文档库 最新最全的文档下载
当前位置:文档库 › K0+132.5~195.5空心板梁满堂支架计算书终0

K0+132.5~195.5空心板梁满堂支架计算书终0

K0+132.5~195.5空心板梁满堂支架计算书终0
K0+132.5~195.5空心板梁满堂支架计算书终0

封家湾至太阳庙公路高边坡施工方案封家湾至太阳庙公路

K0+164.5中桥整体式预应力混凝土简支空心板满

堂支架设计验算书

编制:

审核:

复核:

盘县捷通公路工程建设有限公司

2017年4月

K0+164.5中桥整体式预应力混凝土简支空心板满堂支架设

计验算书

K0+164中桥为2*25m 整体式预应力现浇简支空心板梁桥,梁高1.3m ,桥面宽度:净11+2×0.5m (钢筋混凝土护栏),桥面全宽12.0m ;桥梁全长64.0m 。空心板梁采用C50混凝土,均采用满堂式扣件支架施工。

满堂支架的基础均在填方段上,为防止流水软化支架地基,浇筑20cm 厚C20砼作为封闭层,设置2%单向横坡,每5~8m 设横向涨缩缝,在桥中心设纵向涨缩缝。然后上部铺设10cm ×10cm 木方承托支架。支架最高10m ,采用Φ48mm ,壁厚3.5mm 钢管搭设,使用与立杆配套的横杆及立杆可调底座、立杆可调顶托,现浇箱梁腹板及底板中心位置纵距、横距采用60cm ×60cm 的布置形式,现浇箱梁跨中位置支架步距采用120cm 的布置形式,现浇板梁墩顶位置支架步距采用60cm 的布置形式,立杆顶设12cm ×12cm 方木或钢管调整高度,间距为60cm 。 1、荷载计算

根据本桥现浇空心板梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q 1—— 空心板梁自重荷载,新浇混凝土密度取2500kg/m 3。

根据现浇空心板梁结构特点,我们取D-D 截面、E -E 截面两个代表截面进行空心板梁自重计算,并对两个代表截面下的支架体系进行检算,首先分别进行自重计算。

① D-D 截面处q 1计算(尺寸见后附图)

根据横断面图,则:

q 1 =B W =B A c ?γ=(25*(10.8*1.3+2*(0.45+0.25)

*0.6*0.5+0.1*0.1*0.5*4*10-0.55*0.55*10)/10.8=26.93Kpa

注:B —箱梁底宽,取10.8m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ② E -E 截面处q 1计算(尺寸见后附图) 根据横断面图,则: q 1=

B W =B

A c ?γ=(25*(10.8*1.3+2*(0.45+0.25)*0.6*0.5+0.1*0.1*0.5*2*10+0.17*0.17*0.5*2*10-0.83*0.75*10)/10.8=19.96Kpa

注:B —箱梁底宽,取10.8m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ⑵ q 2—— 梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取

q 2=1.0kPa (偏于安全)。

⑵ q 3—— 施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条时取2.5kPa (每250公斤的力作用在每平方米上);当计算肋条下的梁时取1.5kPa ;当计算支架立柱及其他承载构件时取1.0kPa 。

⑷ q 4—— 振捣混凝土产生的荷载,对底板取2.0kPa ,对侧板取4.0kPa 。 ⑸ q 5—— 新浇混凝土对侧模的压力。

根据规范规定,新浇混凝土对模板的侧压力,当采用内部振捣器时按下列两式计算,并取两式中较小值。

?

?

????=?=v t F H

F c c 21022.0ββγγ γc :新浇混凝土的重力密度(k N/m3),取值25 k N/m3;

H :混凝土侧压力计算位置至新浇混凝土顶面时的高度(m ),取1.3m

t 0:新浇混凝土的初凝时间(h ),可按实测确定。取4h 。 T :混凝土的温度(°),取28℃。

β1:外加剂影响修正系数,掺具有缓凝作用的外加剂时取1.2。 β2:混凝土坍落度影响修正系数, 50~90mm ,取1.0。 ν:混凝土的浇筑速度,取1.2m/h 。 F=25*1.3=32.5Kpa

F=0.22*25*4*1.2*1*1.095=28.9Kpa

为保证模板的稳定及变形能力,对新浇混凝土对模板的最大侧压力值取F=40kPa 偏于安全。

⑹ q 6—— 倾倒混凝土产生的水平荷载,取2.0kPa 。 ⑺ q 7—— 支架自重,取4kPa 。

2、结构检算

2.1扣件式钢管支架立杆强度及稳定性验算

扣件式钢管脚手架与支架一样,同属于杆式结构,以立杆承受竖向荷载作用为主,

但扣件式由于立杆和横杆间为十字扣件相接,对立杆受压后的侧向变形具有较强的约束能力。

本工程现浇箱梁支架立杆强度及稳定性验算,根据《建筑施工扣件式钢管脚手架安全技术规范》有关模板支架立杆的强度及稳定性计算公式进行分析计算(钢管规格为φ48×3.5mm)。

⑴D -D 截面处

墩顶4.0m 范围内,扣件式钢管支架体系采用60cm ×60cm ×60cm 的布置结构,如下图2.1-1。

图2.1-1

①、立杆强度验算

根据立杆的设计允许荷载,当横杆步距为60cm 时,立杆可承受的最大允许竖直荷载为[N ]=40kN (参见公路施工手册-桥涵)。

立杆实际承受的荷载为:N=1.2(N G1K +N G2K )+0.85×1.4ΣN QK (组合风荷载时)

N G1K —支架结构自重标准值产生的轴向力; N G2K —构配件自重标准值产生的轴向力 ΣN QK —施工荷载标准值;

于是,有:N G1K =0.6×0.6×q 1=0.6×0.6×26.93=9.49KN

N G2K =0.6×0.6×q 7=0.6×0.6×4.0=1.44KN ΣN QK =0.6×0.6×(q 2+q 3+q 4)=0.36×(1.0+1.0+2.0)=1.44KN

则:N=1.2(N G1K +N G2K )+0.85×1.4ΣN QK =1.2×(9.49+1.44)+0.85×1.4×1.44=15.07KN <[N ]=40KN ,强度满足要求。

图2.1-1 脚手架60cm ×60cm ×60cm 布置图

②、立杆稳定性验算

根据《建筑施工扣件式钢管脚手架安全技术规范》有关模板支架立杆的稳定性计算公式:N/ΦA+M

W

/W≤f

N—钢管所受的垂直荷载,N=1.2(N

G1K +N

G2K

)+0.85×1.4ΣN

QK

(组合风荷载时),

同前计算所得:N=15.07 KN。

f—钢材的抗压强度设计值,f=205N/mm2参考《建筑施工扣件式钢管脚手架安全技术规范》表5.1.6得。

A—支架立杆的截面积A=489mm2(取φ48mm×3.5mm钢管的截面积)。

Φ—轴心受压杆件的稳定系数,根据长细比λ查表即可求得Φ。

i—截面的回转半径,查《建筑施工扣件式钢管脚手架安全技术规范》附录B得i =15.8㎜。

长细比λ=L/i。

L—水平步距,L=0.6m。

于是,λ=L/i=38,参照《建筑施工扣件式钢管脚手架安全技术规范》查附录C 得Φ=0.893。

M

W

—计算立杆段有风荷载设计值产生的弯距;

