文档库 最新最全的文档下载
当前位置:文档库 › 3-迭代与分形

3-迭代与分形

实验二迭代与分形

一、实验目的

了解分形几何的基本特性

了解通过迭代方式,产生分形图的方法欣赏美妙的分形艺术

二、问题描述

欧氏几何研究对象:都是规则并且光滑的

比如:直线、曲线、曲面等

客观世界中物体形状:近似当作欧氏几何的对象比如:将凹凸不平的地球表面近似为椭球面极不规则的形态:传统的几何学就无能为力了!

比如:弯弯曲曲的海岸线、变化的云朵、

布朗运动的轨迹,等……

如何描述这些复杂的自然形态?

三、问题分析

曼德尔布罗特[B.B.Mandelbrot]

1967年:研究英国的海岸线形状等问题1. 英国的海岸线究竟有多长?

取决于你所选用的尺的长度!

长度已不能正确概括这类不规则图形的特征特征1:无标度性。

Mandelbrot集合局部放大

3. Mandelbrot将这类几何形体称为分形

具有无限嵌套的层次结构

具有局部与整体的相似性

具有非拓扑维数,且大于对应的拓扑维数

具有随机性

海岸、山峦、云彩等自然现象都具有分形的特性分形(fractal)------大自然的几何学

曼德布罗(Mandelbrot )

分形几何的创始人:

《自然界的分形几何》,

1977

《分形:形态、偶然性和维》,1982分形的原义:

分形的形成标志:

不规则的、分数维的、支离破碎的

四、预备知识

1. 什么是迭代

就是将一种规则反复作用在某个对象上分形几何把自然形态,

看作是具有无限嵌套的层次结构

简单的迭代过程,

就是描述复杂的自然形态的有效方法

(1)图形迭代

给定初始图形F0,以及一个替换规则R ,将R 反复作用在初始图形F0上,

产生一个图形序列:

R (F0)=F1,

R (F2)=F3,R (F1)=F2,

其极限图形就是分形。(称R 为生成元)。

(2)函数迭代

给定初始值x0,以及一个函数f(x),将f(x)反复作用在初始值x0上,

产生一个数列:

f(x0)=x1,

f(x1)=x2,

f(x2)=x3,

2. 分形几何体的维数

维数就是几何体在“尺度”上的特征

通常的几何体具有整数维:

一维的线段、二维的正方形、三维的立方体,分形中的几何对象,

需要定义分形自己的维数(分数维)

比如Koch曲线(长度是无穷大,面积是零)用一维的线段去量,得数无穷大,尺子太小用二维的正方形去量,得数为零,尺子又太大Koch曲线的维数:界于1与2之间。

五、实验过程

本实验以迭代的方式,

来体验生成分形图的过程,

从而对分形几何有一个直观的了解,并感受美丽的分形图案。

计算Koch曲线的相似维数

相似形个数:m=4,

边长放大倍数:c=3,

=÷=÷=

d m c

ln ln ln4ln3 1.2619 Koch曲线的维数d=1.2619。

Koch曲线的维数界于:1与2之间。

(长度为无穷大、面积为零)

将一个正方形,

然后挖调中间的一个。

均匀分成九个小正方形

,

2. 谢尔宾斯基(Sierpinski )地毯

计算Sierpinski 地毯的相似维数

相似形个数:m=8,

边长放大倍数:c=3,

Sierpinski 地毯的维数d=1.8928 。

Sierpinski 地毯的维数界于:1与2之间。ln ln ln8ln3 1.8928d m c =÷=÷=

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

matlab实现牛顿迭代法求解非线性方程组教学文稿

matlab实现牛顿迭代法求解非线性方程组 已知非线性方程组如下 3*x1-cos(x2*x3)-1/2=0 x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0 exp(-x1*x2)+20*x3+(10*pi-3)/3=0 求解要求精度达到0.00001 ———————————————————————————————— 首先建立函数fun 储存方程组编程如下将fun.m保存到工作路径中: function f=fun(x); %定义非线性方程组如下 %变量x1 x2 x3 %函数f1 f2 f3 syms x1 x2 x3 f1=3*x1-cos(x2*x3)-1/2; f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06; f3=exp(-x1*x2)+20*x3+(10*pi-3)/3; f=[f1 f2 f3]; ———————————————————————————————— 建立函数dfun 用来求方程组的雅克比矩阵将dfun.m保存到工作路径中: function df=dfun(x); %用来求解方程组的雅克比矩阵储存在dfun中 f=fun(x); df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')]; df=conj(df'); ———————————————————————————————— 编程牛顿法求解非线性方程组将newton.m保存到工作路径中: function x=newton(x0,eps,N); con=0; %其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N; f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); x=x0-f/df; for j=1: length(x0); il(i,j)=x(j); end if norm(x-x0)

