文档库 最新最全的文档下载
当前位置:文档库 › 高中常用函数性质及图像汇总

高中常用函数性质及图像汇总

高中常用函数性质及图像汇总
高中常用函数性质及图像汇总

高中常用函数性质及图像

一次函数

(一)函数

1、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

(二)一次函数 1、一次函数的定义

一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.

⑵当0b =,0k ≠时,y kx =仍是一次函数.

⑶当0b =,0k =时,它不是一次函数.

⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

2、正比例函数及性质

一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零

当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.

(1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )

(3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴

3、一次函数及性质

一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.

注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数

一次函数y=kx+b 的图象是经过(0,b )和(-

k

b

,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-

k

b

,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

????>>00b k 直线经过第一、二、三象限 ???

?<>00

b k 直线经过第一、三、四象限 ????><00b k 直线经过第一、二、四象限 ??

?

?<<00

b k 直线经过第二、三、四象限

(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.

(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;

当b<0时,将直线y=kx 的图象向下平移b 个单位.

一次 函数

()0k kx b k =+≠

k ,b

符号

0k > 0k <

0b >

0b <

0b =

0b >

0b <

0b = 图象

O

x y

y

x O

O

x y

y

x O

O

x y

y

x

O

性质

y 随x 的增大而增大

y 随x 的增大而减小

4、一次函数y=kx +b 的图象的画法.

根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取

它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.

b>0

b<0 b=0

k>0

经过第一、二、三象限

经过第一、三、四象限 经过第一、三象限

图象从左到右上升,y 随x 的增大而增大

k<0

经过第一、二、四象限

经过第二、三、四象限 经过第二、四象限

图象从左到右下降,y 随x 的增大而减小

5、正比例函数与一次函数之间的关系

一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移) 6、正比例函数和一次函数及性质 正比例函数

一次函数

概 念

一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.

自变量 范 围 X 为全体实数 图 象 一条直线

必过点 (0,0)、(1,k )

(0,b )和(-k

b

,0) 走 向

k>0时,直线经过一、三象限; k<0时,直线经过二、四象限

k >0,b >0,直线经过第一、二、三象限 k >0,b <0直线经过第一、三、四象限 k <0,b >0直线经过第一、二、四象限 k <0,b <0直线经过第二、三、四象限

增减性 k>0,y 随x 的增大而增大;(从左向右上升) k<0,y 随x 的增大而减小。(从左向右下降) 倾斜度 |k|越大,越接近y 轴;|k|越小,越接近x 轴 图像的 平 移

b>0时,将直线y=kx 的图象向上平移b 个单位; b<0时,将直线y=kx 的图象向下平移b 个单位.

6、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠

(3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k

7、用待定系数法确定函数解析式的一般步骤:

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 8、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值. 9、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 10、一次函数与二元一次方程组

(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=b

c x b a +-的图象相同.

(2)二元一次方程组???=+=+2

22111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b c

x b a +-和

y=2

222b c

x b a +-

的图象交点.

二次函数

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.

二、二次函数的基本形式

① 一般式:()()2

0f x ax bx c a =++≠

② 顶点式:()()()2

0f x a x m n a =++≠ ③ 零点式:()()()()120f x a x x x x a =--≠

当2

40b ac ?=->时,二次函数的图像和x 轴有两个交点()11,0M x ,()22,0M x ,

线段1212M M x x =-== 当2

40b ac ?=-=时,二次函数的图像和x 轴有两个重合的交点,02b M a ??

-

???

. 特别地,当且仅当0b =时,二次函数()()20f x ax bx c a =++≠为偶函数.

1. 二次函数基本形式:2y ax =的性质:

a 的绝对值越大,抛物线的开口越小。

2.

2y ax c =+的性质:

上加下减。

3.

()2

y a x h =-的性质:

左加右减。

4.

()2

y a x h k =-+的性质:

三、二次函数图象的平移

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,;

⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

方法二:

⑴c bx ax y ++=2

沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2

变成

m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2

沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2

变成

c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)

四、二次函数()2

y a x h k =-+与2y ax bx c =++的比较

从解析式上看,()2

y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2

2424b ac b y a x a a -?