M W =0.85×1.4×W

K

×La×h2/10

W K =0.7u

z

×u

s

×w

u z —风压高度变化系数,参考〈〈建筑结构荷载规范〉〉表7.2.1得u

z

=1.13

u s —风荷载脚手架体型系数,查〈〈建筑结构荷载规范〉〉表7.3.1第36b项得:u

s

=1.3

w 0—基本风压,查〈〈建筑结构荷载规范〉〉附表D.4 w

=0.35KN/m2

故:W

K =0.7u

z

×u

s

×w

=0.7×1.13×1.3×0.35=0.36KN/ m2

La—立杆纵距0.6m;

h—立杆步距0.6m, M

W =0.85×1.4×W

K

×La×h2/10=0.009

W—截面模量查表〈〈建筑施工扣件式脚手架安全技术规范〉〉附表B得:W=5.08×103mm3

则,N/ΦA+M

W

/W=15.07×103/(0.893×489)+0.009×106/(5.08×103)=36.28N/mm2≤f=205N/mm2

计算结果说明支架是安全稳定的。

⑶ E -E 截面处

25m 跨中3m ~10m 范围内,扣件式钢管支架体系采用60cm ×60cm ×120cm 的布置结构,如下图。

支架E-E断面图

①、立杆强度验算

根据立杆的设计允许荷载,当横杆步距为120cm 时,立杆可承受的最大允许竖直荷载为[N ]=30kN (参见公路施工手册-桥涵)。

立杆实际承受的荷载为:N=1.2(N G1K +N G2K )。+0.85×1.4ΣN QK (组合风荷载时)

N G1K —支架结构自重标准值产生的轴向力; N G2K —构配件自重标准值产生的轴向力 ΣN QK —施工荷载标准值;

于是,有:N G1K =0.6×0.6×q 1=0.6×0.6×19.96=7.19KN

N G2K =0.6×0.6×q 7=0.6×0.6×4.0=1.44KN

ΣN QK =0.6×0.6×(q 2+q 3+q 4)=0.36×(1.0+2.5+2.0)=1.62KN

则:N=1.2(N G1K +N G2K )+0.85×1.4ΣN QK =1.2×(7.19+1.44)+0.85×1.4×1.62=12.28KN <[N ]=30KN ,

强度满足要求。 ②、立杆稳定性验算

根据《建筑施工扣件式钢管脚手架安全技术规范》有关模板支架立杆的稳定性计算公式:N/ΦA+M W /W ≤f

图2.1-2 脚手架60cm ×60cm ×120cm 布置图

N—钢管所受的垂直荷载,N=1.2(N

G1K +N

G2K

)+0.85×1.4ΣN

QK

(组合风荷载时),

同前计算所得:N=12.28KN

f—钢材的抗压强度设计值,f=205N/mm2参考《建筑施工扣件式钢管脚手架安全技术规范》表5.1.6得。

A—支架立杆的截面积A=489mm2(取φ48mm×3.5mm钢管的截面积)

Φ—轴心受压杆件的稳定系数,根据长细比λ查表即可求得Φ。

i—截面的回转半径,查《建筑施工扣件式钢管脚手架安全技术规范》附录B 得i=15.8㎜。

长细比λ=L/i。

L—水平步距,L=1.2m。

于是,λ=L/i=76,参照《建筑施工扣件式钢管脚手架安全技术规范》查附录C 得Φ=0.744。

M

W

—计算立杆段有风荷载设计值产生的弯距;

M W =0.85×1.4×W

K

×La×h2/10

W K =0.7u

z

×u

s

×w

u z —风压高度变化系数,参考〈〈建筑结构荷载规范〉〉表7.2.1得u

z

=1.13

u s —风荷载脚手架体型系数,查〈〈建筑结构荷载规范〉〉表7.3.1第36b项得:u

s

=1.3

w 0—基本风压,查〈〈建筑结构荷载规范〉〉附表D.4 w

=0.35KN/m2

故:W

K =0.7u

z

×u

s

×w

=0.7×1.13×1.3×0.35=0.36KN/ m2

La—立杆纵距0.6m;

h—立杆步距1.2m M

W =0.85×1.4×W

K

×La×h2/10=0.037

W—截面模量查表〈〈建筑施工扣件式脚手架安全技术规范〉〉附表B得:

W=5.08×103mm3

则,N/ΦA+M

W

/W=12.28×103/(0.744×489)+0.037×106/(5.08×103)

=41.03N/mm2≤f=205N/mm2

计算结果说明支架是安全稳定的。

2.2满堂支架整体抗倾覆验算

依据《公路桥涵技术施工技术规范实施手册》第9.2.3要求支架在自重和风荷载作用下时,倾覆稳定系数不得小于1.3。

K 0=稳定力矩/倾覆力矩=y×N

i

/ΣMw

支架抗倾覆能力:

取其中2跨50m进行验算。

桥梁宽度12m,长50m采用60cm×60cm×120cm跨中支架来验算全桥:支架横向84排,支架纵向21排,高度10m;

顶托TC60共需要84×21=1764个;

立杆需要84×21×10=17640m;

纵向横杆需要21×50×10=10500m;

横向横杆需要84×12×10=10080m;

扣件需要84×21×10=17640m个;

故:钢管总重(17640+10500+10080)×3.84/1000=85.8t;

顶托TC60总重为:1764×7.2/1000=12.71t;

扣件总重量:17640×2.2/1000=38.81t;

故q=(85.8+12.71+38.81)×9.8=1345.74KN;

稳定力矩= y×N

i

=5.5×1345.74=7401.55KN.m

依据以上对风荷载计算W

K =0.7u

z

×u

s

×w

=0.7×1.13×1.3×0.35=0.36KN/ m2

受力为:q=0.36×12×(0.048×1.3×50+0.048×1.3×12)=167.13KN;

根据《公路桥涵设计通用规范》(JTJ021-89)考虑到箱梁模板横桥向的风荷载,将该风荷载加载于支架上,安全。

梁高1.3m,横桥向箱梁模板风荷载q1=0.927kPa×1.3m×50m=63.18KN

倾覆力矩=q×3+ q1×(1.3/2+6)=167.13×3+63.18×(6+1.3/2)=587.28KN.m K

=稳定力矩/倾覆力矩=13927.76/587.28=23.7>1.3

计算结果说明本方案满堂支架满足抗倾覆要求。

2.3箱梁底模下横桥向方木验算

本施工方案中箱梁底模下横桥向采用10cm×10cm方木,方木横桥向跨度按L=20cm进行受力计算。如下图将方木简化为如图的简支结构(偏于安全),木材的容许应力和弹性模量的取值参照木方进行计算。

(1) 强度验算

单位荷载:q=(q 1+ q 2+ q 3+ q 4)×b =(26.93+1.0+2.5+2)×0.2=6.5kN/m 跨中弯矩:M 1/2=ql 2/8=6.5×0.22/8=0.03kN ·m 截面模量为:W=(bh 2)/6=(0.103)/6=0.000167m 3 跨中最大正应力:σ=M/W=0.03/0.000167=194kPa

木方容许弯曲应力为:[σw ]=14.5MPa ,由强度条件194kPa <[σw ],可知满足要求。 (2) 刚度验算

方木的弹性模量:61011?=E kN/m 2

方木的惯性矩:I=(bh 3)/12=(0.1×0.13)/12=8.33×10-6m 4 f max =(12/384)×[(ql 4)/(EI)]=(12/384)×(8.3×0.24)/( 11×106×8.33×10-6)= 45×10-7m

f /l =45×10-7/0.2=1/44445<[f /l ]=1/400=0.0025 计算结果说明箱梁底模下横桥向方木,满足要求。 2.4扣件式支架立杆顶托上顺桥向方木验算

本施工方案中支架顶托上顺桥向采用10×10cm 方木作为纵向分配梁。顺桥向方木的跨距,根据立杆布置间距,按L =60cm (横向间隔l =60cm )进行验算。将方木简化为如图的简支结构(偏于安全)。木材的容许应力和弹性模量的取值参照木方进行计算。

图2.3 箱梁底模下横桥向方木受力简图

q(KN/m)

方木材质为松木,

[δ w ] =14.5MPa E = 11000 MPa

尺寸单位: cm

q(KN/m)

nP(kN)

