文档库 最新最全的文档下载
当前位置:文档库 › 弹片压力变形计算公式

弹片压力变形计算公式

弹片压力变形计算公式
弹片压力变形计算公式

The formula between Shrapnel stress and deflection

The deflection curve equation of Shrapnel is as following:

()x l EI F y x --=362

(1)

The max deflection of the Shrapnel ’s endpoint A :

EI F l y A 33-= (2)

In which I stands for Z-axis moment of inertia of the Shrapnel ’s Section,

1232

2222

2b y

y a dydZ dA I a a

b

b

===???--

(3)

To verify the correctness of the above formula .

Assume : l=10mm ;a=2mm ;b=0.2mm ;E=210GP;F=11N

Result:mm 95.013-=y A

The figure is the finite element result:

The deflection curve equation of Shrapnel is as following:

EI F y x 2d 2

-= (1)

The max deflection of the Shrapnel’s endpoint A :

EI F l y A 2d -= (2)

In which I stands for Z-axis moment of inertia of the Shrapnel’s Section,

1232

2222

2b y

y a dydZ dA I a a

b

b

===???-- (3)

b l y

Ea F A 32d 12-= (4)

弹片压力变形计算公式

The formula between Shrapnel stress and deflection The deflection curve equation of Shrapnel is as following: ()x l EI F y x --=362 (1) The max deflection of the Shrapnel ’s endpoint A : EI F l y A 33-= (2) In which I stands for Z-axis moment of inertia of the Shrapnel ’s Section, 1232 2222 2b y y a dydZ dA I a a b b ===???-- (3) To verify the correctness of the above formula . Assume : l=10mm ;a=2mm ;b=0.2mm ;E=210GP;F=11N Result:mm 95.013-=y A The figure is the finite element result:

The deflection curve equation of Shrapnel is as following: EI F y x 2d 2 -= (1) The max deflection of the Shrapnel’s endpoint A : EI F l y A 2d -= (2) In which I stands for Z-axis moment of inertia of the Shrapnel’s Section, 1232 2222 2b y y a dydZ dA I a a b b ===???-- (3) b l y Ea F A 32d 12-= (4)

薄板件焊接变形计算公式

薄板件中焊接焊接焊接变形量大,容易变形 焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 为了给设计人员提供一定的参考,贴几个公式: 1、单V对接焊缝横向收缩近似值及公式: y = 1.01*e^(0.0464x) y=收缩近似值 e=2.718282 x=板厚 2、script id=text173432>双V对接焊缝横向收缩近似值及公式: y = 0.908*e^(0.0467x ) y=收缩近似值 e=2.718282 x=板厚

3、

5、

1、预热处理是为了防止裂纹,同时兼有一定改善接头性能的作用,但是预热也恶化劳动条件,延长生产周期,增加制造成本。过高预热温度反会使接头韧性下降。 预热温度确定取决于钢材的化学成分、焊件结构形状、约束度、环境温度和焊后热处理等。随着钢材碳当量、板厚、结构约束度增大和环境温度下降,焊前预热温度也需相应提高。焊后进行热处理的可以不预热或降低预热温度。 Q345焊接的预热温度板厚≤40mm,可不预热; 板厚>40mm,预热温度≥100度(以上为理论参考) 2、焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。具体经验公式见附件! 3、低合金钢接头焊接区的清理是一项不可忽视的工作,是建立低氢环境的主要环节之一。 若直接在焊件切割边缘和切割坡口上的焊接接头,则焊前必须清理干净切割面得氧化皮盒熔化金属的毛刺,必要时可用砂轮打磨。 如果焊件表面未经喷丸、喷砂等预处理,则在焊缝两侧的内外表面必须用砂轮打磨至露出金属光泽。焊条电弧焊接头的打磨区要求每侧为20mm,埋弧焊为30mm。

温度、热量与热变形的关系及计算方法研究

温度、热量与热变形的关系及计算方法研究 摘要:通过分析热变形与热量之间的关系,提出利用平均线膨胀系数,将较复杂温度分布(如移动持续热源形成的温度分布) 情况下工件热变形量的计算简化为热量含量相同且温度均布状态下工件热变形量的计算方法,并给出了计算实例。 1 引言 在机械制造、仪器仪表等行业,由温度引起的热变形是影响机器、仪器设备精度的重要因素,热变形引起的误差通常可占总误差的1/3。在精密加工中,热变形引起的误差在加工总误差中所占比例可达4 0%~70%。为提高机器设备的工作精度,通常可采用温度控制和精度补偿两种途径来减小温度对精度的影响。温度控制是对关键热源部件或关键零件的温度波动范围进行精密控制(包括环境温度控制)。实现方法包括:①采用新型结构,如机床中的复合恒温构件等;②使用降温系统控制部件温升;③采用低膨胀系数材料等。这些方法都可程度不同地降低热变形程度,但成本较高。精度补偿方法是通过建立热变形数学模型,计算出热变形量与温度的关系,采用相应的软件补偿或硬件设备进行精度补偿。精度补偿法虽然成本较低,但要求建立精确且计算简便的数学模型。目前常见的数学模型大多是以温度作为主要计算因素,当形状规则的工件处于稳定、均匀的温度场中时,热变形数学模型的计算简便性可得到较好保证,但对于处于移动持续热源温度