分形与分形艺术

分形与分形艺术 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 “分形” 一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有“破碎”、“不规则”等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的“蜿蜒曲折的一段海岸线”,无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。 图 1 Mandelbrot集合

迭代与分形

实验名称:迭代与分形 专业:信息工程 班级:09级四班 姓名: 序号:29,38 提交日期:2011年4月29日 一、实验目的与要求 1.认识Fibonacci数列,体验发现其通项公式的过程; 2.了解matlab软件中进行数据显示与数据拟合的方式; 3.掌握matlab软件中plot, polyfit等函数的基本用法; 4.提高对数据进行分析与处理的能力。 二、问题描述 几何学研究的对象是客观世界中物体的形状。传统欧氏几何学的研究对象,都是规则并且光滑的,比如:直线、曲线、曲面等。但客观世界中物体的形状,并不完全具有规则光滑等性质,因此只能近似当作欧氏几何的对象,比如:将凹凸不平的地球表面近似为椭球面。虽然多数情况下通过这样的近似处理后,能够得到符合实际情况的结果,但是对于极不规则的形态,比如:云朵、烟雾、树木等,传统的几何学就无能为力了。 如何描述这些复杂的自然形态?如何分析其内在的机理?这些就是分形几何学所面对和解决的问题。 三、问题解决 (1)对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。 (2)自己构造生成元(要有创意),按照图形迭代的方式产生分形图,用计算机编制程序绘制出它的图形,并计算其分形维数。 1、程序如下: function plottrkoch(a,k)%函数,a为迭代0次的三角形的边长,k为迭代 次数

p=[0 0;a 0;a/2 a/2*sqrt(3);0 0]; n=3; A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; for s=1:k j=0; for i=1:n q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A'; j=j+1;r(j,:)=q1+2*d; end n=4*n; clear p p=[r;q2]; end mianji=sqrt(3)*(1+3*(1-(4/9)^k)/5)/4*a^2%计算迭代k次后的面积大小weishuD=log(4)/log(3)%计算维数 plot(p(:,1),p(:,2)) axis equal 当k=1时 当k=3时

牛顿迭代法解元方程组以及误差分析matlab实现

.0],;,[0 ),()(),()(),(0),()(),()(),(,.**,0],;,[),()()(),()()(,0),(),(),(])()[(),(),(),(),(),(])()[(),(),(2,),(])()[(21),(])()[(),(),()(2 )(''))((')()(: 1n 1n 110101010100000000000000000000000000200000000000 00 000fg g f y y g f g f g f fg x x g g f f y x g y y y x g x x y x g y x f y y y x f x x y x f y x y x y x g f g f fg g f y y g f g f g f fg x x g f g f fg g f y y g f g f g f fg x x g g f f y x g y x g y y y x g x x y x f y x f y y y x f x x y x g y x f y x g y y y x x x y x g y x g y x f y x g y x f y y y x x x y x f y x f y x y x f y y y x x x y x f y y y x x x y x f y x f x x f x x x f x f x f x x n n x y y x y y y x y x n n y n n n x n n n n n y n n n x n n n n n x y y x x x x y y x y y x y y x x x x y y x y y y x y x y x y x y y x x y y x x y x y y x x ,则其解可记为: 的行列式不为若系数矩阵: 附近的线性化方程组为在一元方程牛顿迭代法,类似 ,的新近似值于是就得到了根,则可得解: 的行列式不为若系数矩阵),(),( ),(),( 则两式构成方程组: 令可得: 构成二元方程组,同样与若另有一方程: 阶小项,得到线性方程忽略在方程根附近取值时,当二元函数的展开为: 开类似一元函数的泰勒展?????+-+=-+-+=?????=-+-+=-+-+??? ????-+-+=-+-+=????????-+-=--+-=-?????-=-+--=-+-==??-+??-+=??-+??-+=??-+??-+??-+??-+=-+ -+=++========η ξξ