90

尺寸单位:cm 方木材质为松木,[δw]=14.5MPa E=11000MPa

(1) 强度验算

作用力:P=ql/2=6.5×0.2/2=0.65kN n=0.6/0.2=3(取整数)

最大弯矩:M max =(n/8)×pl=3/8×0.65×0.6=0.15kN ·m 截面模量为:W=(bh 2)/6=(0.13)/6=0.000167m 3 跨中最大正应力:σ=M/W=0.15/0.000167=0.9MPa

木方容许弯曲应力为:[σw ]=14.5MPa ,由强度条件0.9MPa<[σw ],可知满足要求。 (2) 刚度验算

方木的弹性模量:61011?=E kN/m 2

方木的惯性矩:I=(bh 3)/12=(0.1×0.13)/12=8.33×10-6m 4 f max = (12/384)×[(ql 4)/(EI)]=45×10-7m

f /l =45×10-7m/0.6=1/133333<[f /l ]=1/400

计算结果说明碗扣式支架立杆顶托上顺桥向方木,满足要求。 2.5箱梁底模板计算

箱梁底模采用优质竹胶板,铺设在支架立杆顶托上顺桥向方木上的横桥向方木上。按20cm 间距布置。取各种布置情况下最不利位置进行受力分析,并对受力结构进行简化(偏于安全)(为安全起见,计算采用12mm 竹胶板):

通过前面分析计算及布置方案,在桥墩旁实心段(取墩顶截面)处,为底模板荷载最不利位置,则有: 竹胶板弹性模量E =5000MPa.

竹胶板惯性矩I=(bh 3)/12=(1.22×0.0123)/12=1.76×10-7m 4

图2.4 立杆顶托上顺桥向方木受力简图

① 模板厚度计算

q=( q 1+ q 2+ q 3+ q 4)l=(19.96+1.0+2.5+2)×0.2=6.5kN/m

则:M max ==82

ql 6.5×0.22/8 =0.033kN.m 竹胶板容许弯曲应力为:[σw]=45MPa

模板需要的截面模量:W=0.033/45000=7.3×10-7 m 3 模板的宽度为0.2m ,根据W 、b 得h 为: =4.47mm

12mm 厚竹胶板满足要求,可以采用1220×2440×12mm 规格的竹胶板。 ② 模板刚度验算

f max = ql 4/128EI=6.5*0.24/(128*5*106*1.76*10-7)=9.23×10-5<0.2/400m=5×10-4m 故12mm 厚竹胶板挠度满足要求。 2.6立杆底座和地基承载力计算

图2.7 支架下地基处理示意图

cm

q(kN/m)

底模验算简图

底模及支撑系统简图

⑴立杆承受荷载计算

现浇箱梁腹板及底板中心位置纵距、横距采用60cm×60cm的布置形式,取各种布置情况下最不利位置进行受力分析,并对受力结构进行简化(偏于安全)每根立杆上荷载为:N=a×b×q=a×b×(q1+q2+q3+q4+q7)

= 0.6×0.6×(26.93+1.0+1.0+2.0+4.0)=12.57kN

⑵立杆底托验算

立杆底托验算: N≤R

d

通过前面立杆承受荷载计算,每根立杆上荷载为12.57kN:

=40KN;

底托承载力(抗压)设计值,一般取R

d

得:12.57KN<40KN

计算结果说明立杆底托符合要求。

⑶立杆地基承载力验算

跟据现场地质情况,经过压实处理后,地基承载力大于200kPa。

在1平方米面积上地基最大承载力F为:

F=a×b×q=a×b×(q1+q2+q3+q4+q7)

= 1.0×1.0×(26.93+1.0+2.5+2.0+4.0)=36.43kPa

]=190Kpa

则,F=36.43KPa<[f

k

经过地基处理后,可以满足要求。

2.7支架变形

支架变形量值F的计算:F=f1+f2+f3

①f1为支架在荷载作用下的弹性变形量

由上计算每根钢管受力为12.57KN,立杆的截面积按489mm2计算。

于是f1=б×L/E

б=12.57÷489×103=25.71N/mm2

则f1=25.71×15÷(2.06×105)=1.87mm。

②f2为支架在荷载作用下的非弹性变形量

支架在荷载作用下的非弹性变形f2包括杆件接头的挤压压缩δ1和方木对方木压缩δ2两部分,分别取经验值为2mm、3mm,即f2=δ1+δ2=5mm。

②f3为支架地基沉降量取经验值5mm

故支架变形量值F为:F=f1+f2+f3=1.87+5+5=11.87mm

3、验算结果

以上满堂支架设计后验算满足相关规范允许值,可直接用于现场施工。

满堂式碗扣支架支架设计计算知识讲解

满堂式碗扣支架支架设计计算 杭州湾跨海大桥XI合同段中G70~G76墩的上部结构为预应力混凝土连续箱梁,该区段连续箱梁结构设计有两种形式,一为等高段,一为变高段,G70~G70为变高段连续箱梁。为此,依据设计图纸、杭州湾跨海大桥专用施工技术规范、水文、地质情况,并充分结合现场的实际施工状况,为便于该区段连续箱梁的施工,保证箱梁施工的质量、进度、安全,我部采用满堂式碗扣支架组织该区段连续箱梁预应力混凝土逐段现浇施工。 一、满堂式碗扣件支架方案介绍 满堂式碗扣支架体系由支架基础(厚50cm宕渣、10cm级配碎石面层)、Φ48×3mm碗扣立杆、横杆、斜撑杆、可调节顶托、10cm×15cm底垫木、10cm×15cm或10cm×10cm木方做横向分配梁、10cm×10cm木方纵向分配梁;模板系统由侧模、底模、芯模、端模等组成。10cm×15cm木方分配梁沿横桥向布置,直接铺设在支架顶部的可调节顶托上,箱梁底模板采用定型大块竹胶模板,后背10cm×10cm木方,然后直接铺装在10cm×15cm、10cm×10cm 木方分配梁上进行连接固定;侧模、翼缘板模板为整体定型钢模板。(主线桥30m跨等高连续梁一孔满堂支架结构示意图见附图XL-1、2、3所示)。 根据箱梁施工技术要求、荷载重量、荷载分布状况、地基承载力情况等技术指标,通过计算确定,每孔支架立杆布置:纵桥向为:3*60cm+30*90cm +2*60cm,共计36排。横桥向立杆间距为:120cm+3*90cm+3*60cm +6*90cm +3*60cm +3*90 cm+120cm,即腹板区为60cm,两侧翼缘板(外侧)为120cm,其余为90cm,共21排;支架立杆步距为120cm,在横梁和腹板部位的支架立杆步距加密为60cm,支架在桥纵向每360cm间距设置剪刀撑;支架两端的纵、横杆系通过垫木牢固支撑在桥墩上;立杆顶部安装可调节顶托,立杆底部支立在底托上,底托安置在支架基础上的10cm×15cm木垫板上。以确保地基均衡受力。 二、支架计算与基础验算 (一)资料 (1)WJ碗扣为Φ48×3.5 mm钢管; (2)立杆、横杆承载性能: 立杆横杆 步距(m)允许载荷(KN)横杆长度(m)允许集中荷载 (KN)) 允许均布荷载 (KN) 0.6 40 0.9 4.5 12

现浇空心板梁桥计算书.