场中的工件,其温度分布函数的计算将变得相当复杂,甚至无法得出解析解,只能采用逼近的近似数值解法。例如:对精密丝杠进行磨削加工时,磨削热引起的丝杠热变形会导致丝杠螺距误差。在计算丝杠热变形量时,首先必须建立砂轮磨削热产生的移动持续热源在丝杠上形成的温度分布数学模型。再如:车削加工中产生的切削热形成一持续热源,使车刀产生较大热膨胀量(可达0.1mm),严重影响加工精度。计算车刀的热变形量时,首先需要建立持续热源在车刀刀杆中的温度分布模型,这就增加了计算的复杂性。 图1 双原子模型示意图 本文从温度、热量和热变形的定义出发,分析了热量与热变形的关系。利用该关系,可简化实际工程应用中的热变形数学模型,减小运算工作量。 2 热变形原理及计算公式 热变形原理相当复杂,目前只能在微观上给予定性解释。固体材料的热膨胀本质上可归结为点阵结构中各点平均距离随温度的升高 而增大。德拜(Debye)理论认为,各原子间的热振动相互牵连制约,随着温度的升高,各质点的热振动加剧,质点间的距离增大,在宏观上表现为晶体膨胀现象。用图1所示双原子模型可解释如下:在温度T0时,原子1与原子2的间距为r0,当温度升高时,原子热运动加剧,原子间势能增加,两原子间势能U(r)增大,原子间距r=r0+x0。将U(r)

焊接收缩量计算

焊接收缩量计算 焊接变形收缩是复杂的,计算公式也是近似的。 对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 除其它因素,变形大小与焊缝的充填金属量、输入热量成正比。所以同一板厚的对接焊缝横向收缩大小依次为: 单V,x,单U,双U。多道焊时,每道焊缝所产生的横向收缩量逐层递减。 T形接头、搭接接头的横向收缩量,随焊角高K的增加而增大,随板厚s增加而降低。单V对接焊缝横向收缩近似值及公式: y = 1.01*e^:0.0464x: y,收缩近似值 e,2.718282 x, 板厚 双V对接焊缝横向收缩近似值及公式: y = 0.908*e^:0.0467x : y,收缩近似值 e,2.718282 x, 板厚

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 财务管理工作总结 [财务管理工作总结]2009年上半年,我们驻厂财会组在公司计财部的正确领导下,在厂各部门的大力配合下,全组人员尽“参与、监督、服务”职能,以实现企业生产经营目标为核心,以成本管理为重点,全面落实预算管理,加强会计基础工作,充分发挥财务管理在企业管理中的核心作用,较好地完成了各项工作任务,财务管理水平有了大幅度的提高,财务管理工作总结。现将二00九年上半年财务工作开 展情况汇报如下: 一、主要指标完成情况: 1、产量90万吨,实现利润1000万元 ,按外销口径, 2、工序成本降低任务: 上半年工序成本累计超支1120万元,,受产量影响,。 二、开展以下几方面工作: 1、加强思想政治学习,用学习指导工作 2009年是转变之年,财务的工作重心由核算向管理转变,全面参与生产经营决策。对财会组来说,工作重心从确认、核算、报表向预测、控制、分析等管理职能转变,我们就要不断的加强政治学习,用学习指导工作,因此我们组织全组认真学习“十七大”、学习2009年马总的《财务报告》,在学习实践科学发展观活动中,反思过去,制定了2009年工作目标,使我们工作明确了方向,心里也就有了底,干 起活来也就随心应手。 5

工程力学习题库-弯曲变形

第8章 弯曲变形 本章要点 【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。 剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。 【公式】 1. 弯曲正应力 变形几何关系:y ερ = 物理关系:E y σρ = 静力关系:0N A F dA σ==?,0y A M z dA σ==?,2z z A A EI E M y dA y dA σρ ρ == =?? 中性层曲率: 1 M EI ρ = 弯曲正应力应力:,M y I σ= ,max max z M W σ= 弯曲变形的正应力强度条件:[]max max z M W σσ=≤ 2. 弯曲切应力 矩形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F bh F S S 2323max ==τ 工字形梁弯曲切应力:d I S F y z z S ??=* )(τ,A F dh F S S ==max τ 圆形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F S 34max =τ 弯曲切应力强度条件:[]ττ≤max

