文档库 最新最全的文档下载
当前位置:文档库 › 惯导第二次作业报告

惯导第二次作业报告

惯导第二次作业报告
惯导第二次作业报告

1、题目分析

本题已知的信息是陀螺仪和加速度计在各个时刻的采样值,以及初始经纬度、高度、姿态角和速度值。需要求解指北方位捷联系统的运动轨迹和姿态角变化。

根据这些已知信息以及捷联式惯导系统的基本力学编排方程可知基本求解过程如下:

第一步,先根据初试的姿态角确定初始的四元数值,进而可以列写出本体系相对于导航系的方向余弦矩阵,然后将加速度计的测量信息经过余弦阵由导航系变换到本体系中。

第二步,根据变换后的比力信息和初始的经纬度、高度和速度值进行指北方位系统的运动解算,可以求出速度信息、指令角速度信息和位置信息。

第三步,根据第二步中求解出来的指令角速度信息,对其经过余弦矩阵变换到本体系中,陀螺仪测量到的信息和变换后的指令角速度相减得到本体系相对于导航系的角速度在本体系中的分解。

第四步,根据四元数的运动学微分方程求解出下一时刻的四元数,根据四元数和欧拉角之间的关系求解出新的姿态角。接着进行以上两步的运算。

经过以上几步就可以对指北方位捷联惯导系统进行解算。

2、解算原理和公式

(1)、初始姿态矩阵的确定: 根据初始姿态角求四元数:

2

cos

2

cos 2

sin 2

sin 2

sin 2

cos 2

cos 2

sin 2

sin 2

sin 2

cos 2

cos 2sin

2

cos 2

sin 2

cos 2

sin 2

cos 2

sin

2

sin 2

sin 2

cos 2

cos 2

cos 3210γ

θφγθφλγ

θφγθφλγ

θφγθφλγ

θφγθφλ-=-=+=+=

根据四元数求方向余弦矩阵:

()

()()

()()()

22220123120313022222

1203012323012222130223010123222222b t C λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ??

+--+-?

?

=--+-+????+---+?

?

(2)、指北方位系统的运动解算: 地理坐标系相对地球坐标系的角速度为:

????

????

???????

???

-=??????????=)tan(L R V R V R V z xt yt

xt xt yt yt t et t ety t etx t

et ωωωω 加速度计获得的比力信息b

ib f 为载体坐标系中各个轴向的比力,而我们需要的比力t it f 为地理坐标系中各个轴向的比力,它们之间应用矩阵t

b C 做变换:

t t b

it b ib f C f =?

根据比力信息可以求出各个方向上的加速度:

??????????-+?????????????????

???++-+-+++-+??????????=?

??????

?????????

?g V V V f f f V V V t etz t ety t

etx t etx t iex t ety t iey t

etx t iex t etz t iez t ety t iey t etz t iez t itz t ity t itx t etz t ety t etx 0002)2()2(022)2(0ωωωωωωωωωωωω

因此可以求得速度为:

t ety t t ety

t ety

t

etx t

t etx

t

etx

V dt V V

V dt V V 0

00

+=+=???

?

载体所在位置的地理纬度L 、经度λ可由下列方程求得:

000

)sec(λλ+=+=?

?

dt L R V L dt R V L t

xt

xt

t

yt

yt

(3)、四元数姿态矩阵的更新:

()b b b t t

tb ib t et ie C ωωωω=-+

式中,b

ib ω为陀螺所测角速度。

用毕卡逼近法更新b t C 的值,

b

ib

T ωθ?= []???

???

?????

????-????-??-????-?-=0000

x

y

z

x z

y y z x

z y x

θθθθθθθθθ

θθθθ 22220x y z θθθθ?=?+?+? ()[]()02sin 2cos 000q I t q ??

????????

??+?=θθθθ ()

()()

()()()

2222

0123120313022222

1203012323012222130223010123222222b t C λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ??

+--+-?

?

=--+-+????+---+?

?

(4)、姿态角的求解: 姿态角与姿态矩阵的关系:

cos cos sin sin sin cos sin sin cos cos sin sin cos sin sin sin cos sin cos cos cos sin sin sin cos sin cos cos cos b t C γ?γθ?

θ?γ?γθ?γ?γθ?

γθθ?

θγ?γθ?

γθ

+??=?

?-?-+-????-?

式中θ,γ,?分别为俯仰角,横滚角和偏航角。如果记

111213212223313233b t T T T C T T T T T T ??

??=??

????

则由以上两式即可解算出姿态角:

()

1231

133312122sin T T tg T T tg T θγ?---=??

=- ?????

= ?

??