目录 一、项目概况 (1) 1.1 设计规范 (1) 1.2 主要技术指标 (1) 1.3 主要材料 (2) 1.4 设计要点 (3) 1.5 施工方法及注意事项 (5) 二、研究内容 (6) 三、主要计算依据 (6) 四、纵向结构设计计算 (7) 4.1结构分析有限元模型建立 (7) 4.2结构有限元分析参数 (7) 五、纵向结构计算结果 (8) 5.1 结构极限承载能力验算表格 (8) 5.2 裂缝宽度验算 (12) 5.3 位移验算 (15) 六、中横梁结构设计计算 (16) 七、中横梁计算结果 (16) 7.1 结构极限承载能力验算表格 (16) 7.2 裂缝宽度验算 (17)

一、项目概况 本次项目湖南省资兴市东江湾三文鱼美食城,该项目桥梁工程的修建,将进一步完善三文鱼美食城附近的路网结构,方便该美食城车辆的进出,促进道路两厢的土地开发和土地增值。拟建桥梁位于湾三文鱼美食城西侧,桥梁全长60.0m。现场地主要为平整后施工场地,拟建桥位处沿线地势平坦,交通便利。 1.1设计规范 1)、《工程建设标准强制性条文》 2)、《城市桥梁设计准则》(GJT11-93) 3)、《公路桥涵设计通用规范》(JTG D60-2004) 4)、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 5)、《公路桥涵地基与基础设计规范》(JTG D63-2007) 6)、《公路工程抗震设计规范》(JTG/T B02-01-2008) 1.2 主要技术指标 1)、设计荷载:公路-Ⅱ级 2)、路线等级:城市支路 3)、机动车设计速度:300km/h; 4)、桥梁有效宽度(一幅桥): [0.5m(防撞栏杆)+4.5m(人行道)+7.0m(机动车道)+2.0m(人行道)+0.5m(防撞栏杆)]

现浇箱梁支架方案计算书(贝雷片+顶托)

福清项目现浇箱梁支架方案计算书 钢管桩+贝雷梁+顶托支架方案 1、方案概况 1.1编制依据 ⑴《福清市外环路北江滨A段道路工程两阶段施工图》; ⑵《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004); ⑶《公路桥涵地基与基础设计规范》(JTG D63-2007); ⑷《公路桥涵施工技术规范》(JTG/T F50-2011); ⑸《建筑施工门式钢管脚手架安全技术规范》(JGJ 128-2000); ⑹《公路桥涵抗风设计规范》(JTG/T D60-01-2004); ⑺《公路桥涵钢结构和木结构设计规范》(JTJ 025-86); ⑻《装备式公路钢桥使用手册》; ⑼《路桥施工计算手册》。 ⑽《建筑施工模板安全技术规范》(JGJ 162-2008) ⑾《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ 166-2008); ⑿《钢结构设计规范》(GB50017-2003) ⒀《公路工程施工安全技术规程》(JTJ076-95) ⒁《钢结构工程施工质量验收规范》(GB50205—2001) 1.2 工程概况 外环路(北江滨路-利桥至融宽环路段)道路工程范围西起于龙江路与利桥交叉口,向东穿甲飞客运站后,斜跨过龙江,而后沿玉塘湖布设,东止于融宽环路,线位基本呈现西北-东南走向,施工里程段为K0+000~K1+800。 瑞亭大桥:中心桩号为K0+377.8,起终点桩号:K0+116.46—K0+638.5。桥梁跨径组成为(3×20)+3×(3×35)+(4×35)的形式,桥面宽度2-19.25米,全桥长522.4米。桥梁上部结构:第一联采用20m装配式预应力混凝土简支空心板,其余各联采用35m等截面连续箱梁。桥梁下部:采用肋板式桥台。柱式桥墩、桩基础。桥梁纵面位于i=2.5%上坡段接i=0.3%上坡段再接-2.1%下坡段,R=5000m直线、凸曲线、直线、凸曲线、直线上;本桥平面位于直线接半径R=500m 圆曲线接直线上,梁体按等角度70°布置,墩台沿着分孔线径向布置。

盖梁支架设计计算

泉州至南宁高速公路过龙陂高架桥咼墩盖梁施工方案计算书 设计:_________________ 复核:_________________ 审批:_________________ 浙江省交通工程建设集团有限公司

2009221

过龙陂咼架桥盖梁支架设计计算书 一、概况: 盖梁尺寸为11.95X 2.3 X 3.7m (长X 宽X 高),在悬臂部分设置了 2.525 X 2m 倒角,盖 梁支架拟采用[]18a 、][14a 、120a 加工为锚固式三角托架,三角托架的结构如图一所示, 具体尺寸见加工图,三角架的上部锚固采用预埋锥形螺母锚固钢板的形式, 下部撑脚直接支 撑在砼面上。三角支架安装完成后,吊装盖梁施工平台 3、2和侧面模板4、5,其相互关系 见图二。 图一:盖梁承载三角架加工示意图 图二:三角支架、工作平台和侧面模板位置的相互关系 二、荷载统计和整体计算: 单个三角架自重1.6t ;单侧悬挑砼方量17.71方,自重44.275t ;悬挑砼下模板支架单个 计重 1.95t ;砼大面施工模板共 108平方米,计重21.6t ;跳板和施工平台约 41.4平方,荷载 林4, W5 . X 吐制尺初 Mil

每平米0.2t,计荷载8.28t,荷载总计125.53t。 根据以上的荷载统计,对支架整体结构进行了分析计算,其模型如下(计算模型中三角支架部分荷载为12t/m2,未折减倒角砼重量,加载区域 2.65mx 3m其余平面荷载1t/m2): 荷载分布示意图(图中荷载未考虑砼倒角荷载削减) BJ?7?+W!L 支架最大位移7.6mm (安全)El : IQ Hlh< i 1 __________ t#: zAh 商伍加齐 M]& Afridi UEJIH小E豁 K?? H刪:旳 Mlh i 22 Sr*: ■ E! EE*. H股亠3: aiTiE^tms* 支架最大组合应力94.6Mpa (安全) 舀工力 flft? I JHGH*-4O 2 O.IJXOJ*—K€ 耳4 £jaaoo?? -P-.^Qlw+W? zmwHT? 4丹饰”叭

箱梁桥满堂支架设计计算

满堂支架设计计算(一) (0#台—1#墩) 目录 一、设计依据 (1) 二、地基容许承载力 (1) 三、箱梁砼自重荷载分布 (1) 四、模板、支架、枕木等自重及施工荷载 (2) 五、支架受力计算 1、立杆稳定计算 (5) 2、立杆扣件式钢管强度计算 (6) 3、纵横向水平钢管承载力 (6) 4、地基承载力的检算 (6) 5、底模、分配梁计算 (7) 6、预拱度计算 (12) 一、设计依据 1.《京承高速公路—陡子峪大桥工程施工图》 2.《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-85 3.《公路桥涵施工技术规范》JTJ041-2000 4.《扣件式钢管脚手架安全技术规范》JGJ130-2001 5.《公路桥涵钢结构及木结构设计规范》JTJ025-86 6.《简明施工计算手册》 二、地基容许承载力

根据本桥实际施工地质柱状图,地表覆盖层主要以亚粘素填土为主,地基承载力较好。 为了保证地基承载力不小于12t/㎡,需要进行地基处理。地基表皮层进行土层换填,换填如下:开挖标高见图纸,底层填0.5m中砂,经过三次浇水、分层碾压(平板震动器)夯实,地基面应平整,夯实后铺设5cm石子,继续压实,并进行承载力检测。整平地基时应注意做好排水设施系统,防止雨水浸泡地基,导致地基承载力下降、基础发生沉降。钢管支架和模板铺设好后,按120%设计荷载进行预压,避免不均匀沉降。 三、箱梁砼自重荷载分布 根据设计图纸,箱梁单重为819t。 墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。对于空心段箱梁,根据《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图》,综合考虑箱梁横截面面积和钢管支架立杆纵向间距,空心段箱梁腹板等厚段下方,纵桥向间距最大的立杆受力最不利。根据立杆纵桥向布置,受力最不利立杆纵向间距取为d=(0.9+1.2)/2=1.05m。本计算书主要检算该范围箱梁和支架受力。 钢管支架立杆纵向间距为30cm、60cm、90cm、120cm四种形式,横向间距为120cm+3×60cm+3×90cm+60cm+3×90cm+3×60cm+120cm。根据钢管支架立杆所处的位置分为四个受力区,详见《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图(二)》。 各受力区钢管支架立杆所承受钢筋砼自重荷载详见下表: 分区号ⅠⅡⅢⅣ钢管间距(cm)120 60 90 60 截面面积(m2) 1.20 2.65 2.38 1.49 立杆钢管数(根) 4 4 6 2 单根钢管承重(t)0.82 1.81 1.08 2.03 根据上表,位于中腹板处间距60cm的立杆受力最大,单根钢管承受最大钢筋砼荷