3. 梁的弯曲变形 梁的挠曲线近似微分方程:() ''EIw M x =- 梁的转角方程:1()dw M x dx C dx EI θ= =-+? 梁的挠度方程:12()Z M x w dx dx C x C EI ??=-++ ??? ?? 练习题 一. 单选题 1、 建立平面弯曲正应力公式z I My /=σ,需要考虑的关系有( )。查看答案 A 、平衡关系,物理关系,变形几何关系 B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系 D 、平衡关系, 物理关系,静力关系; 2、 利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常 数。查看答案 A 、平衡条件 B 、边界条件 C 、连续性条件 D 、光滑性条件 3、 在图1悬臂梁的AC 段上,各个截面上的( )。 A .剪力相同,弯矩不同 B .剪力不同,弯矩相同 C .剪力和弯矩均相同 D .剪力和弯矩均不同 图1 图2 4、 图2悬臂梁受力,其中( )。

电功率的计算公式的变形

电功率的计算公式的变形 解读电功率的计算公式: 电功率的四个表达式:(1)定义式:P=W/t。(2)反映电学特点的普适式P=UI。 与欧姆定律结合后得到的(3)式P=I2R。(4)式P=U2/R。 电功率是反映电能消耗快慢的物理量,定义为1秒钟内消耗电能的多少,因此,用所消耗的电能除以消耗这些电能所用的时间,就得到定义式P=W/t。 经实验研究证明,电功率等于导体两端电压与通过导体电流的乘积,即P=UI。电压和电流是电路中最重要的物理量。有电压才可能有电流。电能是通过电荷有规律的运动转化成其它形式的能量的,电荷有规律的运动就形成电流。没有电流就不会消耗电能,当然也就不会有电能转化为其它形式的能量。所以,P=UI广泛应用于电功率的计算。 与欧姆定律结合得到的(3)式P=I2R、(4)式P=U2/R适用于纯电阻电路。因为,欧姆定律反映的是导体中的电流与导体两端电压和导体电阻之间的关系,是在纯电阻电路中得出的,所以,它只适用于纯电阻电路。如:白炽灯、电阻、电热器等,不适用于含电动机的电路和输变电电路的计算。由于串联电路中电流处处相等,所以在串联电路中,使用(3)式P=I2R分析和计算方便。在并联电路中,各支路两端电压相等,所以用(4)式P=U2/R分析和计算方便。通过对近几年的中考命题分析,除了含电动机电路的电功率计算外,其它全是纯电阻电路。在纯电阻电路中,四个计算公式通用,可根据具体情况选择方便的公式进行运用。 巧用电阻不变求实际功率: 由用电器铭牌上的U额、P额,求出电阻。即由P= ,解出R=;由于电 阻是不变的物理量,当求不同电压的实际功率时,可依据求得。 例1:如图所示,电源电压不变,灯L1标有“6V 3W”字样。当S、S1均闭合时,L1 正常发光,的示数是____V。若闭合S、断开S1,的示数是0.3A,则L2的实际功率为__W。 解析:当S、S1均闭合时,L2被短路,此时L1正常发光,所以电压表示数等于6V。 当闭合S,断开S1 时,灯L1、L2串联。灯L1电阻。灯L1

弯曲时的内力和应力

第七章 弯曲时的内力和应力※ 说明: 本文档仅限练习。与考试无任何联系。 如答案有误请自行修改。如仍有疑问咨询相关教师。Q群125207914 一、填空题: 1、梁产生弯曲变形时的受力特点,是梁在过轴线的平面内受到外力偶的作用或者受到和梁轴线相___________的外力的作用。 3、矩形截面梁弯曲时,其横截面上的剪力作用线必然________于外力并通过截面________。 5、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对________力矩的代数和。 7、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为______。 9、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q,梁长为L,由此可知在距固定端L/2处的横截面上的剪力为_________,固定端处横截面上的弯矩为__________。 10、在梁的集中力偶左、右两侧无限接近的横截面上,剪力相等,而弯矩则发生_______,_________值等于梁上集中力偶的力偶矩。 11、剪力图和弯矩图是通过________和___________的函数图象表示的。 18、在梁的某一段内,若无分布载荷q(X)的作用,则剪力图是 __________于X轴的直线。 19、在梁的弯矩图上,某一横截面上的弯矩有极值(极大值或极小值),该极值必发生在对应于剪力___________的横截面上。 21、梁在发生弯曲变形的同时伴有剪切变形,这种平面弯曲称为 __________弯曲。 24、梁在弯曲时的中性轴,就是梁的___________与横截面的交线。28、梁弯曲时,横截面中性轴上各点的正应力等于零,而距中性轴 ________处的各正应力为最大。 29、梁弯曲变形后,以中性层为界,靠__________边的一侧纵向纤维受压力作用,而靠__________边的一侧纵向纤维受拉应力作用。 31、等截面梁内的最大正应力总是出现在最大___________所在的横截面上。 32、在平面弯曲的情况下,梁变形后的轴线将成为一条连续而光滑的平面曲线,此曲线被称为_______。 33、梁在平面弯曲变形时的转角,实际上是指梁的横截面绕其________