另外注意:俯仰角θ定义在[+90,-90]区间和反正弦函数主值一致,不存在多值问题。横滚角γ定义在[-180,180]区间,偏航角φ定义在[0,360]区间,都存在多值问题,应进行判断,确定载体是落在哪一个象限。

3、作业结果

图1:经纬度位置曲线

图2:东向速度曲线

图3:南北方向速度曲线

表1经、纬度,速度和姿态角终值表

4、程序流程图

图7:程序流程图

5、学习小结

距离上次作业已经四个多周了,这段时间针对自己以前存在的问题着重进行了相应的补充学习,下面将自己在惯性导航方面的学习进行一下小结。

上一次在学习小结中提及了在惯性导航的学习中自己存在的缺陷有:

第一:对惯性导航里边的各个推导还是不能总体进行把握。

第二:惯性导航在自己的脑子中还是没有形成一个系统。

第三:由于力学方面的缺陷,有些涉及到力学方面的东西还是不能很好的掌握。

针对上面遇到的问题,在这几个周中我对书中的推导公式进行了自行推导学习,同时在老师讲解的时候注重观察老师在推导公式的时候侧重点在哪里,以及对公式的推导需要注意的问题和各种技巧。经过最近的学习,在老师讲解公式推导的时候能够很好的进行把握。

同时,对于力学方面的知识也进行了相应的学习,但是由于时间问题和理解问题,现在对力学的一些知识仍然存在问题,往后需要多加学习。

6、源程序

format long;

wie=7.292115147e-5;

e=1/298.25;

Re=6378245;

g0=9.7803267714;

gk1=0.00193185138639;

gk2=0.00669437999013;

dt=0.0125; %采样时间

Lon=116.344695283; %初始经度

Long(1)=Lon;

Lat=39.975172; %初始纬度

Lati(1)=Lat;

Height=30; %初始高度

theta=0.120992605;

theta1(1)=theta;

gama=0.010445947;

gama1(1)=gama;

fai=-91.637207; %推导公式中的角度按照顺时针为正

fai1(1)=-fai;

Vx0=0.000048637;

Vx1(1)=Vx0;

Vy0=0.000206947;

Vy1(1)=Vy0;

Vz0=0; %初始速度

load F:/matlab/work/fw.mat;

theta0=theta*pi/180; %转换为弧度值

gama0=gama*pi/180;

fai0=fai*pi/180;

%%%%%%%%%%根据欧拉角求解四元数%%%%%%%%%%%%%%%

q(1,1)=cos(fai0/2)*cos(theta0/2)*cos(gama0/2)+sin(fai0/2)*sin(theta0/2)*sin(gam a0/2);

q(2,1)=cos(fai0/2)*sin(theta0/2)*cos(gama0/2)+sin(fai0/2)*cos(theta0/2)*sin(gam a0/2);

q(3,1)=cos(fai0/2)*cos(theta0/2)*sin(gama0/2)-sin(fai0/2)*sin(theta0/2)*cos(gam a0/2);

q(4,1)=cos(fai0/2)*sin(theta0/2)*sin(gama0/2)-sin(fai0/2)*cos(theta0/2)*cos(gam a0/2);

I=mdiag(1,1,1,1);

i=1;

while i<48001

q0=q(1,i);q1=q(2,i);q2=q(3,i);q3=q(4,i);

%%%%%%%%%%由四元数求解余弦阵%%%%%%%%%%%%%%%

Cn_b=[q0^2+q1^2-q2^2-q3^2,2*(q1*q2+q0*q3),2*(q1*q3-q0*q2);

2*(q1*q2-q0*q3),q2^2-q3^2+q0^2-q1^2,2*(q2*q3+q0*q1);

2*(q1*q3+q0*q2),2*(q2*q3-q0*q1),q3^2-q2^2-q1^2+q0^2;];

f(:,i)=(inv(Cn_b))*f_INSc(:,i); %将比例信息坐标变换到本体系中

Lat0=Lat*pi/180; %转化成弧度值

Lat_c=e*sin(2*Lat0)+Lat; %地理纬度转换为地心纬度

Lat_c=Lat_c*pi/180; %转化成弧度值

Rxt=Re/(1-e*sin(Lat_c)^2);

Ryt=Re/(1+2*e-3*e*sin(Lat_c)^2); %当地子午圈主曲率半径g=g0*(1+gk1*sin(Lat0)^2)*(1-2*Height/Re)/sqrt(1-gk2*sin(Lat0)^2);

%求出在此高度的重力加速度

%%%%%%%%%%捷联导航的速度求解%%%%%%%%%%%%%%%

Vx=(f(1,i)-(2*wie*cos(Lat0)+Vx0/Rxt)*Vz0+2*wie*sin(Lat0)*Vy0)*0.01+Vx0;

%求出下一时刻的东向速度

Vy=(f(2,i)-Vy0*Vz0/Ryt-2*wie*sin(Lat0)*Vx0)*0.01+Vy0;

Vz=(f(3,i)+(2*wie*cos(Lat0)+Vx0/Rxt)*Vx0+(Vy0*Vy0/Ryt)-g)*0.01+Vz0;

Vx0=Vx;Vy0=Vy;Vz0=Vz;

Vx1(i+1)=Vx;Vy1(i+1)=Vy;

%%%%%%%%%%捷联导航的角速度求解%%%%%%%%%%%%%%%

wxt=-Vy/Ryt;wyt=wie*cos(Lat0)+Vx/Rxt;wzt=wie*cos(Lat0)+Vx/Rxt;

%求出指令角速度值

wtb(:,1)=wib_INSc(:,i)-(Cn_b)*[wxt,wyt,wzt]';

%求出本体系相对于导航系的角速度值

wx=wtb(1,1);

wy=wtb(2,1);

wz=wtb(3,1);

%%%%%%%%%%捷联导航的位置求解%%%%%%%%%%%%%%%

Lat=Vy/Ryt*0.01*180/pi+Lat; %求解出下一时刻的纬度值

Lati(i+1)=Lat;