10米装配式钢筋混凝土空心板计算书

装配式钢筋混凝土空心板 计算书 跨径: 10米(2×净11.0米) 斜交角: 15° 30° 45° 计算: 复核: 审核: XXXX勘察设计研究院 年月日

一、计算资料 1、标准跨径:10.0m 2、计算跨径:9.6m 3、桥面净空:净-11.0 m 4、设计荷载:公路-Ⅰ级 5、斜交角度:150300450 6、材料: (1)普通钢筋:R235、HRB335钢筋,其技术指标见表-1。 表-1 (2)空心板混凝土:预制空心板及现浇桥面铺装、空心板封头、防撞护栏均采用C30混凝 土,铰缝混凝土采用C30小石子混凝土,桥面面层为沥青砼。技术指标见表-2。 表-2 7 (1)中华人民共和国行业标准《公路工程技术标准》(JTG B01-2003); (2)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004),简称《公预规》。 (3)《公路桥涵设计手册-梁桥(上册)》(1998年1月第一版第二次印刷),简称《梁桥》。 (4)中华人民共和国行业标准《公路桥涵设计通用规范》(JTG D60-2004)。 二、结构尺寸 本桥按高速公路桥梁设计,取上部独立桥梁进行计算,桥面净宽11.125米,两侧为安全护栏,全桥采用9块空心板,中板为1.27米,边板为1.67米,水泥砼铺装厚10cm,沥青砼厚10cm。取净-11.125m桥梁的边、中板进行计算,桥梁横断面及边、中板尺寸如图1,图2所示(尺寸单位:cm) 图 1

图2 空心板的标准跨径为10m,计算跨径l=9.6m。 空心板的具体构造见我院桥涵设计通用图(编号:TYT/GJS 02-3-2)。 三、各块板汽车荷载横向分布系数m c计算 1、采用铰结板法计算弯矩及L/4截面至跨中截面剪力的m c a. 计算截面抗弯惯性矩I 在AUTOCAD中作图量测得到边、中板跨中截面对各自水平形心轴的抗弯惯性矩:I边=0.01745 (m4),I中=0.01465 (m4)。 b. 计算截面抗扭惯性矩I T 空心板截面边、中板跨中截面抗扭惯性矩I T可近似简化成图4虚线所示的薄壁箱形截面来计算(尺寸单位:cm)

现浇箱梁支架计算书

怀集至阳江港高速公路怀集至郁南段一期工程X2合同段 A匝道第三联现浇支架 计算书 编制: 审核: 审批: 中铁二十局集团有限公司 怀阳高速公路X2标项目经理部 二〇一八年二月

目录 一、工程概况 (1) 二、箱梁设计情况 (1) 三、支架布设方案 (3) 四、计算依据 (4) 五、荷载计算取值 (5) 1、恒载 (5) 2、活载 (5) 六、各构件受力计算 (5) 1、荷载分块 (5) 2、荷载计算 (6) 3、支架验算 (8) (1)竹胶板验算 (8) (2)方木验算 (9) (3) I14工字钢验算 (10) (4)贝雷梁验算: (10) (5) I36工字钢验算: (13) (6)Φ529mm钢管桩计算 (15) (7) C30混凝土独立基础计算 (15)

A匝道桥第三联支架计算 一、工程概况 本桥为跨越道路而设,路线纵断较高,最大桥高约38米。桥跨设计为(25+30+30)+5×25+(25+37+25),上部结构采用预应力混凝土预制小箱梁和预应力混凝土现浇箱梁。桥墩采用柱式墩、墙式墩,桥台采用柱式台;桥墩、桥台基础均采用桩基础。桥跨起点桩号为AK0+602.418,终点桩号AK0+905.018,中心桩号AK0+753.718,桥跨全长为302.6m(包括耳墙)。本桥平面位于圆曲线、缓和曲线、缓和曲线和圆曲线上,纵断面纵坡为3.95%和0.5%。 二、箱梁设计情况 本桥第三联(25+37+25m)于AK0+862.28上跨B2匝道桥,交叉角度149°,8号墩至11号台,桥位布置见图1。全桥箱梁高度均为200cm,跨中顶板厚度25cm,底板厚度22cm,梁端顶板厚度45cm,底板厚度42cm;翼缘板宽度250cm,翼缘板板端厚度18cm,翼缘板根部厚度45cm。腹板高度113cm,厚度由梁端80cm向跨中45cm渐变。箱梁细部尺寸见表1,箱梁横断面见图2。混凝土强度为C50,工程量为569.75m3。

盖梁支架受力计算知识讲解

盖梁支架受力计算 (预埋钢棒上安工字钢横梁法) 一、概况 汨罗江特大桥盖梁除悬浇主墩及28#过渡墩盖梁另外计算外,最重盖梁为 40mT梁盖梁,其尺寸为15.9m(长)×2.3m(宽)×2.1m(高),若经计算该盖 梁支架满足要求,则其他盖梁支架均满足要求。 针对该工程特点设计便易操作的盖梁支架系统。混凝土及模板系统的恒载、 施工操作的活荷载通过型钢直接传递给牛腿,牛腿递给墩柱及桩基础。 二、设计计算依据 (1)《路桥施工计算手册》 (2)《公路桥涵钢结构及木结构设计规范》 (3)《机械设计手册》 三、支架模板的选用 盖梁模板: 1.1、侧模:采用组合钢模拼装。 1.2、底模:方正部分用组合钢模拼装。 1.3、横梁:采用[14#a槽钢,间距40cm。 1.4、主梁:采用I45a工字钢。 1.5、楔块:采用木楔。 1.6、穿心钢棒:采用45号钢,直径10cm。长度每边外露30cm. 四、计算方法 1、总荷载计算 盖梁砼荷载F1:体积71.85立方米,比重2.6吨/立方米,自重:195.9吨, 合F1=185.9*10=1859KN 模板重量F2:盖梁两侧各设置一根I45a工字钢作为施工主梁,长18米(工 字钢荷载),q1=80.4×10×18×2/1000=28.94 KN;主梁上铺设[ 14a槽钢,每 根长3.0米,间距为40cm,墩柱外侧各设置8根,两墩柱之间设置19根。 q2=(19+8×2)×3.0×14.53×10/1000=15.26KN(铺设槽钢的荷载);

槽钢上铺设钢模板,每平方按0.45KN 计算, q3=(15.9×2.1×2+2.3×15.9+2.1×2.3×2)×0.45=50.9 KN (底模和侧模、端头模的荷载); q4=6KN (端头三角支架自重) F2=q1+q2+q3+q4+q4=107.1KN F3:人员0.5吨,合5KN F4:小型施工机具荷载:0.55吨,合5.5KN F5:振捣器产生的振动力及混凝土冲击力;本次施工时采用HZ6X-50型插入式振动器,设置2台,每台振动力为5KN ,施工时混凝土冲击力按5KN 计,则F5=2×5+5=15KN 总荷载: F=F1+F2+F3+F4+F5 =1859+107.1+5+5.5+15=1991.6KN 2、穿心钢棒(45号钢)受力安全分析 共有4个受力点,每点受力:Q max =F/4=1991.6/4≈497.9KN ; 钢棒截面积:S=0.05*0.05*3.14=0.0079m 2 最大剪应力:τmax =Q max /S=497.9/0.0079=63.03Mpa 45号钢钢材的允许剪力: [τ]=125Mpa 则[τ] =125 >τmax =63.03Mpa 结论:穿心钢棒(45号钢)受力安全 3、I45a 工字钢主梁受力安全分析 工字钢均布荷载:q=F/2/15.9=1991.6/2/15.9=62.63KN/m R1=R2=ql/2(a+l/2)=2340.17KN 工字钢横梁AB 段最大弯矩出现在中间处(x=a+l/2=7.95m ),a=3.25m , l=9.4m ;跨中最大弯矩 M max =62.63*9.4*7.95/2*[(1-3.25/7.95) *(1+2*3.25/9.4)-7.95/9.4] =360.98KN ?m 横梁CA 段和BD 段最大弯矩出现在支承点A 、B 两处,最大弯矩 2 12M qa =-=-1/2*62.63*3.252=-330.76 KN ?m