焊接变形计算公式

焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 为了给设计人员提供一定的参考,贴几个公式: 1、单V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值 e= x=板厚 2、script id=text173432>双V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值

e= x=板厚 3、 4、

5、 6、

1、预热处理是为了防止裂纹,同时兼有一定改善接头性能的作用,但是预热也恶化劳动条件,延长生产周期,增加制造成本。过高预热温度反会使接头韧性下降。 预热温度确定取决于钢材的化学成分、焊件结构形状、约束度、环境温度和焊后热处理等。随着钢材碳当量、板厚、结构约束度增大和环境温度下降,焊前预热温度也需相应提高。焊后进行热处理的可以不预热或降低预热温度。 Q345焊接的预热温度板厚≤40mm,可不预热; 板厚>40mm,预热温度≥100度(以上为理论参考)2、焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。具体经验公式见附件! 3、低合金钢接头焊接区的清理是一项不可忽视的工作,是建立低氢环境的主要环节之一。 若直接在焊件切割边缘和切割坡口上的焊接接头,则焊前必须清理干净切割面得氧化皮盒熔化金属的毛刺,必要时可用砂轮打磨。

实腹钢梁的焊接变形计算

实腹钢梁的焊接变形计算 摘要:本文采用英国钢结构细部设计手册中的方法,对某实际工程汽机房屋面实腹钢梁拼合截面中的焊缝变形进行了详细计算。由此得知焊接变形是可以预测的,并可以事先考虑其影响。 关键词:实腹钢梁,焊缝,焊接变形 1.前言 现在越来越多的中国设计公司在按不同的设计标准承接着世界各地钢构件的设计。设计出来的钢构件需要满足世界各国的标准,这就需要设计公司要熟练掌握相应的国外的设计标准,才能在国际化分工中站在有利的位置上。 在钢结构工程领域,设计者、细部设计者和制造商都允许偏差的存在。这是因为即使按照非常高的标准进行制造,也无法保证每一个尺寸的绝对精确。恰恰在这里,一定的允许偏差却是必需的,按照惯例,允许偏差值应在图中标注。在钢结构工程中,考虑到许多构件的尺寸很大以及轧制型钢、焊接型钢产品带来的偏差,要取得很小的偏差所付出的代价非常大。因此从经济角度来考虑其习惯做法是按照在一般工厂环境下可以做得到的合理的标准制作构件并进行节点设计,使其在现场装配时能够吸收小的偏差。 现在许多工厂已经安装了按照长度进行号料和切割构件、钻孔及将板切削成形的数控(NC)设备。数控设备在很大程度上取代了用来进行手工预加工(如号料、切割和钻孔)节点安装的(或其他的)模板。数控设备的使用极大地提高了精度,不需要进行修整和扩孔调整就能取得较好的允许偏差,然而,引起尺寸偏差的主要因素是熔化的焊接金属冷却收缩引起的焊接变形。引起的总变形与焊缝尺寸、焊接过程中输入的热量、焊道的数量、受约束的程度以及材料厚度有关。 2.工程实例简介 汽机房屋面是火力发电厂主厂房的一个重要组成部分。汽机房屋面一般采用T型钢屋架和实腹钢梁两种。某工程采用实腹钢梁形式,由于实腹钢梁的跨度达到30.0m,需要的截面高度达到1.5m,而热轧H型钢在市场上能买到的最大截面为HN700X300X13X24,长度仅为12m,这显然是不能满足本工程的实际需求。因此本工程采用焊接H型钢组合截面,其截面采用BH1500X500X20X30。材料采用Q345B,焊条采用E50型。 3.焊接变形计算表格 图1 介绍了焊接变形的各种形式,以及如何通过采取临时约束进行预先调整或用增加额外的初始长度的办法减小焊接变形的影响。这些措施通常是在工

弯曲变形的强度条件和强度计算

弯曲变形的强度条件和强度计算 当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。 图1 平面弯曲 一、梁弯曲时的内力——剪力和弯矩 梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。 为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。 图2 剪力的正负 图3 弯矩的正负 例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。