?=++ ??

?,其中2424b ac b h k a a -=-=

,. 五、二次函数2y ax bx c =++图象的画法

五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定

其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们

选取的五点为:顶点、与y 轴的交点()0c ,

、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,

,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

六、二次函数2y ax bx c =++的性质

1. 当0a >时,抛物线开口向上,对称轴为2b

x a =-,顶点坐标为2424b ac b a a ??-- ???

,. 当2b x a <-

时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b

x a

=-时,y 有最小值2

44ac b a

-.

2. 当0a <时,抛物线开口向下,对称轴为2b

x a =-,顶点坐标为2424b ac b a a ??-- ???

,.当

2b x a <-

时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b

x a

=-时,y 有最大值

2

44ac b a

-. 七、二次函数解析式的表示方法

1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);

2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写

成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系

1. 二次项系数a

二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.

⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越

⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.

2. 一次项系数b

在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.

⑴ 在0a >的前提下,

当0b >时,02b

a

-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

>,即抛物线对称轴在y 轴的右侧.

⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b

a

->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

<,即抛物线对称轴在y 轴的左侧. ab 的符号的判定:对称轴a

b

x 2-

=在y 轴左边则0>ab ,在y 轴的右侧则0

3. 常数项c

⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情

1. 已知抛物线上三点的坐标,一般选用一般式;

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;

4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

九、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称

2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2

y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---;

2. 关于y 轴对称

2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2

y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++;

3. 关于原点对称

2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

5. 关于点()m n ,

对称 ()2

y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+-

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适

的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

十、二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):

一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.

图象与x 轴的交点个数:

① 当240b ac ?=->时,图象与x 轴交于两点()()1200A x B x ,

,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠

的两根.这两点间的距离21AB x x =-=.

② 当0?=时,图象与x 轴只有一个交点;

③ 当0?<时,图象与x 轴没有交点.

1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.

2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;

3. 二次函数常用解题方法总结:

⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,

b ,

c 的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.

二次函数与一元二次方程、一元二次不等式的关系

从函数观点来看,

一元二次不等式()2

00ax bx c a ++>≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,位于x 轴上方的点的横坐标的集合;

一元二次不等式()200ax bx c a ++<≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,位于x 轴下方的点的横坐标的集合;

一元二次不等式()200ax bx c a ++≥≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,

位于x 轴上方的点和与x 轴的交点的横坐标的集合; 一元二次不等式()200ax bx c a ++≤≠的解集就是二次函数

()()20f x ax bx c a =++≠的图像上,

位于x 轴下方的点和与x 轴的交点的横坐标的集合. 一元二次方程()2

00ax bx c a ++=≠的解就是二次函数()()

2

0f x ax bx c a =++≠的图像上,与x 轴的交点的横坐标.

反比例函数

1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线

反比例函数图像中每一象限的每一支曲线会无限接近X 轴Y 轴但不会与

坐标轴相交(K ≠0)。

2、性质:

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y 随x 的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y 随x 的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|

5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.

10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

13.反比例函数图象是中心对称图形,对称中心是原点

指数函数

概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:

规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;

当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时,

图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:

1.当底数相同时,则利用指数函数的单调性进行比较;

2.当底数中含有字母时要注意分类讨论;

3.当底数不同,指数也不同时,则需要引入中间量进行比较;

4.对多个数进行比较,可用0或1作为中间量进行比较

底数的平移:

在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数

1.对数函数的概念

由于指数函数y=a x在定义域(-∞,+∞)上是单调函数,所以它存在反函数,

我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=log a x(a>0,a≠1).

因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x的定义域为(0,+∞),值域为(-∞,+∞).

2.对数函数的图像与性质

对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质.

33.指数式与对数式的互化式

log b a N b a N =?=(0,1,0)a a N >≠>.

34.对数的换底公式

log log log m a m N

N a

=

(0a >,且1a ≠,0m >,且1m ≠, 0N >).

推论 log log m n

a a n

b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).

35.对数的四则运算法则

若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;

(2) log log log a

a a M

M N N =-; (3)log log ()n

a a M n M n R =∈.