Matlab实验报告:分形迭代

数学实验报告:分形迭代 练习1 1.实验目的:绘制分形图案并分析其特点。 2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。 3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代。 4.实验步骤: (1)Koch曲线 function koch(p,q,n) % p、q分别为koch曲线的始末复坐标,n为迭代次数 if (n==0) plot([real(p);real(q)],[imag(p);imag(q)]); hold on; axis equal else a=(2*p+q)/3; % 求出从p 到q 的1/3 处端点a b=(p+2*q)/3; % 求出从p 到q 的2/3 处端点b c=a+(b-a)*exp(pi*i/3);% koch(p, a, n-1); % 对pa 线段做下一回合 koch(a, c, n-1); % 对ac 线段做下一回合 koch(c, b, n-1); % 对cb 线段做下一回合 koch(b, q, n-1); % 对bq 线段做下一回合 end (2)Sierpinski三角形 function sierpinski(a,b,c,n) % a、b、c为三角形顶点,n为迭代次数 if (n==0) fill([real(a) real(b) real(c)],[imag(a) imag(b) imag(c)],'b');% 填充三角形abc hold on; axis equal else a1=(b+c)/2; b1=(a+c)/2; c1=(a+b)/2; sierpinski(a,b1,c1,n-1); sierpinski(a1,b,c1,n-1); sierpinski(a1,b1,c,n-1); end (3)树木花草 function grasstree(p,q,n) % p、q分别为树木花草始末复坐标,n为迭代次数

MATLAB程序(牛顿法及线形方程组)

MATLAB 程序 1、图示牛顿迭代法(M 文件)文件名:newt_g function x = new_g(f_name,x0,xmin,xmax,n_points) clf,hold off % newton_method with graphic illustration del_x = 0.001; wid_x = xmax - xmin; dx = (xmax - xmin)/n_points; xp = xmin:dx:xmax; yp = feval(f_name,xp); plot(xp,yp);xlabel('x');ylabel('f(x)'); title('newton iteration'),hold on ymin = min(yp); ymax = max(yp); wid_y = ymax-ymin; yp = 0. * xp; plot(xp,yp) x = x0; xb = x+999; n=0; while abs(x-xb) > 0.000001 if n > 300 break; end y=feval(f_name,x); plot([x,x],[y,0]);plot(x,0,'o') fprintf(' n = % 3.0f, x = % 12.5e, y = % 12.5e \ n', n, x, y); xsc = (x-xmin)/wid_x; if n < 4, text(x,wid_y/20,[num2str(n)]), end y_driv = (feval(f_name,x + del_x) - y)/del_x; xb = x; x = xb - y/y_driv; n = n+1; plot([xb,x],[y,0]) end plot([x x],[0.05 * wid_y 0.2 * wid_y]) text( x, 0.2 * wid_y, 'final solution') plot([ x ( x - wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y]) plot([ x ( x + wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y]) 传热问题 假设一个火炉是用厚度为0.05m 的砖单层砌成的。炉内壁温度为T 0=625K, 外壁温度为T 1(未知)。由于对流和辐射造成了外壁的热量损失,温度T 1由下式决定: 44111()()()()0f k f T T T T T h T T x εσ∞=-+-+-=? 其中: k :炉壁的热传导系数,1.2W/mK ε: 发射率,0.8 T 0:内壁温度,625K T 1:外壁温度(未知),K T ∞:环境温度,298K T f :空气温度,298K H :热交换系数,20W/m 2K