Lon=Vx*sec(Lat0)/Rxt*0.01*180/pi+Lon; %求解出下一时刻的经度值

Long(i+1)=Lon;

%%%%%%%%%%求解下一时刻的四元数%%%%%%%%%%%%%%%

thitx=wx*dt;

thity=wy*dt;

thitz=wz*dt;

thit0=sqrt(thitx^2+thity^2+thitz^2);

dthit=[0,-thitx,-thity,-thitz;thitx,0,thitz,-thity;thity,-thitz,0,thitx;thitz,t hity,-thitx,0;];

A=cos(thit0/2)*I+sin(thit0/2)/thit0*dthit;

q(:,i+1)=A*q(:,i);

%%%%%%%%%%捷联惯导的姿态结算%%%%%%%%%%%%%%%

theta=asin(2*(q2*q3+q0*q1));

theta1(i+1)=theta*180/pi;

if(Cn_b(3,3)>0)

gama=atan((-2*(q1*q3-q0*q2))/(q3^2-q2^2-q1^2+q0^2));

elseif(Cn_b(1,3)<0)

gama=atan((-2*(q1*q3-q0*q2))/(q3^2-q2^2-q1^2+q0^2))+pi;

else

gama=atan((-2*(q1*q3-q0*q2))/(q3^2-q2^2-q1^2+q0^2))-pi;

end

gama1(i+1)=gama*180/pi;

if(Cn_b(2,2)>=0)

fai=atan((2*(q1*q2-q0*q3))/(q2^2-q3^2+q0^2-q1^2));

elseif(Cn_b(2,1)>0)

fai=atan((2*(q1*q2-q0*q3))/(q2^2-q3^2+q0^2-q1^2))+pi;

else

fai=atan((2*(q1*q2-q0*q3))/(q2^2-q3^2+q0^2-q1^2))-pi;

end

fai1(i+1)=-fai*180/pi;

i=i+1;

end

plot(Long,Lati);title('经纬度位置曲线');xlabel('经度/°');ylabel('纬度/°');figure

x=1:0.0125:601;

plot(x,Vx1);title('东西方向速度');xlabel('时间/s');ylabel('速度/m/s');figure plot(x,Vy1);title('南北方向速度');xlabel('时间/s');ylabel('速度/m/s');figure

plot(x,theta1);title('俯仰角');xlabel('时间/s');ylabel('角度/°');figure plot(x,gama1);title('横滚角');xlabel('时间/s');ylabel('角度/°');figure plot(x,fai1);title('偏航角');xlabel('时间/s');ylabel('角度/°');

惯性导航作业

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统。初始经度为116.344695283度、纬度为39.975172度,高度h为30米。初速度 v0=[-9.993908270;0.000000000;0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw.mat中保存的为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列顺序为一~三行分别为X、Y、Z向信息. 4: 航向角以逆时针为正。 5:地球椭球长半径re=6378245;地球自转角速度wie=7.292115147e-5;重力加速度g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1-gk2*c33^2); g0=9.7803267714;gk1=0.00193185138639;gk2=0.00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:load D:\...文件路径...\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2) 做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中。 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

图论作业(1)

第三章 1.证明: 必要性: v 是连通图G 的割边, 则 , 至少有两个连通 分支。设其中一个连通分支顶点集合为V1,另外连通分支顶点集合为V2,即V1与V2构成V 的划分。 对于任意的u ∈V1, v ∈V2,如果割边e 不在某一条(u ,v )路上,那么,该路也是连接G-e 中的u 与v 的路,这与u,v 处于G-v 的不同分支矛盾。 “充分性” 若e 不是图G 的割边,那么G-v 连通,因此在G-v 中存在u,v 路,当然也是G 中一条没有经过边e 的u,v 路。矛盾。 7.证明: v 是单图G 的割点,则G-v 至少两个连通分支。现任取 , 如果x,y 在G-v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,通过u ,可说明,x 与y 在G-v 的补图中连通。若x,y 在G-v 的不同分支中,则它们在G-v 的补图中邻接。所以,若v 是G 的割点,则v 不是其补图的割点。 9.连通图G 的一个子图B 称为是G 的一个块,如果(1), 它本身是块;(2), 若没有真包含B 的G 的块存在。 又由于对于阶数至少是3的 ()()G e G ωω->

图G是块当且仅当G无环并且任意两点都位于同一圈上。根据题意,对于阶数至少是3的图G,由于G没有偶圈,所以G的每个块的点可以在奇圈上,如果不在奇圈上,则块只能是K2,否则如果不是K2的话,该子图将存在割点,该子图就不是块。得证。 16.(1) (2) (3)

第四章3. (1)既是欧拉闭迹又是哈密尔顿圈 (2) (3)

(4) 7.由于图没有奇度顶点,所以是欧拉图,又定理1可得,图G的边集可以划分为圈C1,C2,。。。。Cm,所以E(G)可以表示成C1,C2.。。Cm的并。 10.若图不是二连通,则存在割点,由于哈密尔顿图不存在割点,因而G是非哈密尔顿图。 若G是具有二分类(X,Y)的偶图,且|X|不等于|Y|,设X中所有点为x1,x2.。。。。xm,Y中的所有点为y1,y2.。。。。yn,若存在哈密尔顿图,则在哈密尔顿圈中必然存在X中的点与Y中的点相互交替出现,但是|X|不等于|Y|,则必然出现某两个点同属于|X|或者|Y|,但是G是偶图,属于同一集合的这样的两个点不可以相连,所以存在哈密尔顿圈矛盾,因而不存在哈密尔顿圈。 12. 证明:在G之外加上一个新点v,把它和G的其余各点连接得图G1