现浇箱梁满堂支架方案计算(范例)

省道S303线巴朗山隧道工程TJ1合同段 小魏家沟中桥 现浇箱梁满堂支架施工方案 华通路桥集团有限公司巴朗山项目部 二○一三年三月

目录 1编制依据 ........................................................................................................................................... - 2 - 2工程概况 ........................................................................................................................................... - 2 - 3现浇箱梁满堂支架布置及搭设要求................................................................................................ - 2 - 4现浇箱梁支架验算............................................................................................................................ - 2 - 4.1荷载计算 ............................................................................................................................... - 2 - 4.1.1荷载分析 ................................................................................................................... - 2 - 4.1.2荷载组合 ................................................................................................................... - 3 - 4.1.3荷载计算 ................................................................................................................... - 3 - 4.2结构检算 ............................................................................................................................... - 4 - 4.2.1扣件式钢管支架立杆强度及稳定性验算 ............................................................... - 4 - 4.2.2满堂支架整体抗倾覆验算 ....................................................................................... - 7 - 4.2.3箱梁底模下横桥向方木验算 ................................................................................... - 7 - 4.2.4扣件式钢管支架立杆顶托上顺桥向方木验算 ....................................................... - 8 - 4.2.5底模板计算 ............................................................................................................. - 10 - 4.2.6侧模验算 ..................................................................................................................- 11 - 4.2.8立杆底座和地基承载力计算 ................................................................................. - 12 - 4.2.9支架变形 ................................................................................................................. - 14 - 5支架搭设施工要求及技术措施...................................................................................................... - 16 - 5.1模板支架立杆、水平杆的构造应符合下列要求 .................................................... - 16 - 5.2满堂模板支架的支撑设置应符合下列规定 ............................................................ - 17 - 5.3支架拆除要求 ............................................................................................................ - 17 - 5.4支架预压及沉降观测 ................................................................................................ - 18 - 6安全防护措施及安全交底.............................................................................................................. - 19 - 6.1安全防护措施 ............................................................................................................ - 19 - 6.2安全交底 .................................................................................................................... - 20 -

贝雷梁支架计算书91744

西山漾大桥贝雷梁支架计算书 1.设计依据 设计图纸及相关设计文件 《贝雷梁设计参数》 《钢结构设计规范》 《公路桥涵设计规范》 《装配式公路钢桥多用途使用手册》 《路桥施工计算手册》 《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011) 2.支架布置图 在承台外侧设置钢管桩φ609×14mm,每侧承台2根,布置形式如下: 钢管桩与承台上方设置400*200*21*13的双拼H型钢连成整体。下横梁上方设置贝雷梁,贝雷梁采用33排单层321标准型贝雷片,贝雷片横向布置间距为450mm。贝雷梁上设置上横梁,采用20#槽钢@600mm。于上横梁上设置满堂支架。 支架采用钢管式支架,箱梁两端实心部分采用100×100方木支撑,立杆为450×450mm;并在立杆底部设二个倒拔塞便于拆模。箱梁腹板下立杆采用600(横向)×300mm (纵向)布置。横杆步距为1.2m,(其它空心部位立杆采用600(横向)×600mm(纵向)

布置)。内模板支架立杆为750(横向)×750mm (纵向)布置。横杆步距为≤1.5m 。箱梁的模板采用方木与夹板组合; 两端实心及腹板部位下设100*100mm 方木间距为250mm 。翼板及其它空心部位设50*100mm 方木间距为250mm 。内模板采用50*100mm 方木间距为250mm 。夹板均采用1220*2440*15mm 的竹夹板。 具体布置见下图: 3. 材料设计参数 3.1. 竹胶板:规格1220×2440×15mm 根据《竹编胶合板国家标准》(GB/T13123-2003),现场采用15mm 厚光面竹胶板为Ⅱ类一等品,静弯曲强度≥50MPa ,弹性模量E ≥5×103MPa ;密度取3/10m KN =ρ。 3.2. 木 材 100×100mm 的方木为针叶材,A-2类,方木的力学性能指标按"公路桥涵钢结构及木结构设计规范"中的A-2类木材并按湿材乘0.9的折减系数取值,则: [σw]=13*0.9=11.7 MPa

盖梁支架计算书

汕湛高速揭博项目T11标 盖梁支架计算书 四川路桥建设股份有限公司 2014年3月30日

目录 1、工程概况 (1) 2、总体施工方案 (1) 3、支承平台设置 (4) 4、计算依据 (5) 5、计算参数 (5) 6、计算结果 (9) 7、结论 (22) 8、抱箍试验 (23)

盖梁抱箍法施工方案 一、工程概况 本标段主线共设置大中桥7座(不含互通区和服务区),分别为白昌屋大桥(30米T梁),万年坑大桥(30米T梁),叶塘1号大桥(25米小箱梁),叶塘2号大桥(25米小箱梁),秋香江大桥(25米小箱梁),上赖水大桥(30米T梁),黎坑大桥(25米小箱梁);九和互通内共设置桥梁3座,其中主线桥2座,匝道1座,分别为三社坑大桥(25米小箱梁),围坪大桥(25米小箱梁),D匝道桥(20米现浇箱梁);紫金西互通内共设桥梁3座,其中主线桥2座,分别为玉竹坑中桥(25米小箱梁),围澳水大桥(25米小箱梁)和L线秋香江大桥(25米小箱梁);瓦溪服务区共设置主线桥1座,为四联大桥(30米T梁)。下部结构采用桩基础、地系梁、承台、柱式桥墩、肋板、台帽、盖梁和耳背墙。其中D匝道桥桥墩采用花瓶墩。 二、总体施工方案 因本标段桥梁盖梁高度较高,采用满堂支架施工盖梁耗时长、占用大量钢管扣件等周转材料、不经济。拟采用在墩柱上安设抱箍支承平台施工。 盖梁统计表

考虑最不利情况(跨度及盖梁尺寸均最大),采用秋香江1.8m*2.4m*17.437m盖梁(两柱)、上濑水大桥2.1m*2.4m*15.3m盖梁(两柱)和四联大桥2.1m*2.4m*20.1m(三柱)盖梁作为计算模型。盖梁简图

现浇箱梁满堂支架计算书

计算书 1.编制依据 1.《建筑施工安全技术统一规范》GB50870-2013 2.《建筑施工临时支撑结构技术规范》JGJ300-2013 3.《建筑施工模板安全技术规范》JGJ162-2008 4.《钢结构设计规范》GB50017-2017 2.工程参数 支架体系从下到上为地基、20cm厚C20满铺混凝土基础、钢管支架、14号工字钢横梁梁、10cm×5cm 的方木次梁及15mm厚竹胶板模板。为方便施工现场搭设及支架的衔接,腹板支架纵横向立杆间距均采用0.8×0.8m,梁端处采用加密布置横向0.4m,纵向0.8m,支架竖向步距统一1.2m。 1