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

混沌学222

混沌学 "混沌"一词译自英文"chaos","chaos"一词来自希腊文" ",其原意是指先于一切事物而存在的广袤虚无的空间,后来罗马人把混沌解释为原始的混乱和不成形的物质,而宇宙的创造者就用这种物质创造出了秩序井然的宇宙。我国自古就有用"混沌"状态来描述万物伊始的宇宙。《老子》一书中所说"有物混成,先天地生。"就是一例。而《庄子》三十三篇中关于浑(混)沌的论述则更赋哲理,《庄子》内篇七未尾有这样一段话:"南海之帝为倏。北海之帝为忽。中央之帝为浑沌,倏与忽时相迂於混沌之地,浑沌待之甚善。倏与忽谋报混沌之德,曰:人皆有七窍。以视听食息,此独无有,当试凿之。日凿一窍,七日而混沌死。"可见,《庄子》一书中的浑沌是一位君主的名字。此人无眼、无鼻、无口、无耳,但对南、北方君主很好,他们为了报答,试图帮助浑沌进行手术,开七孔于头部,一天一个手术,七天便使浑沌这位君主死掉了。倏忽是迅速灵敏的意思,混沌则表示无知愚昧。虽然上文的混沌也代表一种无序,但这与当代混沌科学是信息的起源恰恰相反。当代混沌的含义是指非平衡态的混沌,是无序中的有序,是"活"的无序,而庄子的混沌是平衡态的混沌,是"死"的无序。庄子的文章主要是通过自然现象来隐喻哲理,他认为为人处事不应一触即跳,有时不如伪装成一个闭目塞听的人。这是对人类行为具备混沌的必要性的最早哲学观点,另外《庄子》的文章也论及了混沌的重要性:"万物云云,各复其根,各复其根而不知,浑浑沌沌,终身不知,若彼知之,乃是离之。"这段文字表达了这样一个观点:认为混沌是介乎可知(如确定论)与不可知(如概率论)之间的潜在的"万物云云"的根源。庄子为研究个人在政治生活中的策略而引入混沌的思想,可谓是一大贡献。 继相对论和量子论之后的混沌学对以牛顿经典力学为核心的经典科学世界图景进行了又一次深刻的变革如果一个系统的演变过程对初态非常敏感,人们就称它为混沌系统。研究混沌运动的一门新学科,叫作混沌学(英文:Chaos)。混沌学发现,出现混沌运动这种奇特现象,是由系统内部的非线性因素引起的。 美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹于1963年《大气科学》杂志上发表了“决定性的非周期流”一文,阐述了在气候不能精确重演与长期天气预报者无能为力之间必然存在着一种联系,这就是非周期性与不可预见性之间的关系。洛伦兹在计算机上用他所建立的微分方程模拟气候变化的时候,偶然发现输入的初始条件的极细微的差别,可以引起模拟结果的巨大变化。洛伦兹打了个比喻,即在南半球巴西某地一只蝴蝶的翅膀的偶然扇动所引起的微小气流,几星期后可能变成席卷北半球美国得克萨斯州的一场龙卷风,这就是天气的“蝴蝶效应”。 与我们通常研究的线性科学不同,混沌学研究的是一种非线性科学,而非线性科学研究似乎总是把人们对“正常”事物“正常”现象的认识转向对“反常”事物“反常”现象的探索。例如,孤波不是周期性振荡的规则传播;“多媒体”技术对信息贮存、压缩、传播、转换和控制过程中遇到大量的“非常规”现象产生所采用的“非常规”的新方法;混沌打破了确定性方程由初始条件严格确定系统未来运动的“常规”,出现所谓各种“奇异吸引子”现象等。 混沌学的另一个重要特点是,他致力于研究定型的变化,而非日常我们做熟悉的定量。这是由它的成立的目的——解决复杂的,多因素替换成为引起变化的主导因素的系统而决定的。它的基本观点是积累效应和度,即事物总处在平衡状态下的观点。它是与哲学一样,适用面最广的科学。 混沌不是偶然的、个别的事件,而是普遍存在于宇宙间各种各样的宏观及微观系统的,万事万物,莫不混沌。混沌也不是独立存在的科学,它与其它各门科学互相促进、互相依靠,由此派生出许多交叉学科,如混沌气象学、混沌经济学、混沌数学等。混沌学不仅极具研究

心脏中的混沌现象

心脏中的混沌现象 刘 芳 魏建西 综述 杨福生* 审 白求恩国际和平医院(050082) *清华大学电机系(100084) 摘要 近年来混沌和分形理论被广泛用于研究复杂的生命现象,本文简要介绍了混沌和分形理论的一般概念以及常用的非线性动力学方法,着重介绍了上述理论在心脏病学中的应用。 关键词 混沌 分形 心脏病 1 引言 混沌,是非线性行为的理论学说。混沌提供了一种了解很多生物现象的新工具[1,2],随着各种成功的非线性动力学概念和技术被用于人体生理过程中的非线性行为,使人们已能更好地理解复杂的心律失常、浦肯野氏纤维传导、房室传导类型等等[3,4]。讲到混沌就离不开分形,本文将就混沌与分形概念、两者在心脏病学中的应用,以及常用的非线性动力学方法进行综述。 2 一般概念 2.1 混沌理论 混沌定义为一个非周期似随机行为的确定系统。比较两个我们熟悉的行为——随机和周期。随机行为绝对不重复自己,它是内在特有的不可预测和非组织的。从生理上讲,遗传易位、受精、受体结合是基本随机的。周期行为是高度可预测的,它总是以一个有限的时间间隔重复自己如数学上的正弦波,妇女的月经也被定义为周期行为。混沌不同于周期和随机,但又具有两者的特点,虽然混沌行为看上去无组织像随机行为,但它实际上是可以确定的。目前的研究已经证实,麻疹流行、心脏行为模式、心肺相互作用、血细胞生成、脑电图等均是呈混沌的[4,5]。 混沌的特点如下: (1)混沌是确定性和随机性两者的结合。在牛顿物理学中,如果知道了方程(例如抛物线)和初始状态(例如X和K),就可以准确预测系统行为。不象牛顿物理学,混沌行为永不准确重复自己,没有可辨别的周期使它在规则的间隔返回。 (2)混沌系统表现为敏感地依赖初始状态。这句话的意思是非常小的初始状态的差别将导致巨大的结果差别。 (3)混沌行为被约束在比较窄的范围内。虽然表现为随机的,系统行为实际是有界限的,而非无界限的漫游。 (4)混沌行为有确定的形式。混沌行为不但是受约束的,而且有特定的行为模式[5]。2.2 分形 分形是以几何学的观点去观察一些看起来毫无规律的图形,如云团、海岸线、血管结构等。分形的突出特点是分数维和自相似。所谓分数维是指维数在日常所见的一维、二维、三维之间,其值不是一个整数。如一个正方形是二维,一本杂志是三维;但我们无法断定人体的血管组织其整个组织到底是处于一维、二维、还是三维空间,因为无法在长度、面积或体积上找到共有意义的表达,也即用整数维表达血管组织没有意义,因此整数维不能准确刻划出它的性质,但我们可用分数维(分形维,简称分维)的概念来定义这些形体。有 100