北航惯性导航综合实验五实验报告

惯性导航技术综合实验 实验五惯性基组合导航及应用技术实验

惯性/卫星组合导航系统车载实验 一、实验目的 ①掌握捷联惯导/GPS组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理; ③掌握捷联惯导 /GPS组合导航系统静态性能; ④掌握动态情况下捷联惯导 /GPS组合导航系统的性能。 二、实验内容 ①复习卡尔曼滤波的基本原理(参考《卡尔曼滤波与组合导航原理》第二、五章); ②复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的《惯性导航原理》第七章); 三、实验系统组成 ①捷联惯导/GPS组合导航实验系统一套; ②监控计算机一台。 ③差分 GPS接收机一套; ④实验车一辆; ⑤车载大理石平台; ⑥车载电源系统。 四、实验内容 1)实验准备 ①将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台; ②将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算

机、GPS 接收机与导航计算机、GPS 天线与GPS 接收机、GPS 接收机与GPS 电池之间的连接线正确连接; ③ 打开GPS 接收机电源,确认可以接收到4颗以上卫星; ④ 打开电源,启动实验系统。 2) 捷联惯导/GPS 组合导航实验 ① 进入捷联惯导初始对准状态,记录IMU 的原始输出,注意5分钟内严禁移动实验车和IMU ; ② 实验系统经过5分钟初始对准之后,进入导航状态; ③ 移动实验车,按设计实验路线行驶; ④ 利用监控计算机中的导航软件进行导航解算,并显示导航结果。 五、 实验结果及分析 (一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。 1、一分钟惯导位置误差理论推导: 短时段内(t<5min ),忽略地球自转0ie ω=,运动轨迹近似为平面1/0R =,此时的位置误差分析可简化为: (1) 加速度计零偏?引起的位置误差:2 10.88022t x δ?==m (2) 失准角0φ引起的误差:2 02 0.92182g t x φδ==m (3) 陀螺漂移ε引起的误差:3 30.01376 g t x εδ==m 可得1min 后的位置误差值123 1.8157m x x x x δδδδ=++= 2、一分钟惯导实验数据验证结果: (1)纯惯导解算1min 的位置及位置误差图:

专业点题北航机械原理

一、齿轮传动的基本概念 渐开线齿轮的啮合特点:(1)渐开线齿廓能够保证定传动比;(2)渐开线齿廓之间的正压力方向不变;(3)渐开线齿廓传动具有可分性。 齿轮机构的特点是:传动平稳、适用范围广、效率高、结构紧凑、工作可靠、寿命长。但制造和安装精度高、制造费用大,且不适合于距离较远的两轴之间的传动。齿轮传动可以用来传递任意轴间的运动和动力。 齿轮传动按照一对齿轮传递的相对运动分为平面齿轮传动和空间齿轮传动,平面齿轮传动又分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动和人字齿轮传动;按照工作条件可以分为开式传动、半开式传动和闭式传动。 齿轮传动的基本要求是:传动准确、平稳;承载能力强。 二、齿轮传动的设计与计算 齿廓曲线与齿廓啮合基本定律:在啮合传动的任一瞬时,两轮齿廓曲线在相应接触点的功法线必须通过按给定传动比确定的该瞬时的节点。 渐开线齿轮啮合的正确条件:啮合轮齿的工作侧齿廓的啮合点必须总是在啮合线上,即两齿轮的模数和压力角应该分别相等。 齿轮传动的无侧隙啮合及标准齿轮的安装:一个齿轮节圆上的齿厚等于另一个齿轮节圆上的齿槽宽是无侧隙啮合的条件;外啮合齿轮的标准中心距为,内啮合是标准中心距为。

齿轮及其变位的相关计算:相关参数为齿数、模数、分度圆压力角、齿顶高系数和顶隙系数及标准直齿轮的几何尺寸计算,包括分度圆直径、齿顶高、齿根高、齿全高、齿顶圆直径、齿根圆直径、基圆直径、齿距、齿厚、齿槽宽、中心距、顶隙以及变位齿轮的变位系数等。 渐开线齿轮的根切现象:用展成法加工齿轮式,若刀具的齿顶线或齿顶圆与啮合线的焦点超过被切齿轮的极限点,则刀具的齿顶会将被切齿轮的齿根的渐开线齿廓切去了一部 分。避免根切的最小齿数,用标准齿条刀具切制标准齿轮时,因为 ,最少齿数为17。 三、机构的组成 构件指独立的运动单元,两个构件直接接触组成仍能产生某些相对运动的连接叫运动副。运动副按照相对运动的范围可以分为平面运动副和空间运动副;按运动副元素分为:低副-面接触、应力低;高副-点接触或线接触,应力高。其中运动副元素是只形成运动副的组建之间直接接触的部分。 四、机构自由度的计算 机构相对于机架所具有的独立运动的数目,叫机构的自由度。设一个平面机构由N个构件组成,其中必定有一个构件为机架,其活动构件数为n=N-1.设机构共有个低副、 个高副,因为在平面机构中每个低副和高副分别限制两个自由度和一个自由度,故平面机构的自由度为。在计算平面机构的自由度时,应该注意三种特殊情况:(1)复合铰链:三个或更多的构件在同一处联接成同轴线的两个或更多个转动副,就构成了复合铰链,计算自由度时应该按照两个或更多个运动副计算。(2)局部自由度:在有些机构中,为了其他一些非运动的原因,设置了附加机构,这种附加机构的运动是完全独立的,对整个