解:( 1 )求支反力 = ∑C M:0 3 10 12 6= ? - - ? Ay F,kN 7 = Ay F = ∑Y:0 10= - +By Ay F F,kN 3 = By F (2)列内力方程 剪力: ? ? ? < < - < < = 6 3 kN 3 3 kN 7 ) ( S x x x F 弯矩: ? ? ? ≤ ≤ ≤ ≤ ? - ? - = 6 3 3 m kN ) 6(3 m kN 12 7 ) ( x x x x x M (3)作剪力图和弯矩图 二、梁弯曲时的正应力 在一般情况下,梁的横截面上既有弯矩又有剪力。若梁上只有弯矩没有剪力,称为纯弯曲。本讲主要讨论纯弯曲时横截面上的应力——正应力。梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。 图4 梁弯曲时的正应力分布图 即有y I x M z ) ( = σ(1)

05、基本知识 怎样推导梁的应力公式、变形公式(供参考)

05、基本知识 怎样推导梁的应力公式、变形公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@https://www.wendangku.net/doc/1b6536337.html, ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。回信请注明班级和学号的后面三位数。 1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究梁的应力公式和变形公式。 ................................................... 2 3 1.1梁的纯弯曲(纯弯曲:横截面上无剪力的粱段)应力公式推导 ................................. 2 4 1.2 梁弯曲的变形公式推导(仅研究纯弯曲) .................................................................... 5 5 1.3 弯曲应力公式和变形公式的简要推导 ............................................................................ 6 6 1.4 梁弯曲的正应力强度条件和刚度条件的建立 ................................................................ 7 7 2.1 梁剪切的应力公式推导 .................................................................................................... 8 8 2.2 梁弯曲的剪应力强度条件的建立 .................................................................................... 8 9 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9) 1 * 问题的提出 在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。 强度条件就是工作应力不超过许用应力,即,[]σσ许用应力工作应力≤、[]ττ≤; 刚度条件就是工作变形不超过许用变形,即,[]y y 许用变形工作变形≤、[]θθ≤。 如,梁 弯曲强度条件:[]σσ≤=W M max max ;剪切强度条件:[]τρτρ≤?= b I S F z Q * max ,max 刚度条件:挠度 ?? ? ???≤l y l y max ;转角[]??≤max 这里带方括号的,是材料的某种许用值。由材料实验确定出破坏值,再除以安全系数, 即得。 显然,不等式左侧的工作应力和工作变形计算公式,是十分重要的。如果把各种应力公式和变形公式的来历搞明白,对于如何进行强度分析和刚度分析(这是材料力学的主要内容)就会得心应手。 杆件的基本变形一共四种:轴向拉压、扭转、剪切和弯曲变形。它们分别在轴向拉压杆、扭转轴、梁的各章讲授。 其对应的公式各异,但是,推导这些公式的方法却是一样的,都要从静力、几何、物理三个方面考虑,从而导出相应的《应力公式》,在导出应力公式之后,就可以十分方便地获得《变形公式》。

材料力学的基本计算公式-材料力学弯曲公式

材料力学得基本计算公式外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力与荷载集度之间得关系式 2.轴向拉压杆横截面上正应力得计算公式 (杆件横截面 轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上得正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线得方位角为正) 4.纵向变形与横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变与横向线应变 6.泊松比 7.胡克定律 8.受多个力作用得杆件纵向变形计算公式? 9.承受轴向分布力或变截面得杆件,纵向变形计算公式 10.轴向拉压杆得强度计算公式 11.许用应力, 脆性材料,塑性材料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g )

15.拉压弹性模量E、泊松比与切变模量G之间关系式 16.圆截面对圆心得极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭矩 T,所求点到圆心距离r ) 18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数 ,(a)实心圆? (b)空心圆 20.薄壁圆管(壁厚δ≤R0/10 ,R0为圆管得平 均半径)扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GHp得 关系式 22.同一材料制成得圆轴各段内得扭矩不同或各段得 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴得刚度条件? 或 26.受内压圆筒形薄壁容器横截面与纵截面上得应力 计算公式, 27.平面应力状态下斜截面应力得一般公式 , 28.平面应力状态得三个主应力 , , 29.主平面方位得计算公式

材料力学的基本计算公式

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件横 截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比 7.胡克定律

8.受多个力作用的杆件纵向变形计算公式? 9.承受轴向分布力或变截面的杆件,纵向变形计算公式 10.轴向拉压杆的强度计算公式 11.许用应力,脆性材料,塑性材 料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g ) 15.拉压弹性模量E、泊松比和切变模量G之间关系 式 16.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭矩 T,所求点到圆心距离r)

18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数,(a)实心圆 (b)空心圆 20.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半 径)扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关 系式 22.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴的刚度条件? 或 26.受内压圆筒形薄壁容器横截面和纵截面上的应力 计算公式,

27.平面应力状态下斜截面应力的一般公式 , 28.平面应力状态的三个主应力 , , 29.主平面方位的计算公式 30.面内最大切应力 31.受扭圆轴表面某点的三个主应力,, 32.三向应力状态最大与最小正应力 , 33.三向应力状态最大切应力 34.广义胡克定律