分形几何学

2 分形几何学的基本概念 本章讨论分形几何学的一些基本内容,其中:第1节讨论自相似性与分形几何学的创立;第2节讨论分形几何学的数学量度,即三种不同的维数计算方法;第3节讨论应用分形几何方法所实现的对自然有机体的模拟。 2.1自相似性与分形几何学 无论人们通过怎样的方式把欧几里得几何学的形体与自然界关联起来,欧氏几何在表达自然的本性时总是会遇到一个难题:即它无法表现自然在不同尺度层次上的无穷无尽的细节。欧氏几何形体在局部放大后呈现为直线或光滑的曲线,而自然界的形体(如山脉、河流、云朵等)则在局部放大后仍呈现出与整体特征相关的丰富的细节(图版2-1图1),这种细节特征与整体特征的相关性就是我们现在所说的自相似性。

自相似性是隐含在自然界的不同尺度层次之间的一种广义的对称性,它使自然造化的微小局部能够体现较大局部的特征,进而也能体现其整体的特征。它也是自然界能够实现多样性和秩序性的有机统一的基础。一根树枝的形状看起来和一棵大树的形状差不多;一朵白云在放大若干倍以后,也可以代表它所处的云团的形象;而一段苏格兰的海岸线在经过数次局部放大后,竟与放大前的形状惊人地相似(图版2-1图2)。这些形象原本都是自然界不可琢磨的形状,但在自相似性这一规律被发现后,它们都成为可以通过理性来认识和控制的了。显然,欧氏几何学在表达自相似性方面是无能为力了,为此,我们需要一种新的几何学来更明确地揭示自然的这一规律。这就是分形几何学产生的基础。

1977年,曼德布罗特(Benoit Mandelbrot)出版了《自然的分形几何学》(The Fractal Geometry of Nature)一书,自此分形几何学得以建立,并动摇了欧氏几何学在人们形态思维方面的统治地位。分形几何学的研究对象是具有如下特性的几何形体:它们能够在不断的放大过程中,不停地展现出自相似的、不规则变化着的细节(图2-1图3)。这些几何形状不同于欧氏几何形体的一维、二维或三维形状,它们的维数不是简单的1、2或3,而是处于它们之间或之外的分数。 科赫曲线(Koch Curve)是分形几何学基本形体中的一个典型实例,它是由这样一种规律逐次形成的:用一根线段做为操作对象,对其三等分,把中间一段向侧面旋转60度,并增加另一段与之长度相同的线段把原来的三条线段连接为一体,这四条线段组成的形状就是第一代的科赫曲线;分别对它的每一条线段重复上述的操作,将形成第二代科赫曲线;再对其每一条线段进行上述操作,可得第三代,等等;如此迭代下去(图版2-1图4)。显然,对每一代的构成元素的同样操作决定了自相似性的代代传递,使形成的科赫曲线已经明确地具有了自然的特征。如果再进一步在操作中增加一点随机成分的话,那么所得的随机科赫曲线的自然性就更强列了。[回本章页首] 2.2维数计算:分形几何学的数学量度 既然分形几何学是一种严格的数学,那么它一定有自身的数学量度。分形几何学的数学量度是分形几何形体的维数。如前所述,分形几何形体的维数不是整数而是分数,它的计算是分形几何的创立者们在总结归纳的基础上产生的。 分形几何体的维数计算的数学推导是复杂的,也不是我们所关心的内容。但维数计算所代表的形象意义却值得我们关注。如前所述,分形几何形体的本质属性是自相似性,而这一自相似性一定是在同一形体的不同层次之间(不论是对自然形体的不同程度的放大,还是对人工形体迭代操作所得到的不同代)得以体现的。因而,分形几何形的维数正是在形状的不同层次的比较之间所反映出来的规律。这一规律所代表的是分形几何形状在空间中的扩张趋势。维数越大,就表明它在空间的扩张趋势越强,形状本身的变化可能性也越丰富。