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

图论大作业

《图论及其应用》大作业 指导老师郝荣霞 知行1503 徐鹏宇 15291200

2.1.9证明:若G是森林且恰有2k个奇点,则在G中有k条边不重的路P1,P2......P K,使得E(G)=E(P1) E(P2) ...... E(P K)。 证明: 对奇点数k使用数学归纳法。 ①当k=1时,G是森林,且有且只有2个奇点 ?G只能为一颗树,且G的所有奇度顶点为两个1度顶点 ?G是一条路 ?满足题设 ②假设当k=t时,结论成立。接下来考虑k=t + 1时的情况。 在G中一个分支中取两个叶子点u与v,令P是连接该两个顶点的唯一路。 由于P上除u,v以外的点均被P经过两次,即G-P后除u,v以外的点奇偶性不变。 ?则G–P是有2t个奇度顶点的森林 ?由归纳假设知,G–P可以分解为t条边不重合的路之并,即E(G-P)=E(P1) E(P2) ...... E(P t)。 ?则G可分解为t+1条边不重合的路之并,即E(G)=E(P1) E(P2) ...... E(P t) E(P)。 ?即证。

2.4.4证明:若e 是K n 的边,则τ(K n -e )=(n-2)n n-3 证明: 由定理2.9:τ(K n )=n n-2 由于τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树) 现在需要求含有e 的生成树棵树, τ(含有e 的生成树棵树)=)1(2 1n 1-n 2-n n n )(=2n n-3 τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树)=(n-2)n n-3

3.2.4证明:不是块的连通图至少有两个块,其中每个恰有一个割点。 证明: 设G 为不是块的连通图,由于G 连通且不是块 ?G 有割点 ①当G 只有1个割点v 时,延割点分开,G1,G2内无割点,且连通,由块的定义知?G1,G2是块,且分别含一个割点v 。 ②当G 含有2个及2个以上割点时,取相距距离最远的两个割点u 和v ,此时分G 为三部分G1,G2,G3 。 由于u ,v 是相距最远的两割点?G1和G3不含割点。 又由于G 连通,G1,G3为G 的一部分?故G1,G3连通。 ?G1,G3内无割点,且连通。 ?G1,G3是块,且分别含割点u ,v 。 ?即证

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 二零一三年六月十日

实验4.1 惯性导航系统运动轨迹规划与设计实验 一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。

图4-1-1USB_PCL6045B 评估板原理框图 如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 1、操作步骤 1)检查电机驱动电源(24V) 2)检查USB_PCL6045B 控制板与上位机及电机驱动器间的连接电缆 3)启动USB_PCL6045B 控制板评估测试系统检查系统是否正常工作。 4)运行编写的定长运动程序,并比较实际位移与设定位移。

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮线图 本题目采用Matlab编程,写出凸轮每一段的运动方程,运用Matlab模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回 程的运动方程 输入凸轮基圆偏 距等基本参数 输出ds,dv,da图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

波音737-800建模大作业

波音737—800飞机飞行模型建立实验 学院:航空自动化 专业:导航制导与控制

1 实验目的 根据飞机所提供的QAR数据,把飞机的飞行过程分为几个阶段,通过受力分析计算得出飞机在各阶段的各个时刻的地速以及飞机当时所处的地球经纬度。这之后,再把计算出来的这些数据与QAR里面的相对应的数据进行比较,得出数据误差。使我们对飞机各阶段的机体受力分析得到验证,最后确定飞机的整个飞行过程的模型。 2 实验内容 分析所得的QAR数据,根据QAR数据对飞机的飞行过程进行分阶段处理。然后查找相关资料,对飞机在飞行各阶段过程中进行受力分析。进而用MATLAB软件编写程序,计算出飞机各个阶段的地速和地球经纬度。最后把计算出来的数据和QAR里相应的数据作比较,用MA TLAB画出比较曲线图,得出计算误差,建立起飞机的飞行过程模型。在整个实验过程中要修学的课程有:《大气数据应用分析》、《导航原理与系统》、《飞机的飞行性能》、《惯性导航原理》、《MATLAB应用与编程》等等。