箱梁构造图(一) 2

箱梁构造图(二) 3

箱梁构造图(三) 4

3.荷载验算 因翼板及底板次楞间距均采用40cm间距布置,则可按照箱梁底板位置荷载作为计算依据,若满足验算要求,则翼板位置也满足。横梁实心段、腹板位置为不利荷载处单独计算。参数: 翼板砼厚度:(0.2+0.5)/2=0.35m, 底板位置砼厚度:0.25+0.25=0.5m 梁端及腹板砼厚度:1.8m 3.1.面板验算 3.1.1翼板及底板位置 参数:支架间距0.8m×0.8m,竖向布局1.2m,主楞间距0.8m,次楞间距40cm。 面板采用竹胶板,厚度为15mm,根据支架间距0.8布置。 面板的截面抵抗矩W= 800×15×15/6=30000mm3; 截面惯性矩I= 800×15×15×15/12=225000mm4。 面板按三跨连续梁计算,其计算跨度取支承面板的次楞间距。 1、荷载计算 取均布荷载作用效应考虑。荷载计算单元为(1×0.4),底板位置砼厚为:0.5m。 钢筋砼自重荷载:26kn/m3×(0.4×0.8×0.5)=4.16kn 面板自重荷载:0.5kn/m2×(0.4×0.8)=0.16kn 施工人员及设备荷载:3kn/m2×(0.4×0.8)=0.96kn 转换为均布线荷载: q1=(1.2×(4.16+0.16)+1.4×0.96)/(0.4)=6.528/0.4=16.32kN/m 2、强度验算

(完整版)现浇空心板施工方案14.5

X056泗县山头至宿州闵贤公路改建工程 现 浇 空 心 板 梁 施 工 方 案 中煤第三建设集团有限责任公司 X056山闵路改建工程NO3.2项目经理部 二零一二年六月

第一章编制说明 第一节编制依据 一、编制依据 1、本合同段的施工图纸、招标文件、参考资料、工程量清单、合同文件。 2、《公路桥涵施工技术规范》(JTJ 041-2000) 3、《公路工程施工安全技术规程》(JTJ 076-95) 4、《公路交通安全设施施工技术规范》(JTG F71-2006) 5、《公路工程质量检验评定标准》(JTG F80/1-2004) 6、工地现场实际情况及以往公路的施工经验。 第二节工程概况 一、工程概述 X056泗县山头至闵贤公路位于安徽省宿州市北部,路线整体呈东西走向,起自宿州市泗县山头镇接X048公路,终于宿州市埇桥区曹村闵贤镇与G206公路相接,全长106.666km。 本合同段中小桥共计8座,其中6座小桥,桥型为1*13米;中桥两座,桥型为K38+052中桥(3*14.5m)、K41+760中桥(3*13m)。均采用满堂支架整体现浇,一次浇筑成形。 二、地形、地貌及气象 公路沿线地区属黄淮平原中部,地势平坦,由西北向东南微倾,地面坡降1/8000~1/15000,水系发育,各主要河流呈基本平行展布,由西北流向东南。 根据地貌成因形态分类原则,公路沿线地区属平原地貌,地貌形态单一。依据其地貌形态、组成物质外力作用的方式和强度的差异,可进一步划分为剥蚀堆积平原和冲积平原。路线起点~K58+500段属剥蚀堆积平原,K58+500~终点属冲积平原。

本区属暖温带半湿润季风气候区。具有气候温和、四季分明、雨量适中等特征。多年平均气温为14℃,年极端最高气温可达40℃,年极端最低气温可达 -23℃。多年平均降雨量为802.1mm,年际降水量变化较大,丰水年约1500mm左右,干旱年约560mm。6-8月降水量较大,约占全年降水量的57%。多年平均蒸发量为1651mm,5-8月约占全年蒸发量的53%。年平均相对湿度为71%。全年无霜期约220天左右。 第二章施工准备 一、人员配备情况 项目部已按照施工进展情况配备足够的施工技术人员及劳动力。 二、物资设备准备 (一)机具设备 已按计划落实,并要适当留有备份,以保证施工的需要。 (二)材料 钢筋原材料已进场,满足施工需要。砼采用商品砼,已与砼拌和站签定协议,要求保证砼的及时供应。

盖梁支架计算书(B版)

虎门二桥S4标 沙田枢纽立交主线桥 盖梁施工支架计算书(B版) 虎门二桥S4标项目经理部 2015年10月·广州

目录 1工程概况 (1) 1.1 工程简介 (1) 2盖梁施工方案简介 (7) 2.1 0#墩L型悬臂盖梁落地支架简介 (7) 2.2 1#~14#墩悬臂盖梁支架简介 (8) 2.3 圆柱墩盖梁抱箍支架简介 (8) 3盖梁施工支架计算 (10) 3.1 计算说明 (10) 3.2 计算参数 (10) 3.3 0#墩L型悬臂盖梁施工支架计算 (10) 3.4 1#~14#墩悬臂盖梁施工支架计算 (15) 3.5 圆柱墩盖梁施工支架计算 (20) 4抱箍计算 (23) 4.1 设计指标 (23) 4.2 D160cm计算 (23) 4.3 D180cm抱箍计算 (29)

1工程概况 虎门二桥项目起点位于广州市南沙区东涌镇,终点位于东莞市沙田镇,主线全线长12.891km,含大沙水道、坭洲水道两座悬索桥,其中大沙水道桥采用主跨为1200m悬索桥,坭洲水道桥采用548+1688m双跨钢箱梁悬索桥。坭洲水道桥跨越坭洲水道(狮子洋)桥位处河面宽度约2300m,西塔中心里程为K8+052.618,东塔中心里程为K9+740.618。坭洲水道桥总体布置图如下图所示。 坭洲水道桥总体布置图 1.1工程简介 沙田枢纽立交主线桥里程范围为K11+426.618~K12+941.618,分左右两幅,每幅共有49个墩(0#墩作为东引桥与沙田立交的过渡墩,其墩身施工方案已划入东引桥工程段,其盖梁施工划入沙田枢纽立交工程段),总共98个墩,桥墩有板式墩、双柱圆柱墩、三柱圆柱墩、四柱圆柱墩等四种类型。 板式墩共有32个,其中板厚1.6m的有28个,板厚1.8m的有4个;双柱墩共27个,其中柱径1.8m的有5个,柱径1.6m的有22个;三柱墩共有21个,其中柱径1.6m的有19个,柱径2.2m的有2个;四柱墩共有9个,柱径均为1.6m。 本工程段墩身最大高度为20.263m,墩身最大方量为166.6m3。 左右幅0#~18#墩、21#~46#墩、49#墩上设有盖梁,其中左右幅0#墩盖梁为变高L型悬臂梁,左右幅1#~14#墩盖梁形式为变高T形悬臂梁,其余均为矩形梁(左右幅19#~20#、47#~48#墩上为连续小箱梁,不设盖梁)。 左右幅0#墩盖梁为预应力变高L型悬臂盖梁,盖梁截面呈L型,采用C40混凝土,长度为18.7m,截面形式为3.5×[(2.2~1.1)+1.2]m,1.2m加高块位于预制小箱梁侧,宽度1.05m。盖梁方量108.0m3。 左右幅1#~14#墩变高悬臂盖梁为预应力混凝土结构,采用C40混凝土,盖梁长度均为18.7m,截面尺寸为2×(2.2~1.1)m,悬臂长度5.05m,混凝土方

满堂支架计算.(DOC)

东乌-包西铁路联络线工程格德尔盖公路中桥 现浇箱梁模板及满堂支架计算书 一、荷载计算1.1荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q1——箱梁自重荷载,新浇混凝土密度取2600kg/m3。 ⑵q2——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取q2 =1.0kPa(偏于安全)。 ⑶q3——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条 时取2.5kPa;当计算肋条下的梁时取1.5kPa;当计算支架立柱及替他承载构 件时取1.0kPa。 ⑷ q4——振捣混凝土产生的荷载,对底板取2.0kPa,对侧板取4.0kPa。 ⑸ q5——新浇混凝土对侧模的压力。 ⑹ q6——倾倒混凝土产生的水平荷载,取2.0kPa。 ⑺ q7——支架自重,经计算支架在不同布置形式时其自重如下表所示: 满堂钢管支架自重 1.2荷载组合 模板、支架设计计算荷载组合