非线性方程组求解的牛顿迭代法用MATLAB实现

1. 二元函数的newton 迭代法理论分析 设),(y x f z =在点),(00y x 的某一邻域内连续且有直到2阶的连续偏导数,),(00h y h x ++为该邻域内任意一点,则有 ?? ? ????? +??+≈++==00) ,(),(),(),(0000y y x x y x f y k y x f x h y x f k y h x f 其中 0x x h -=,0y -=y k 于是方程0),(=y x f 可近似表示为 0) ,(),(),(k =?? ? ????? +??+==k k y y x x k y x f y k y x f x h y x f 即 0),()(),()(),(y k =-+-+k k k k k x k k y x f y y y x f x x y x f 同理,设y)g(x,z =在点),(00y x 的某一邻域内连续且有直到2阶的连续偏导数,),(00h y h x ++为该邻域内任意一点,亦有 ?? ?????? +??+≈++==00),(),(),(),(0000y y x x y x g y k y x g x h y x g k y h x g 其中0x x h -=,0y -=y k 于是方程0),(g =y x 可近似表示为 0) ,(),(),(k =?? ? ????? +??+==k k y y x x k y x g y k y x g x h y x g 即 0),(g )(),()(),(y k =-+-+k k k k k x k k y x y y y x g x x y x g 于是得到方程组 ? ??=-+-+=-+-+0),(g )(),()(),(0),()(),()(),(y k y k k k k k k x k k k k k k k x k k y x y y y x g x x y x g y x f y y y x f x x y x f

分形几何的数学基础

课程名称(中文):分形几何的数学基础 课程名称(英文):Mathematical foundation of Fractal geometry 一)课程目的和任务: 分形几何的概念是由B.Mandelbrot 1975年首先提出的,数十年来它已迅速发展成为一门新兴的数学分支,它的应用几乎涉及到自然科学的各个领域。本课程为分形几何研究方向研究生的专业必修课程。主要内容包括:抽象空间,拓扑空间及度量空间中的测度理论基础、分形的(Hausdorff,packing及box-counting)维数理论及其计算技巧、分形的局部结构、分形的射影及分形的乘积等。其目的是使学生基本理解并掌握分形几何学基本概貌和基本研究方法及技巧,从而使他们能够阅读并理解本专业的文献资料。 二)预备知识:测度论,概率论 三)教材及参考书目: 教材:分形几何――数学基础及其应用肯尼思.法尔科内著东北大学出版社 参考书目:1)Rogers C.A. Hausdorff measures, Cambridge University Press, Cambridge, 1970. 2)文志英,分形几何的数学基础,上海科技教育出版社,上海,2000. 3)周作领,瞿成勤,朱智伟,自相似集的结构---Hausdorff测度与上凸密度(第二版),科学出版社,2010。 四)讲授大纲(中英文) 第一章数学基础 1)集合论基础 2)函数和极限 3)测度和质量分布 4)有关概率论的注记 第二章豪斯道夫测度和维数 1)豪斯道夫测度 2)豪斯道夫维数 3)豪斯道夫维数的计算――简单的例子 4)豪斯道夫维数的等价定义 5)维数的更精细定义 第三章维数的其它定义 1)计盒维数 2)计盒维数的性质与问题 3)修改的计盒维数 4)填充测度与维数 5)维数的一些其它定义 第四章计算维数的技巧 1)基本方法 2)有限测度子集 3)位势理论方法 4)傅立叶变换法 第五章分形的局部结构