3 实验步骤 3.1 QAR数据分析 QAR数据分析 数据英文数据意义和用途所用仪表备注 1 东经Present Position Longitude 由0°本初子午线向东、西递增到180°导航仪 2 北纬Present Position Latitude 赤道向北递增到90°导航仪 3 磁航向Heading Magnetic 飞机纵轴在地平面上的投影,与磁子午线的 夹角(磁北顺时针转的夹角)。磁偏角:地 球表面任一点的磁子午圈同地理子午圈的夹 角。 磁罗盘上 有罗差修 正器,已经 抵消罗差, 所以磁罗 盘测的基 本就是磁 航向。 4 标准气压高度ALTITUDE 飞机到标准气压平面的垂直距离气压式高度表 5 左无线电高度RADIO HEIGHT Left 飞机到地面的垂直距离 无线电高 度表 6 机场标高AIR/GROUND 机场与海平面的垂直高度 7 左主起落架Left main gear air/end 起落架用于在地面停放及滑行时支撑飞机并 使飞机在地面上灵活运动,并吸收飞机运动 时产生的撞击载荷。主要用来判断飞机是否 起飞。 8 右主起落架Right main gear air/end 9 真空速Computed airspeed 飞机相对于空气的运动速度,根据空速可计 算地速,从而确定已飞距离和待飞时间。 空速表0.5~1.0 10 马赫数MACH 真空速与飞机所在高度的音速之比,当飞机 的M数超过临界M数时,飞机的空气动力特 马赫数表0.5~1.0

电子科技大学-图论第一次作业

课本习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对"v i v j ? E ((a)),有f (v i v j,),=,u i,u j,?,E,((b)) (1£ i £ 10, 1£j £ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 非负整数组12121(,,,),,2n n n i i d d d d d d d m π==≥≥≥=∑L L 是图序列的充要条件是: ? 11 12312(1,1,,1,,,)d d n d d d d d π++=---L L 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若δ≥2,则G 包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干个连通的情形来证明。设V (G )={V 1,V 2,V 3,?V n },对于G 中的路V 1,V 2,V 3,?V n 若V k 与V 1邻接,则构成一个圈。若V i1,V i2,V i3,?V in 是一条路,由于δ≥2,因此,对于V in ,存在V ik 与之邻接,则V ik ,,?V in V ik 构成一个圈。 ● 17.证明:若G 不连通,则G ?连通。 证明:对于任意的u,v ∈(G ?),若u 与v 属于G 的不同连通分支,显然u 与v 在G ?中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点, 则u 与w ,v 与w 分别在G ?中连通,因此,u 与v 在G ?中连通。 ● 18.证明:若e ∈E(G),则w (G )≤w (G ?e )≤w (G )+1. 证明:若e 为G 的割边,则w (G ?e )= w (G )+1,若e 为G 的非割边,则w (G ?e )=w (G ),

捷联惯导Matlab程序求解飞行器的姿态

捷联惯导程序,依据加表和陀螺仪的输出数据来求解飞行器的姿态 clc; clear; format long; %设置数据精度为15位小数 Data=importdata(''); % 导入实验所采集的数据,以矩阵形式赋给Data变量,必须与该M文件在同一个文件夹中 Px=Data(:,3); % Px,Py,Pz为陀螺仪的输出值 Py=Data(:,4); Pz=Data(:,5); Nx=Data(:,6); % Nx,Ny,Nz为加速度计的输出值 Ny=Data(:,7); Nz=Data(:,8); % 陀螺仪模型参数标定如下: Sx = ; Sy = ; Sz = ; Mxy = ; Mxz = ; Myx = ; Myz = ; Mzx = ; Mzy = ; Dx = ; Dy = ; Dz = ; GyroCali_A = [ 1 -Mxy -Mxz ; -Myx 1 -Myz ; -Mzx -Mzy 1 ]; % 加速度计模型参数标定如下: Kx = ; Ky = ; Kz = ; Ixy = ; Ixz = ; Iyx = ; Iyz = ; Izx = ; Izy = ; Bx = ; By = ; Bz = ; AccCali_A = [1 -Ixy -Ixz ; -Iyx 1 -Iyz ; -Izx -Izy 1 ]; Delta_t = ; %采样时间为秒 Delta_Theta_x = 0; Delta_Theta_y = 0; Delta_Theta_z = 0; %定义陀螺仪输出的角度增量 Delta_Vx = 0; Delta_Vy = 0; Delta_Vz = 0; %定义加速度计输出的速度增量 L = zeros(1,12001); L(1)= *pi/180 ; %纬度用L表示,纬度的初始值划为弧度形式,因为后面计算位置矩阵更新 L(2)= *pi/180 ; %时需要用到前两次的L值来计算当前L值,所以在此定义2个初始L值 Lamda = *pi/180 ; %经度用Lamda表示,经度的初始值划为弧度形式

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 GAGGAGAGGAFFFFAFAF

二零一三年六月十日 实验4.1 惯性导航系统运动轨迹规划与设计实验一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 GAGGAGAGGAFFFFAFAF

USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意 2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。 GAGGAGAGGAFFFFAFAF

图4-1-1USB_PCL6045B 评估板原理框图如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 GAGGAGAGGAFFFFAFAF