1.3荷载计算 1.3.1 箱梁自重——q 1计算 根据跨G208国道现浇箱梁结构特点,我们取5-5截面(桥墩断面两侧)、6-6截面(跨中横隔板梁)两个代表截面进行箱梁自重计算,并对两个代表截面下的支架体系进行检算,首先分别进行自重计算。 ① 预应力箱梁桥墩断面q 1计算 根据横断面图,用CAD 算得该处梁体截面积A=12.7975m 2则: q 1 = B W =B A c ?γ=kPa 365.445.77975 .1226=? 取1.2的安全系数,则q 1=44.365×1.2=53.238kPa 注:B —— 箱梁底宽,取7.5m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ② 预应力箱梁跨中断面q 1计算 1200 4080 100 15 75025 200 145 113 60 1.5% 1.5% 25 200 连续梁支点断面图 1200 22 2040 15 75020 25 200 145 113 22 20 20 1.5% 1.5% 25 200 连续梁跨中断面图

后张法空心板设计计算书

设计计算书 工程名称盐城港大丰港区大件码头工程大件码头引桥工程设计阶段施工图专业:路桥 计算内容大件码头引桥工程计算书 计算页数:14 计算日期:2010-12-21 计算:校核: 复校:审核: 中交第三航务工程勘察设计院有限公司 2010年12月

目录 1 工程概况 (1) 2 技术标准 (1) 3 主要材料 (1) 4 设计依据 (2) 5 技术规范 (3) 6 桥梁总体布置 (3) 7 结构计算 (4) 7.1 横向分布系数计算 (4) 7.2 结构计算 (5) 7.2.1 简支板梁中板结构计算 (5) 7.2.2 简支板梁边板结构计算 (9) 7.2.3 简支小箱梁结构计算 (13) 7.3 桩基础竖向承载力验算 (17)

1 工程概况 盐城港大丰港区大件码头工程码头引桥全桥长度为380m。跨径布置为4×20m预应力混凝土简支板梁桥+12×22m预应力混凝土简支小箱梁桥。桥面宽度为11m。桥梁起点桥面高程为+8.885m,前80m纵坡为1.39%,后300m不设纵坡,引桥与码头变宽段引桥桥面接点高程为+10.0m。 2 技术标准 (1)桥梁设计基准期:100年 (2)桥梁设计荷载:大件荷载,按双排双列平板车荷载布置(见下图),最大轴重720KN(包括自重),轴距1.6m,共12根轴。 3 主要材料 (1)混凝土 预应力钢筋混凝土板梁和小箱梁混凝土强度等级为C50,桥台、盖梁、承台

混凝土强度等级为C30,桥梁混凝土强度等级应满足《公路钢筋砼及预应力砼桥涵设计规范》(JTGD62-2004)的要求。 (2)主要钢材 箱梁所有预应力钢绞线规格均采用《预应力混凝土用钢绞线》(GB/T 5224-2003):九股钢驰,弹性模量为1.95绞线d=15.2mm,标准强度fpk=1860MPa,低松驰,弹性模量为1.95×105Mpa,每股钢绞线公称截面积139mm2,公称重量1.101kg/m。 锚具:锚具采用OVM夹片锚具,其质量应符合GB/T14370-93的要求。 普通钢筋:采用热轧R235、必须符合GB13013-1991的规定;采用热轧HRB335钢筋,必须符合GB1499-1998的规定。 所用钢板均为符合GB700-79规定的普通碳素结构钢(A3钢)。 波纹管:预应力钢束均采用塑料波纹管配真空辅助灌浆施工工艺。塑料波纹管质量要求应满足JT/T529-2004的要求。 4 设计依据 (1)我院与建设单位签订的设计合同。 (2)我院2010年5月出版的"盐城港大丰港区大件码头工程工程可行性 研究报告"。 (3)江苏省水文水资源勘测局盐城分局和扬州分局2010年4月1:2000 地形测图。 (4)中交第三航务工程勘察设计院有限公司《盐城港大丰港区大件码头 工程岩土工程勘察。 (5)建设单位提供的有关设计前提资料(建设用地地形图、建设用地坐 标、规划红线图、规划设计要求、建设用地周边道路标高等)。报告》 (2010.5)。 (6)中交水运规划设计院"大丰港二期工程码头、引桥等相关施工图" (2009); (7)盐城市水利勘测设计院"大丰港二期工程引堤施工图"(2009);

支架计算书

2m高标准联箱梁: 方案一:箱梁横梁下60cm(纵向)×90cm(横向)排距进行搭设,腹板及翼缘转角下120cm(纵向)×90cm(横向)排距进行搭设,过渡段空箱下(距桥墩中线6m范围)按120cm(纵向)×90cm(横向) 排距进行搭设,其余空箱下按120cm (纵向)×180cm(横向)排距进行搭设,步距采用150cm。 方案二:箱梁横梁下60cm(纵向)×120cm(横向)排距进行搭设,过渡段腹板空箱下(距桥墩中线6m范围)按90cm(纵向)×120cm(横向) 排距进行搭设,其余腹板下按120cm(纵向)×60cm(横向)排距进行搭设,空箱下按120cm(纵向)×120cm(横向)排距进行搭设,步距采用150cm。 ⑴主线桥2m高3跨标准联支架搭设示意图 宽2m高箱梁支架横断面搭设示意图(方案一)(单位mm) 宽2m高箱梁支架纵断面搭设示意图(方案一)(单位mm)

宽2m高箱梁支架搭设平面示意图(方案一)(单位mm) 宽2m高箱梁支架横断面搭设示意图(方案二)(单位mm) 宽2m高箱梁支架纵断面搭设示意图(方案二)(单位mm)

宽2m高箱梁支架搭设平面示意图(方案二)(单位mm) 支架体系计算书 1.编制依据 ⑴郑州市陇海路快速通道工程桥梁设计图纸 ⑵《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008) ⑶《建筑施工模板安全技术规范》(JGJ162-2008) ⑷《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)。 ⑸《混凝土结构工程施工规范》(GB50666-2011) ⑹《建筑结构荷载规范》(GB50009-2012) ⑺《建筑施工手册》第四版(缩印本) ⑻《建筑施工现场管理标准》(DBJ) ⑼《混凝土模板用胶合板》(GB/T17656-2008) ⑽《冷弯薄壁型钢结构技术规范》(GB 50018-2002) ⑾《钢管满堂支架预压技术规程》(JGJ/T194—2009) 2.工程参数 根据箱梁设计、以及箱梁支架布置特点,我们选取具有代表性的箱梁,拟截取箱梁以下部位为计算复核单元,对其模板支架体系进行验算,底模厚度15mm、次龙骨100×100mm方木间距以计算为依据,主龙骨为U型钢,其下立杆间距: ⑴(主线3跨标准联,跨径3*30m),宽高,箱梁断面底板厚22cm、顶板厚 25cm,跨中腹板厚,翼板厚度为20cm。 根据不同位置采用不同的支架间距。 方案一:箱梁横梁下60cm(纵向)×90cm(横向)排距进行搭设,腹板及翼缘转角下120cm(纵向)×90cm(横向)排距进行搭设,过渡段空箱下(距桥墩中线6m范围)按120cm(纵向)×90cm(横向) 排距进行搭设,其余空箱下按120cm (纵向)×180cm(横向)排距进行搭设,步距采用150cm。 方案二:箱梁横梁下60cm(纵向)×120cm(横向)排距进行搭设,过渡段腹

相关文档
相关文档 最新文档