数学实验迭代:分形

迭代:分形 姓名: 学号: 班级:数学与应用数学4班

实验报告 实验目的:以迭代的观点介绍分形的基本特性以及生成分形图形的基本方法,使读者在欣赏美丽的分形图案的同时对分形几何这门学科有一个直观的了解,并从哲理的高度理解这门学科诞生的必然,激发读者探寻科学真理的兴趣。 实验环境:Mathematica软件 实验基本理论和方法: 在19世纪末及20世纪初,一些数学家就构造出一些边界形状极不光滑的图形,而这类图形的构造方式都有一个共同的特点,即最终图形F都是按照一定的规则R通过对初始图形不断修改得到的。其中最有代表性的图形是Koch曲线,Koch曲线的构造方式是:给定一条直线段,将该直线段三等分,并将中间的一段用以该线段为边的等边三 角形的另外两条边代替,得到图形,然后再对图形中的每一小段都按上述方式修改,以至无穷。则最后得到的极限曲线即是所谓的Koch曲线。 生成元:Koch曲线的修改规则R是将每一条直线段用一条折线代替,我们称为该分形的生成元。 分形的基本特性完全由生成元确定,因此,给定一个生成元,我们就可以生成各种各样的分形图形。 Julia集绘制方法:(1)设定初值p,q,一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度 级L);(2)设定一个上界值;(3)将矩形区域

分成的网格,分别以每个网格点, ,,,作为初值利用riter做迭代(实际上,只需对满足的初值点做迭代)。如果对所有,,则将图形的像素点用黑 色显示,否则,如果从迭代的某一步开始有,则用 modK种颜色显示相应像素(或者用相应的灰度级显示)。Mandelbrot集绘制方法:设定一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度级L);(2) 设定一个上界值;(3)将矩形区域分成 的网格,分别以每个网格点,,, ,作为参数值利用riter做迭代(实际上,只需对的初值点做迭代),每次迭代的初值均取为。如果对所有,,则将图形的像素点用黑色显示,否则,如果从迭代的某一步开始有,则用modK种颜色显示相应像素(或者用相应的灰度级显示)。IFS迭代绘制分形:设计算机屏幕的可视窗口为 , 按分辨率大小的要求将分成的网格,网格点为,这里 ,, ,, 用表示矩形区域,假设我们采取具有

2-8牛顿迭代法matlab

实验七 牛顿迭代法 【实验目的】 1.了解牛顿迭代法的基本概念。 2.了解牛顿迭代法的收敛性和收敛速度。 3.学习掌握MATLAB 软件有关的命令。 【实验内容】 用牛顿迭代法求方程0123=-++x x x 的近似根,误差不超过310-。 【实验准备】 1.牛顿迭代法原理 设已知方程0)(=x f 的近似根0x ,则在0x 附近)(x f 可用一阶泰勒多项式))((')()(000x x x f x f x p -+=近似代替.因此, 方程0)(=x f 可近似地表示为0)(=x p .用1x 表示0)(=x p 的根,它与0)(=x f 的根差异不大. 设0)('0≠x f ,由于1x 满足,0))((')(0100=-+x x x f x f 解得 ) (')(0001x f x f x x -= 重复这一过程,得到迭代格式 ) (')(1n n n n x f x f x x -=+ 这就是著名的牛顿迭代公式,它相应的不动点方程为 ) (')()(x f x f x x g -=. 2. 牛顿迭代法的几何解析 在0x 处作曲线的切线,切线方程为))((')(000x x x f x f y -+=。令 0=y ,可得切线与x 轴的交点坐标) (')(0001x f x f x x -=,这就是牛顿法的迭代公式。因此,牛顿法又称“切线法”。

3.牛顿迭代法的收敛性 计算可得2)] ('[)(")()('x f x f x f x g -=,设*x 是0)(=x f 的单根,有0)(',0)(**≠=x f x f ,则 0)]('[)(")()('2**** =-=x f x f x f x g , 故在*x 附近,有1)('>clear; >>x=0.5; >>for i=1:3 >>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1) >>end 可算得迭代数列的前3项0.5455, 0.5437, 0.5437.近三次迭代,就大大超过了精度要求. 练习2用牛顿迭代法求方程)0(2>=a a x .的近似正实根,由此建立一种求平方根的计算方法. 由计算可知,迭代格式为)(21)(x a x x g += .,在实验12的练习4种已经进行了讨论. 练习3用牛顿迭代法求方程1=x xe 的正根. 牛顿迭代法的迭代函数为