导航系统大作业

导航系统

1.简述捷联惯性系统中地理系到机体系的姿态阵b g C 其含义及其功能。 答:含义:导航坐标系g g g O x y z -到机体坐标系b b b O x y z -的一组欧拉角为,,θγψ,导航坐 标系经过3次转动到机体坐标系。g g g x y z 依次沿g O z -、' b O x -、'' b O y -旋转角度-ψ、θ、γ后到b b b x y z 。姿态矩阵中包含了机体的姿态角方位角ψ、俯仰角θ和横滚角γ。 功能:机体陀螺仪输出的角速度信息经过补偿后,积分得到机体坐标系与导航坐标系的姿态信 息和姿态转移矩阵。捷联惯导系统中,加速度计与载体固连,利用姿态阵完成加速度计输出信息从机体坐标到导航坐标的转换。转换后的加速度计信息经过积分可得到机体在导航坐标系下的速度和位置。 2.画出并用式表达速度三角形(地速、控速、风速)及航迹角、航向角与偏流角之间的关系。 答:风速:空气相对于地面的运动速度;空速:飞机相对于空气运动的速度;地速:飞机相对 于地面的运动速度。=+v v v 风地空 航向角:机头在水平面投影与真北方向的夹角?;偏流角:空速矢量和地速矢量之间的夹角,用 δ表示;航迹角:飞机速度矢量在水平面投影与真北方向的夹角。航向角?加上偏流角δ等于地 速v 地的方位角α。 3.简述惯性导航系统、卫星导航系统、多普勒导航、塔康、VOR/DME 、天文导航其各自的基本工作原理、特点及误差特性。 答:一、惯性导航系统 (1)工作原理 以牛顿力学定律为基础,以陀螺仪和加速度计为敏感器件进行导航参数解算。系统根据陀螺

仪的输出建立导航坐标系,根据加速度计输出解算出运载体的速度和位置,从而实现姿态和航向解算。 (2)特点 惯性导航系统不需要任何外来信息,也不会向外辐射任何信息,仅依靠惯性器件就能全天候,全球性的自主三维定位和三维定向,同时具备自主性、隐蔽性和信息的完备性。 (3)误差特性 误差随时间积累,短时间导航精度较高。 二、卫星导航系统 (1)工作原理 以卫星和用户接收机天线之间的距离观测量为基准,根据已知的卫星的瞬时坐标(轨道根数),来确定用户观测点的经纬度和高程信息。 (2)特点 卫星导航系统具有全天候、高精度、自动化、高效益、性能好,应用广的特点,是一种被动式的导航系统。但需要地面站支持,电波易受干扰。 (3)误差特性 在卫星导航系统中,影响测量结果的误差因素有与卫星有关的误差,与观测有关的误差,和与观测站有关的误差。包括卫星时钟、星历误差,也受电离层、对流层和周围环境事物遮挡等影响。长时间导航精度较高。 三、多普勒导航系统 (1)工作原理 多普勒导航系统是一种自助式推算导航系统。机载多普勒雷达向地面发射电波和接收地面的回波,通过测量地面回波的多普勒频移,通过定位解算,即可得到飞行器的位置信息。 (2)特点 多普勒导航系统不需要有地面或卫星发射台,发射的波束窄,角度陡,难以被监测,自主性强,测速精度高,不需要初始对准。 (3)误差特性 影响多普勒导航系统的误差有测速误差和飞机的角度敏感误差。系统的定位误差发散,随时间推移而增大。 四、塔康导航系统 (1)工作原理 塔康导航系统是由塔康地面设备(塔康信标)和机载设备组成。其采用极坐标体制定位,飞机定时向地面台发送和接收信号,机载设备与塔康信标配合连续解算出飞机所在点相对于信标的方位角和距离。 (2)特点

北航惯性导航综合实验一实验报告

实 验一 陀螺仪关键参数测试与分析实验 加速度计关键参数测试与分析实验 二零一三年五月十二日 实验一陀螺仪关键参数测试与分析实验 一、实验目得 通过在速率转台上得测试实验,增强动手能力与对惯性测试设备得感性认识;通过对陀螺仪测试数据得分析,对陀螺漂移等参数得物理意义有清晰得认识,同时为在实际工程中应用陀螺仪与对陀螺仪进行误差建模与补偿奠定基础。 二、实验内容 利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验与陀螺仪标度因数与零偏建模、误差补偿实验。 三、实验系统组成 单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理 1.陀螺仪原理 陀螺仪就是角速率传感器,用来测量载体相对惯性空间得角速度,通常输出与角速率对应得电压信号。也有得陀螺输出频率信号(如激光陀螺)与数字信号(把模拟电压数字化)。以电压表示得陀螺输出信号可表示为: (1-1)式中就是与比力有关得陀螺输出误差项,反映了陀螺输出受比力得影响,本实验不考虑此项误差。因此,式(1-1)简化为 (1-2)由(1-2)式得陀螺输出值所对应得角速度测量值: (1-3) 对于数字输出得陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即: (1-4)就是就是陀螺仪得零偏,物理意义就是输入角速度为零时,陀螺仪输出值所对应得角速度。且 (1-5) 精度受陀螺仪标度因数、随机漂移、陀螺输出信号得检测精度与得影响。通常与表现为有规律性,可通过建模与补偿方法消除,表现为随机特性,可通过信号滤波方法抵制。因此,准确标定与就是实现角速度准确测量得基础。 五、陀螺仪测试实验步骤 1)标度因数与零偏测试实验 a、接通电源,预热一定时间; b、陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

北航七系机械学院机械原理大作业

机械原理课程机构设计 实验报告 题目:建筑垃圾破碎机的设计与分析小组成员与学号: 班级: 第1页

建筑垃圾破碎机的设计与分析 摘要 本文简单介绍了建筑垃圾回收再利用的重要性,与工艺性,并自主设计了将颚式破碎机与反击式破碎机相结合的建筑垃圾破碎机。通过solidworks软件对设计机构进行建模,用adams进行仿真分析,验证所设计的机构均达到设计需要与可行性。 关键词:建筑垃圾破碎机、连杆机构、凸轮廓线设计 第2页