弯曲的内力与强度计算 习题

弯曲的内力与强度计算 一、判断题 1.如图1示截面上,弯矩M和剪力Q的符号是:M为正,Q为负。() 图1 2.取不同的坐标系时,弯曲内力的符号情况是M不同,Q相同。() 3、在集中力作用的截面处,Q图有突变,M连续但不光滑。() 4、梁在集中力偶作用截面处,M图有突变,Q图无变化。() 5.梁在某截面处,若剪力Q=0,则该截面的M值一定为零值。() 6.在梁的某一段上,若无荷载作用,则该梁段上的剪力为常数。() 7.梁的内力图通常与横截面面积有关。() 8.应用理论力学中的外力定理,将梁的横向集中力左右平移时,梁的Q图,M图都不变。() 9.将梁上集中力偶左右平移时,梁的Q图不变,M图变化。() 10.图2所示简支梁跨中截面上的内力为M≠0,Q=0。() 图 2 图 3 11.梁的剪力图如图3所示,则梁的BC段有均布荷载,AB段没有。() 12.上题中,作用于B处的集中力大小为6KN,方向向上。() 13.右端固定的悬臂梁,长为4m,M图如图示,则在x=2m处,既有集中力又有集中力偶。()

图 4 图 5 14.上题中,作用在x=2m处的集中力偶大小为6KN·m,转向为顺时针。() 15.图5所示梁中,AB跨间剪力为零。() 16.中性轴是中性层与横截面的交线。() 17.梁任意截面上的剪力,在数值上等于截面一侧所有外力的代数和。() 18.弯矩图表示梁的各横截面上弯矩沿轴线变化的情况,是分析梁的危险截面的依据之一。() 19.梁上某段无荷载作用,即q=0,此段剪力图为平行x的直线;弯矩图也为平行x轴的直线。 () 20.梁上某段有均布荷载作用,即q=常数,故剪力图为斜直线;弯矩图为二次抛物线。() 21.极值弯矩一定是梁上最大的弯矩。() 22.最大弯矩Mmax只可能发生在集中力F作用处,因此只需校核此截面强度是否满足梁的强度条件。() 23.截面积相等,抗弯截面模量必相等,截面积不等,抗弯截面模量必不相等。() 24.大多数梁都只进行弯曲正应力强度核算,而不作弯曲剪应力核算,这是因为它们横截面上只有正应力存在。() 25.对弯曲变形梁,最大挠度发生处必定是最大转角发生处。() 26.两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断: (1)最大正应力相同;() (2)最大挠度值相同;() (3)最大转角值不同;() (4)最大剪应力值不同;() (5)强度相同。() 27.两根材料、截面形状及尺寸均不同的等跨简支梁,受相同的荷载作用,则两梁的反力与内力相同。()

焊接公式及实验

1、碳当量 国际焊接学会:CE(IIW)=C+Mn/6+(C叶Mo+V)/5+(Ni+Cu)/15 <0.4 淬硬倾向不大 日本焊接学会:Ceq(JIS)=C+Mn /6+Si/24+Ni/40+Cr/5+Mo/4+V/14 Ceq《0.46%,焊接性优良;0.46-0.52%淬硬倾向逐渐明显,焊接时需要采取合适的措施;Ceq>0.52%时,淬硬倾向明显,属于较难焊接材料。 淬硬倾向较大的钢,焊后在空气中冷却时,焊缝易出现淬硬的马氏体组织,低温焊接或焊接刚性较大时易出现冷裂纹,焊接时需要预热,预热是防止冷裂纹和再热裂纹的有效措施。与人是防止冷裂纹和再热裂纹的有效措施。温度太低,焊缝会开裂,太高又会降低韧性,恶化劳动条件,所以确定合适的预热温度成为很重要的问题。 Rb=500MPa,Ceq=0.46 不预热 Rb=600MPa, Ceq=0.52 预热75o C Rb=700MPa, Ceq=0.52 预热75 o C Rb=800MPa, Ceq=0.62 预热150 o C 新日铁: CE= C+ A(C){Si/ 24+ Mil/ 16+ Cu/15 + Ni/ 2 0+ (Cr+ Mo+ V+ Nb)/5+ 5B} (%) A(C)= 0 75+ 0. 25tgh[20(C- 0. 12)] CE IIW公式对碳钢和碳锰钢更合适,但不适用于低碳低合金钢;Pcm适于低碳低合金钢。CEN在图表法中被用作评价钢冷裂纹敏感性的尺度(当碳增加时,CEN接近CE IIW,而当碳降低时他又接近Pcm)。——用图表法确定钢焊接时的预热温度上 2、冷裂纹敏感指数:Pcm Pcm=C+Si/30+(M n+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B =C +男+勢+芻十黑+富+寧+焉+ 23B-使用化学成分范围(质量分数): C=0.07-0.22%,Si=0-0.6%,M n=0.4-1.4%,Cu=0-0.5%,Ni=0-1.2%,Cr=0-1.2%,Mo=0-0.7%,V =0-0.12%,Nb=0-0.04%,Ti=0-0.05%,B=0-0.005%. 3、冷裂纹敏感性Pw Pw=Pcm+[H]/60+h/600 或Pw=Pcm+[H]/60+R/40000 [H]:熔敷金属中扩散氢含量(ml/100g) R:焊缝拉伸拘束度 h:板厚(mm) 当Pw>0时,即有产生裂纹的可能性。 适用条件:扩散氢含量[H]=(1-5)ml/100g,h=19-50mm,线能量为17-30kJ/cm. 4、预热温度:To To=1440Pw-392