全息 医学 研究创意版.doc

信息医学模式、全息医学模式与神极全息学初论 ——兼论中华神极全息音乐医学的创造和突破 中国北京·华夏意象文化艺术书院殷杰 摘要:首次公布学术成果,本文现在第一次提出全新的“信息医学模式”、“全息医学模式”,“音乐疗法全息医学模式”,。兼论“中华神极全息音乐医学”,这是研究、探索多年的中国型音乐疗法。西方经历几种医学模式,现在为生物-心理-社会医学模式,现代音乐疗法也是此模式,或归属心理疗法。“中华神极全息音乐医学、养生学”,由殷杰教授20世纪80年代开始探索而成,也开创新的医学模式、这是极有意义的创造,更有深广而现实的价值。医学模式即特定历史时期,人类的生命、健康和疾病的基本观点和思想,医学理论框架,并指导人们医学实践活动。信息时代,中国发展了全息生物学、全息医学、全息宇宙学、易学全息医学、神极全息音乐医学,使整体、局部关系,相互化生,其效应加倍放大。全息医学模式首要价值在于,总体上大大扩大了对生命的关注范围,将预防、保健、治疗、康复、益寿、优生、美容、减肥、开发智慧和功能,教育、远程教育、普及,医师、患者、护理……等方方面面园融一体。 中华神极全息音乐医学的创造与突破:1、信息、全息医学模式的创造,临床多种治疗模式突破。2、独特学科理论体系的构建,从而音乐疗法可以成为独立学科。3、直觉、潜能、功能以至特异功能探测方法突破。4、多系统疾病治疗突破。5、“信息对位”的治疗法则突破。6、治疗方法的转移和创造。7、个性化方案的创造。8、疗法的自由自在化创造9、养生法全程化、终生化突破。10、音乐拓展法的创造。全息音乐治疗学、养生学的突破,是信息、全息医学模式的作用,还依赖:多种形式文化艺术综合养生法、疗法,相互汲取、转移,神游气功与全息音乐治疗学互动、互启;再则理论的建树,思想、观念的更新,方才有新的创造。 神极全息音乐医学以中国传统文化与新兴科学为胚基,构建成一套有新的宇宙观、认识论、方法论理论体系。神极由《易经》“太极”衍生而成,神极全息学或可称易学全息学,超越一般全息整体与局部关系,发现并提出了复杂与简单的关系,特殊和一般的关系;既可以局部治疗整体,又可以整体,甚至宇宙治疗局部;全息即点,信息对位,点对点对位,便有疗效。神极全息学也沟通人体科学,潜能、特异功能启用,以信息、全息作理论新解。神极全息学和神极全息音乐医学,特别信息医学模式、全息医学模式,都是信息时代的产儿,都将直接地必然地对信息时代和当代科学、中西医学产生重大影响。 主题词:音乐疗法神极信息信息医学模式全息全息医学模式

迭代·混沌·分形

迭代·混沌·分形 柴文斌 (四川省遂宁中学校629000) 一、课例背景 在20世纪下半叶,计算机的“魔杖”不断制造出新的数学分支,它最拿手的迭代计算引出了“混沌学”,接着又导致了分形几何的产生. 分形的思想和方法在模式识别,自然图象的模拟,信息讯号的处理,以及金融模型,艺术的制作等领域都取得了极大的成功. 二、教学目标 ①本课例按《新课标》的要求,通过分形为载体,引起学生深厚的兴趣,在探究过程中,浅介数学新思想、新发展,同时让学生发现数学美,激发他们勇敢地追求美,主动地创造美,从而陶冶他们的情操,培养他们创新的精神. ②总结平常练习过的从迭代、分形为背景数学试题,让他们用联系、发展的眼光,体会“背景深刻,方法独到”高考压轴题设计意图,明白“基础扎实,能力到位”明确要求. 三、教学重点 ①应用计算机让学生感受分形图之美妙及形成数学原理. ②分析分形为背景数学试题,形成高观点下审视数学问题. 四、教学难点 ①迭代、混沌、分形定义度的把握. ②Julia集、Mandelbrot集及其特征. 五、教学过程 (一)美丽的分形图形 运用多媒体展放《孔雀开屏》等11幅分形艺术作品. 师:这些美丽图形自然而优美,纷繁而有序,放射出诱人的色彩,在绚丽的色彩变化背后有几分神秘,似乎没有人会对这些图形无动于衷,你们相信,这些

美妙的图形是运用数学知识,通过计算机构造出来的吗?是如何构造的呢?我们还得从函数迭代说起! (二)函数的迭代 问题1: 计算:①x n n sin lim ∞→ ②=∞ →x n n cos lim 问题2: 211n n x x +=- 11=x 轨道:1,0,-1,0,-1,…… 5.02=x 轨道:0.5,―0.75,―0.4375,―0.80859,…―1,0,―1,0,-1 问题3:①有没有这样一个初态把它代入211-+=n n x x ,结果不变吗? · · A B 251- 2 51+ ②618.11=x 写出系统轨道 ③619.11=x 写出系统轨道 问题4:二次函数2)(z z f =进行迭代 ①i z 2 11=,写出系统轨道 ②i z +=11,写出系统轨道 问题5:2)(z z f =且1||0

相关文档