目录 1.机构的引出 (4) 1.1 建筑垃圾及其回收利用价值 (4) 1.2颚式破碎机和反击式破碎机各自的利弊分析 (4) 1.3设计新的建筑垃圾破碎机 (6) 2.机构的结构、功能介绍及建模 (7) 2.1 机构设计简图及各部分功能 (7) 2.2尺寸设计及建模 (8) 2.2.1主动轮和各从动轮的传动比 (8) 2.2.2凸轮廓线设计与挡板行程 ................................... 错误!未定义书签。 3.机构的仿真分析 (12) 3.1颚式破碎机的急回特性 (12) 3.2颚式破碎机的传动角验证 (14) 3.3停歇运动导杆机构所带动的下挡板往复运动的间歇性 (14) 4.总结 (17) 第3页

第4页 1. 机构的引出 1.1 建筑垃圾及其回收利用价值 二十一世纪是一个飞速发展的时代,随着城市人口的增加、新农村建设以及城市地铁的大规模扩建,建筑行业的新陈代谢全面加速,建筑垃圾的排放量也随之增加。然而,传统的方法处理建筑垃圾是将建筑垃圾运往乡村或郊外,露天堆放或掩埋。这样不仅破坏植被,降低土壤的生产能力,而且会让建筑垃圾中的有害物质渗入地下水层,污染环境,给人们的生活带来困扰。因此,如何实现建筑垃圾的高效、环保循环利用成为当今人们所面临的一个难题。 建筑垃圾的主要组成部分是废弃混凝土和砖块,而它们都是由水泥和天然砂石拌合而成的,这些都是砖块等建筑材料的重要组成部分。为了最大程度的利用建筑垃圾,首先应该解决的问题就是对其中的大块物料进行破碎,只有这样,破碎后的小快物料才能很好的还原天然砂石的性能,实现建筑垃圾的循环利用。 1.2颚式破碎机和反击式破碎机各自的利弊分析 目前应用较广的破碎机有颚式破碎机与反击式破碎机两种。 颚式破碎机的主体构造如图 1 图 1 颚式破碎机的主体构造 其工作原理为:轮①通过皮带和电机上的主动轮相连,①的转动带动杆②进而带动构件③的摆动(构件③的上端和机架铰接)。构件③通过摆动将体积较大

图论第二次作业

第四章 3(1).有欧拉闭迹和H圈 (2).有欧拉闭迹但没有H圈 (3).有H圈无欧拉闭迹 (4).无欧拉闭迹且没有H圈 4:证:若G不是H图,由chvatal定理知,G度弱于某个图,故: = 这与题目已知条件相矛盾,故G是H图。 8:证:不失一般性,设G是连通图,是G的2k个奇点,连接,得到,则得到图,则是欧拉图,设C是中 的欧拉闭迹,删除C中的,即可得到k条边不重复的迹,使得 . 10(1)若G不是二连通图,那么G不连通或者有割点u,则w,故G是

非H图。 (2). 若G是具有二分类的偶图,且,若假设则,故 G是非H图。 11:设R是G中的H路,则对于每个真子集S,有w,又: w w,故w. 12:设u是G外一点,将u和G中的每个点连接得到图,则G的度序列为 ,故有题意知,不存在小于的正整数m,使得 ,故由Chvatal定理知,图是H图,则G有 H路。 15:(1)由图的闭包定义可知,构作一个图的闭包,可以通过不断在度和大于等于n的非邻接顶点加边得到。故图的闭包算法如下: 第一步:令; 第二步:在中求顶点,使得: 第三步:如果,则转到第四步;否则,停止,则可得到G 的闭包。 第四步:令,转到第二步。 复杂性分析:由其算法我们可得出其总运算量为: 故该算法能够在多项式时间内被解决,故该算法是一个好算法。 (2).设计算法如下: 第一步:在闭包构造中,将加入的边依次加入次序记为 ,在中任意取出一个H圈,令k=N;

第二步:若不在中,令;否则转到第三步。 第三步:设,令;求中两个相邻点u和v使得, u,v依序排列在上,且有:,令: 第四步:若k=1,转到第五步;否则,令k=k-1,转第二步; 第五步:停止。为G的H圈。 算法的复杂性分析:因为该算法进行了N次循环,每次循环中找到满足要求的邻接顶点u和v至多需要n-3次判断,所以总的运算量:N(n-3)。是一个好算法。 第五章 1:(1)证:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。 若划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。显然,X中顶点互不邻接,Y中顶点也如此。所以k方体是偶图。又k方体的每个顶点度数为k,所以k方体是k正则偶图。所以由推论可知:k方体存在完美匹配。 (2).解K 2n 的任意一个顶点有2n-1中不同的方法被匹配。所以K 2n 的不同完美匹 配个数等于(2n-1)K 2n-2,如此推下去,可以归纳出K 2n 的不同完美匹配个数为: (2n-1)!!。同理,K n, n 的不同完美匹配个数为:(n)!。 2:若不然,设M 1与M 2 是树T的两个不同的完美匹配,那么M 1 ΔM 2 ≠Φ,且T[M 1 ΔM 2 ] 每个顶点度数为2,即它存在圈,于是推出T中有圈,矛盾。故一棵树中最多只有一个完美匹配。 7:解:设 作如下四条路: 故其四个生成圈如下:

相关文档