m/s,试验段大小:700mm(宽)×700mm(高)。数字压力风速仪是用于测量气流总压、静压及压差和风速的多功能测试仪,该仪器必须和皮托管探头配套使用。数字风向风速表是手持式风向风速测试仪,由风向风速感应器和数据处理、显示仪表2部分组成。其技术指标如下: 风向: 测量范围: 0~360° 准确度: ±5° 分辨力: 3°. 起动风速: ≤0.5 m/s 风速: 测量范围: 0~60 m/s 准确度: ±(0.5+0.03V) m/s V─实际风速 分辨力: 0.1 m/s 起动风速: ≤0.5 m/s 2、实验原理: 风向、风速传感器所感应的不同物理量,经过相应的电路,转换成标准的电压模拟量和数字量,然后由数据采集器CPU 按时序采集、计算,得出风向、风速的实时值,并实时显示。 2.1风向传感器 选用单叶式风向标(见图3)作为风向测定传感器,采用七位格雷码的编码方式进行光电转换,将轴角位移转换为数字信号,经采集器的CPU根据相应公式解算处理,得到相应的风向值。

图3 单叶式风向标风向传感器图4 三杯回转架式风速传感器 2.2 风速传感器 采用三杯回转架式风速传感器作为风速测定传感器(见图4),利用光电脉冲原理。风杯带动码盘转动,光敏元件受光照后输出脉冲,经采集器CPU根据相应的风速计算公式解算处理,获得相应风速值。 (三)实验方法与步骤 1、风洞运行,将风速调至10m/s左右。 2、把皮托管的总压测压软管及静压测压软管和数字压力风速仪对应接口连接。 3、将数字压力风速仪电源打开,按功能键使面板切换到压力和速度显示界面。 4、将皮托管安装在支架上,使总压管开孔方向与来流方向一致。 5、用数字压力风速仪测量试验段出口气流总压和风速。 6、将手持式数字风向风速表的数据采集、处理与显示部件与风速风向感应部件连接,并把感应部件伸到来流中,测定来流速度和来流方向。要求三个风杯处于同一水平面上。 7、改变风洞来流速度,重复5和6步骤测定第二组数据。 8、实验结束,关闭风洞。 9、室外有风时手持数字风向风速表到室外测定某处风向风速。 (四)实验数据处理 将实测数据记录在下表中: (五)思考题 1、比较数字压力风速仪和数字风向风速表测定的风速是否相同?为什么?

风速风向仪使用说明书

FY-CW2型风速风向仪使用说明书

富源飞科电子科技有限责任公司 二零一一年六月 尊敬的用户: 感您购买和使用富源飞科电子科技有限责任公司,研发设计制造的FY-W2型风速风向仪,该产品在设计与制造过程中,严格执行了国家气象部门的有关规定和相关标准,产品在出厂前都经过了严格的测试和质量检验。为了保证您能正确的使用该系统,请在使用前详细阅读产品使用说明书。

目录 一、产品简介 (2) 二、功能特点 (2) 三、技术指标 (2) 四、基本配置 (3) 五、系统组网方式 (3) 六、安装调试方法 (5) 七、采集仪操作说明 (6) 八、测风传感器使用方法 (7) 8.1传感器简介 (7) 8.2安装要求 (7) 九、软件使用方法 (7) 9.1、软件安装 (7) 9.2、软件配置 (8) 9.3、下载及显示数据 (10) 十、注意事项 (10) 十一、常见故障及维护 (10) 十二、售后服务及技术支持联系方式 (11) 附表:风力(风速)等级表 (11)