角焊缝计算

角焊缝及其计算 型式及分类 截面形式:普通型(等边凸形)、平坦型(不等边凹形)、凹面形 两焊脚边夹角:直角角焊缝、斜角角焊缝、焊缝长度与作用方向 1.侧面角焊缝(侧缝) 侧缝主要承受剪力,应力状态叫单纯,在弹性阶段,剪应力沿焊缝长度方向分布不均匀,两端大中间小,且焊缝越长越不均匀,但侧缝塑性好。 2.正面角焊缝(端缝) 端缝连接中传力线有较大的弯折,应力状态较复杂,正面角焊缝沿焊缝长度方向分布比较均匀,但焊脚及有效厚度面上存在严重的应力集中现象,所以其破坏属于正应力和剪应力的综合破坏,但正面角焊缝的刚度较大,变形较小,塑性较差,性质较脆。 3.斜向角焊缝 斜向角焊缝受力情况较复杂,其性能介于侧缝和端缝之间,常用于杆件倾斜相支的情况,也用在板件较宽,内力较大连接中。 4.周围角焊缝 主要为了增加焊缝的长度和使焊缝遍及板件全宽,而把板件交搭处的所有交搭线尽可能多的加以焊接,成为开口或封闭的周围角焊缝。构造及要求。 4.1.最小焊脚尺寸 4.2.最大焊脚尺寸贴边处满足

4.3.角焊缝最小长度 4.4.侧面角焊缝最大计算长度 4.5.板件端部仅有两条角焊缝时每条侧面角焊缝的计算长度 4.6.搭接连接中搭接长度应满足而且不宜采用一条正面角焊缝来传力。 4.7.在次要构件和焊缝连接中,允许采用断续角焊缝,各段间距满足以保证整体受力。 角焊缝连接计算 基本计算公式 轴心作用下的角焊缝计算 轴心作用下角钢的角焊缝计算 弯矩,剪力和轴心力共同作用下角焊缝计算(T形接头) 弯矩,剪力和轴心力共同作用下角焊缝计算(搭接形接头) 1. 端缝、侧缝在轴向力作用下的计算: (1)端缝 ——垂直于焊缝长度方向的应力; he ——角焊缝有效厚度; lw ——角焊缝计算长度,每条角焊缝取实际长度减10mm(每端减5mm);ffw ——角焊缝强度设计值;bf ——系数,对承受静力荷载和间接承受动力荷载的结构,bf =1.22,直接承受动力荷载bf =1.0。 (2)侧缝

公式及变形公式整理

公式及变形公式整理 路程=速度×时间s=vt 速度=路程÷时间t=s÷v 时间=路程÷速度t=s÷v 总价=单价×数量c=a×x 单价=总价÷数量a=c÷x 数量=总价÷单价x=c÷a 正方形的面积=边长×边长S=a2 正方形的周长=边长×4 C=4a 正方形的边长=周长÷4 a=C÷4 长方形的面积=长×宽S=ab 长方形的长=面积÷宽a=S÷b 长方形的宽=面积÷长b=S÷a 工作总量=工作效率×工作时间c=at 工作效率=工作总量÷工作时间a=c÷t 工作时间安=工作总量÷工作效率t=c÷a

《运算率》课前小研究1 请同学们认真自学课本P17——18页内容,认真完成下面的小研究。 1、举例说明什么是加法结合律: 2、举例说明什么是加法交换律: 3、我会运用:(用简便方法计算下面各题) 1234+700+300 287+36+13 用到的运算定律:用到的运算定律:

运算率整理 (1)加法交换率: 交换两个加数的位置,和不变,这叫加法交换率。 用字母表示:a+b=b+a (2)加法结合律: 先把前两个数相加再加第三个数,或者先把后两个数相加再加第一个数,和不变,这叫加法结合律。 用字母表示:(a+b)+c=a+(b+c) (3)减法的性质: 一个数连续减去两个数就等于这个数减去后两个数的和。用字母表示:a-(b+c)=a-b-c 一个数减去两个数的差就等于这个数减去第一个数,再加上第二个数。 用字母表示:a-(b-c)=a-b+c (4)乘法交换率: 交换两个因数的位置,积不变,这叫乘法交换率。 用字母表示:a×b=b×a (5)乘法结合律: 先把前两个数相乘再乘第三个数,或者先把后两个数相乘再乘第一个数,积不变,这叫乘法结合律。 用字母表示:(a×b)×c=a×(b×c)