36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42

-=?.若)(x f 的定义域为

R ,则0>a ,且0a ,且0≥?.对于0=a 的情形,需要

单独检验.

37. 对数换底不等式及其推广

若0a >,0b >,0x >,1

x a ≠

,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1

(,)a +∞上log ()ax y bx =为增函数.

, (2)当a b <时,在1(0,)a 和1

(,)a

+∞上log ()ax y bx =为减函数.

推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2

log log log 2

a a a

m n

m n +<. 38.对数恒等式N a

N

a =log (a >0,a ≠1,N >0)

n

a n n a a c

b a a a a a a

c b a 1121log log ......3log 2log 1log log log =??=??-

(a,b,c,a1,a2,an 均大于0,且不等于1。)

为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数

y=log2x,y=log10x,y=log10

x,y=log

2

1

x,y=log

10

1

x的草图

由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a>0,a 图

a>1 a<1

性质(1)x>0

(2)当x=1时,y=0

(3)当x>1时,y>0

0<x<1时,y<0

(3)当x>1时,y<0

0<x<1时,y>0 (4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数

补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1) 当x>1时“底大图低”即若a>b则y1>y2

当0<x<1时“底大图高”即若a>b,则y1>y2

比较对数大小的常用方法有:

(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.

(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.

(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.

(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.

3.指数函数与对数函数对比

幂函数

幂函数的图像与性质

幂函数n

y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n

y x =,当11

2,1,,,323

n =±±±

的图像和性质,列表如下. 从中可以归纳出以下结论:

① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.

② 11

,,1,2,332a =

时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1

,1,22

a =---时,幂函数图像不过原点且在()0,+∞上是减函数.

④ 任何两个幂函数最多有三个公共点.

n y x =

奇函数 偶函数 非奇非偶函数

1n >

01

n <<

0n <

y x =

2y x =

3y x =

12

y x =

1y x -=

定义域 R R R {}|0x x ≥ {}|0x x ≠

奇偶性

奇 奇 奇 非奇非偶

奇 在第Ⅰ象限的增减性 在第Ⅰ象限

单调递增

在第Ⅰ象限单调递增

在第Ⅰ象限单调递增

在第Ⅰ象限单调递增

在第Ⅰ象限单调递减

幂函数y x α

=(x ∈R ,α是常数)的图像在第

一象限的分布规律是:

①所有幂函数y x α

=(x ∈R ,α是常数)的图

像都过点)1,1(;

②当

21

,

3,2,1=α时函数y x α

=的图像都过原

O

x

y

O

x

y

O

x

y O

x

y

O

x

y

O

x

y

O

x

y

O

x

y

O

x

y

点)0,0(;

③当1=α时,y x α

=的的图像在第一象限是第一象限的平分线(如2c );

④当3,2=α时,y x α

=的的图像在第一象限是“凹型”曲线(如1c )

⑤当

21

=

α时,y x α

=的的图像在第一象限是“凸型”曲线(如3c )

⑥当1-=α时,y x α

=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )

当0>α时,幂函数y x α

=有下列性质:

(1)图象都通过点)1,1(),0,0(; (2)在第一象限内都是增函数;

(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的; (4)在第一象限内,过点)1,1(后,图象向右上方无限伸展。

当0<α时,幂函数y x α

=有下列性质:

(1)图象都通过点)1,1(;

(2)在第一象限内都是减函数,图象是向下凸的;

(3)在第一象限内,图象向上与y 轴无限地接近;向右无限地与x 轴无限地接近; (4)在第一象限内,过点)1,1(后,

α

越大,图象下落的速度越快。

无论α取任何实数,幂函数y x α

=的图象必然经过第一象限,并且一定不经过第四象限。

对号函数

函数x

b

ax y +

=(a>0,b>0)叫做对号函数,因其在(0,+∞)的图象似符号“√”而得名,利用对号函数的图象及均值不等式,当x>0时,a b x b ax 2≥+

(当且仅当x

b ax =即a b x =

时取等号),由此可得函数x

b

ax y +=(a>0,b>0,x ∈R +)的性质:

相关文档