一、产品简介 FY-CW2风速风向仪由风速、风向传感器及智能数据采集仪构成,是用于测量并记录大气中风速与风向的气象仪器。本仪器采用高清液晶显示屏显示当前日期时间及风速、风向值;置大容量FLASH存储芯片可自动存储至少一年的气象数据;风速传感器采用传统三风杯结构,风杯选用碳纤维材料,强度高,启动好;风向传感器采用精密电位器,并选用低惯性轻金属风向标响应风向,动态特性好;仪器配备有三种通讯接口(RS232/RS485/USB)用于与计算机建立通讯连接,通过配套的上位机软件可远程观测实时风速风向,用户还可利用该功能完善的气象软件对气象数据作进一步的处理分析。本仪器可广泛用于气象、农林、环保、海洋、机场、港口、科学考察等领域。 二、功能特点 (1)高清字符型液晶显示屏,人机界面友好; (2)风速、风向测量精度高,系统稳定可靠; (3)大容量数据存储,最多可存储57344条气象数据(数据记录间隔可在1-240分钟之间设置); (4)支持多种通讯方式RS232、RS485、RJ45、GPRS等供选择,易于组网; (5)多种供电选配方案:提供交流、直流、太阳能等多种供电方式选择(标配为市电)。(6)可视化计算机软件,专业化的数据处理能力,提供强大的数据存储、分析、报表、曲线等功能,方便的历史数据查询系统。 (7)系统定制方便灵活,数据采样周期可灵活设定(1-60分钟)。 (8)方便的安装及维护:适于我国各气候区主要土壤类型,安装方便,性能稳定,可靠性高,方便维护。 (9)完善的防雷击、抗干扰等保护措施; 三、技术指标

风速与风量的检测方法

洁净室的风速与风量的检测方法 1、风速与风量的检测方法 A 、风量、风速检测必须首先进行。 各项净化效果都是在设计的风量、风速下获得。 B 、检测前检查风机是否运转正常。 必须实地测量被测风口、风管的尺寸。 C 、对于单向流(层流)洁净室,采用室截面平均风速和洁净积乘积的方法确定风量。 (取离高效过滤器 0.3m 垂直于气流处的截面作为采样截面,按照测试点间距不宜大于 0.6m 在截面上设置不少于 5 个测试点,所有读数的算术平均值作为平均风速。)垂直单向流(层流)洁净室的测定截面取据地面 0.8m ~ 1m 的水平截面;水平单向流(层流)洁净室的测定截面取据送风面 0.5m ~ 1m 的垂直截面;截面上测试点数量应不少于 10 个,间距不应大于 2m ,均匀布置; D 、对于安有过滤器的风口,以风口截面平均风速和风口净截面积的乘积确定风量。(在风口截面或引用辅助风管的截面上按不少于 6 个均匀布置的测试点得出平均风速。) E 、对于风口上风侧有较长的支管段且已经或可以打孔时,可以用风管法确定风量。(在出风口前不小于 3 倍管径或 3 倍大边长度处打孔;) F 、对于矩形风管,将测定截面分成若干个相等的小截面,每个小截面尽可能接近正方形,边长不大于 200mm ,测试点位于小截面中心,但整个截面上不宜少于 3 个测试点;对于圆形风管,应按等面积圆环法划分测定截面和确定测试点数;在风管外壁上开孔,插入热式风速计探头或皮托管。(通过测动压,换算为风量。) 2、风速和风量的评定标准 ( 1 )、对于乱流洁净室: A 、系统得实测风量应大于各自的设计风量,但不应超过 20% ; B 、总实测新风量和设计新风量之差,不应超过设计新风量的±10% ; C 、室内各风口的风量与各自设计风量之差均不应超过设计风量的±15% ; ( 2 )、对于单向流(层流)洁净室: A 、实测室内平均风速应大于设计风速,但不应超过 20% ; B 、总实测新风量和设计新风量之差,不应超过设计新风量的±10% ;

测量风速的方法

测量风速的方法 20101308017

移,常以米/秒、公里/小时、海里/小时表示。1805年英国人F·蒲福根据风对地面(或海面)物体的影响,提出风力等级表,几经修改后得下表。目测风时,根据风力等级表中各级风的特征,即可估计出相应的风速。 蒲福风力等级表

32.7 118 64 (1)风向测量仪器:风向标是一种应用最广泛的测量风向仪器的主要部件,由水平指向杆、尾翼和旋转轴组成。在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指