弯管力矩计算公式

第二节管材弯曲 一、材弯曲变形及最小弯曲半径 二、管材截面形状畸变及其防止 三、弯曲力矩的计算 管材弯曲工艺是随着汽车、摩托车、自行车、石油化工等行业的兴起而发展起来的,管材弯曲常用的方法按弯曲方式可分为绕弯、推弯、压弯和滚弯;按弯曲加热与否可分为冷弯和热弯;按弯曲时有无填料(或芯棒)又可分为有芯弯管和无芯弯管。 图6—19、图6—20、图6—21和图6—22分别为绕弯、推弯、压弯及滚弯装置的模具示意图。

图6—19在弯管机上有芯弯管 1—压块2—芯棒3—夹持块4—弯曲模胎5—防皱块6—管坯

图6—20 型模式冷推弯管装置 图6—21 V 形管件压弯模 1—压柱 2—导向套 3—管坯 4—弯曲型模 1—凸模 2—管坯 3—摆动凹模

图6—22三辊弯管原理 1—轴2、4、6—辊轮3—主动轴5—钢管 一、材弯曲变形及最小弯曲半径 管材弯曲时,变形区的外侧材料受切向拉伸而伸长,内侧材料受到切向压缩而缩短,由于切向应

力θσ及应变θε沿着管材断面的分布是连续的,可设想为与板材弯曲相似,外侧的拉伸区过渡到内侧的压缩区,在其交界处存在着中性层,为简化分析和计算,通常认为中性层与管材断面的中心层重合,它在断面中的位置可用曲率半径ρ表示(图6—23)。 管材的弯曲变形程度,取决于相对弯曲半径D R 和相对厚度D t (R 为管材断面中心层曲率半径,D 为管材外径,t 为管材壁厚)的数值大小,D R 和D t 值越小,表示弯曲变形程度越大(即D R 和D t 过小),弯曲中性层的外侧管壁会产生过度变薄,甚至导致破裂;最内侧管壁将增厚,甚至失稳起皱。同时,随着变形程度的增加,断面畸变(扁化)也愈加严重。因此,为保证管材的成形质量,必须控制变形程度在许可的范围内。管材弯曲的允许变形程度,称为弯曲成形极限。管材的弯曲成形极限不仅取决于材料的力学性能及弯曲方法,而且还应考虑管件的使用要求。 对于一般用途的弯曲件,只要求管材弯曲变形区外侧断面上离中性层最远的位置所产生的最大伸长应变m ax ε不致超过材料塑性所允许的极限值作为定义成形极限的条件。即以管件弯曲变形区外侧的外表层保证不裂的情况下,能弯成零件的内侧的极限弯曲半径min r ,作为管件弯曲的成形极限。min r 与材料力学性能、管件结构尺寸、弯曲加工方法等因素有关。

计算焊接强度

各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称

为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。 37 举例说明对接接头爱拉(压)时的静载强度计算。 全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。 受拉时的强度计算公式为 F σt=───≤〔σ′t 〕 Lδ1 F 受压时的强度计算公式为σα=───≤〔σ′α〕 Lδ1 式中F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm);

σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠ 〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α〕——焊缝受压时的许用应力(N/cm2) 计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400 σt=───=─────= 1136N/cm2<14200N/cm2 Lδ1 50×0.5 ∴该对接接头焊缝强度满足要求,结构工作安全。 38 举例说明对接接头受剪切时的静载强度计算。 受剪切时的强度计算公式为 Q τ= ───≤〔τ′〕 Lδ1 式中Q——接头所受的切力(N); L——焊缝长度(cm);

钢结构焊接变形

钢结构焊接变形的火焰校正方法 目前,钢结构已在厂房建筑中得到广泛的应用。而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。 在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。因此,火焰矫正要有丰富的实践经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。 1 钢结构焊接变形的种类与火焰矫正 钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面介绍解决不同部位的施工方法。 以下为火焰矫正时的加热温度(材质为低碳钢) 低温矫正500度~600度冷却方式:水 中温矫正600度~700度冷却方式:空气和水 高温矫正700度~800度冷却方式:空气 注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16Mn在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。 1.1翼缘板的角变形 矫正H型钢柱、梁、撑角变形。在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。 1.2柱、梁、撑的上拱与下挠及弯曲 一、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避免产生弯曲和扭曲变形,两条

相关文档