向杆指示风向。风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。精确的方法有自整角机和光电码盘。 (2)风速测量仪器:a)风杯风速表是应用最广泛的一种风速表,由三个(或四个)半球形或抛物形空杯,都顺一面均匀分布在一水平支架上,支架与转轴相连。在风力作用下,风杯绕转轴旋转,其转速正比于风速。转速可以用电触点、测速发电机、齿轮或光电

风速计其基本原理是将一根细的金属丝放在流体中,通电流加热金属丝,使其温度高于流体的温度,因此将金属丝 称为“热线”。当流体沿垂直方向流过金属丝时,将带走金属丝的一部分热量,使金属丝温度下降。根据强迫对流热交换理论,可导出热线散失的热量Q与流体的速度v之间存在关系式。标准的热线探头由两根支架张紧一根短而细的金属丝组成,如图2.1所示。金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm; 各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式探头。以上现象可以在管道测量过程中观察到。根据管理管道紊流的不同设计,甚至在低速时也会出现。因此,风速仪测量过程应在管道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面不得有任何遮挡。(棱角,重悬,物等)

风速风向仪使用说明书

FY-CW2型 风速风向仪 使用说明书 武汉富源飞科电子科技有限责任公司 二零一一年六月

尊敬的用户: 感谢您购买和使用武汉富源飞科电子科技有限责任公司,研发设计制造的FY-W2型风速风向仪,该产品在设计与制造过程中,严格执行了国家气象部门的有关规定和相关标准,产品在出厂前都经过了严格的测试和质量检验。为了保证您能正确的使用该系统,请在使用前详细阅读产品使用说明书。

目录 一、产品简介 (2) 二、功能特点 (2) 三、技术指标 (2) 四、基本配置 (3) 五、系统组网方式 (3) 六、安装调试方法 (5) 七、采集仪操作说明 (6) 八、测风传感器使用方法 (7) 8.1传感器简介 (7) 8.2安装要求 (7) 九、软件使用方法 (7) 9.1、软件安装 (7) 9.2、软件配置 (8) 9.3、下载及显示数据 (9) 十、注意事项 (10) 十一、常见故障及维护 (10) 十二、售后服务及技术支持联系方式 (10) 附表:风力(风速)等级表 (11)

一、产品简介 FY-CW2风速风向仪由风速、风向传感器及智能数据采集仪构成,是用于测量并记录大气中风速与风向的气象仪器。本仪器采用高清液晶显示屏显示当前日期时间及风速、风向值;内置大容量FLASH存储芯片可自动存储至少一年的气象数据;风速传感器采用传统三风杯结构,风杯选用碳纤维材料,强度高,启动好;风向传感器采用精密电位器,并选用低惯性轻金属风向标响应风向,动态特性好;仪器配备有三种通讯接口(RS232/RS485/USB)用于与计算机建立通讯连接,通过配套的上位机软件可远程观测实时风速风向,用户还可利用该功能完善的气象软件对气象数据作进一步的处理分析。本仪器可广泛用于气象、农林、环保、海洋、机场、港口、科学考察等领域。 二、功能特点 (1)高清字符型液晶显示屏,人机界面友好; (2)风速、风向测量精度高,系统稳定可靠; (3)大容量数据存储,最多可存储57344条气象数据(数据记录间隔可在1-240分钟之间设置); (4)支持多种通讯方式RS232、RS485、RJ45、GPRS等供选择,易于组网; (5)多种供电选配方案:提供交流、直流、太阳能等多种供电方式选择(标配为市电)。(6)可视化计算机软件,专业化的数据处理能力,提供强大的数据存储、分析、报表、曲线等功能,方便的历史数据查询系统。 (7)系统定制方便灵活,数据采样周期可灵活设定(1-60分钟)。 (8)方便的安装及维护:适于我国各气候区主要土壤类型,安装方便,性能稳定,可靠性高,方便维护。 (9)完善的防雷击、抗干扰等保护措施; 三、技术指标 传感器测量范围分辨率精度启动风速 风速0~70m/s 0.1m/s ±(0.3+0.03V)m/s ≤0.3m/s 风向0~360°1°±3℃≤0.5m/s

相关文档
相关文档 最新文档