文档库 最新最全的文档下载
当前位置:文档库 › 专题----定义域值域解析式(学生用)

专题----定义域值域解析式(学生用)

专题----定义域值域解析式(学生用)
专题----定义域值域解析式(学生用)

函数定义域

1、 求定义域:2143)(2-+--=

x x x x f { x|4133≥-≤<-->x x x 或或} 2、求函数29)

1ln(1x x y -+-=的定义域。 {]3,2()2,1(?} 3、已知)1(+x f 的定义域为[-2,3),求)21(+x f 的定义域 ??

? ??+∞???? ??-∞-,2131, 4、已知)(x f 的定义域为[a ,b],且0>->a b ,求函数)()()(x f x f x g --=的定义域。[]a a -,

5、已知)(x f 的定义域为[0,1],求

)()(a x f a x f -++的定义域。 6 、若函数a

ax ax y 12+-=的定义域是R ,求实数a 的取值范围 {20≤

7.若函数()f x =定义域为R ,则m 的取值范围是

练习:1. 若)(μf y =的定义域为[]2,0,则)(ln x f 的定义域是 {],1[2e }

2、函数)(x f y =的定义域为[-1,1],求)41(+=x f y )4

1(-?x f 的定义域 ????

??≤≤-4343|x x 3、已知()f x 的定义域是[]0,1,则()22f x x --的定义域为

值 域

(1)反表示法(分离常数法)

1、求函数125

x y x -=+的值域 2、求函数21+-=x x y 的值域3、函数x x y +=1的值域 (2)判别式法:

1、求函数2

2122+-+=x x x y 的定义域 2、求函数2211x y x -=+的值域 3、求函数3

4252+-=x x y 的值域 4、求函数1

32222++++=x x x x y 的值域 (3) 图象法-----数形结合

1、求函数242y x x =-++([1,1]x ∈-)的值域

2、求函数[]5,0,522∈+-=x x x y 的值域

(4)换元法

1、求函数x x y 21--=的值域

2、求函数2y x =

3、求函数x x y -+=12的值域

4、求函数[])1,0(239∈+-=x y x

x 的值域

(6)数轴法 1、求函数11-++=x x y 的值域 2、求函数13+--=x x y 的值域。

3、求13+--=x x y 的值域

(7)复合函数

1、求函数x x y 2231+-??

? ??= 的值域 2、求函数152log 22-+-=x x x y 的值域. 3、412)21(--=x x y 的值域 4、)28(log 23

1x x y -+=的值域

(8)其他

.⑴已知非负实数a,b 满足2a+3b=10,则a b 23+的最大值是____________(52) (消元+平方) ⑵设a>0,b>0,且a+b=1, 则11+++b a 的最大值是____________(6) (消元+平方) ⑶若a>0,b>0,且a+b=1, 则1212+++b a 的最大值是____________(22) (消元+平方)

(4)函数15()22

y x =

<<的最大值是______(平方)

(5)函数y =_____(平方)

解析式

(1)直接代入

1、已知f (x )=x 2-1 g (x )=

1+x 求f [g (x )] 2、2)1(-=x e y , x g +=1 则=)(g y

(2)配凑法 1、已知f (x +1)=x +2x ,求f (x ) 2、已知221)1(x x x x f +=-

, 求)(x f (3)换元法

1、已知2447

8)12(2+++=+x x x x f ,求f(x)的值域.

2、若)0(11)]([,21)(22

≠+-=-=x x

x x g f x x g ,求)21(f 3、知221111x

x x x f +-=??? ??+-,则)(x f 的解析式 4、已知f (2-cos x )=cos2x +cos x ,求f (x -1)

(4)待定系数法

1、函数f (x )是一次函数,且满足关系式3f (x +1)-2f (x -1)=2x +17,求f(x)的解析式.

2、已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________.

(5)解方程组法

1、已知()213x x f x f =???

??-,求)(x f 的解析式 2、已知f (x )+2f (x

1)=3x ,求f (x )的解析式为______. (6)赋值法

1、已知()()()()12,10+--=-=b a b a f b a f f ,求)(x f 的解析式(()12++=x x x f )

高一数学知识点总结之函数定义域 值域

高一数学知识点总结之函数定义域值域【】数学的学习不像文科要死记硬背,学好高中数学最主要的是要掌握好课本上的基本公式,熟练运用,才能解考试过程中的各种题型。 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合。 常用的求值域的方法 (1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方 法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习

者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 关于函数值域误区 其实,任何一门学科都离不开死记硬背,关键是记忆有技 巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。定义域、对应法则、值域是函数构造的三个基本元件。平时数学中,实行定义域优先的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手硬一手软,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R; (2)二次函数2 y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a﹤0时,值域244ac b B y y a ??-??=≤?????? 。(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。(二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+,(1)求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。(四)课堂练习: 1.用区间表示下列集合: {}{}{}{} 4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或2.已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3.课本P 19练习2。

函数的定义域与值域 知识点与题型归纳

了解构成函数的要素,会求一些简单函数的定义域和值域. ★备考知考情 定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等. 一、知识梳理《名师一号》P13 知识点一常见基本初等函数的定义域 注意: 1、研究函数问题必须遵循“定义域优先”的原则!!! 2、定义域必须写成集合或区间的形式!!! (1)分式函数中分母不等于零 (2)偶次根式函数被开方式大于或等于0 (3)一次函数、二次函数的定义域均为R (4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R (5)y=log a x(a>0且a≠1)的定义域为(0,+∞) (6)函数f(x)=x0的定义域为{x|x≠0} 部分内容来源于网络,有侵权请联系删除!

部分内容来源于网络,有侵权请联系删除! (7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充) 三角函数中的正切函数y =tan x 定义域为 {|,,}2 ∈≠+∈x x R x k k Z π π 如果函数是由几个部分的数学式子构成的, 那么函数的定义域是使各部分式子都有意义的实数集合. 知识点二 基本初等函数的值域 注意: 值域必须写成集合或区间的形式!!! (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是: 当a >0时,值域为{y |y ≥4ac -b 2 4a }; 当a <0时,值域为{y |y ≤4ac -b 2 4a } (3)y =k x (k ≠0)的值域是{y |y ≠0} (4)y =a x (a >0且a ≠1)的值域是{y |y >0} (5)y =log a x (a >0且a ≠1)的值域是R . (补充)三角函数中 正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数的定义域、值域及解析式

函数的定义域、值域及解析式 【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 常见函数的定义域与值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)例. 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f ( x ) = (x-1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (√x)2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x2-2x+2, g ( x )=t2-2t+2 3.区间的概念

函数的值域题型总结

求函数的值域 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定,确定函数的值域是研究函数不可缺少的重要一环。函数的值域,就是已知函数的定义域,求函数值最值问题,或取值范围的过程。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。对于如何求函数的值域,它所涉及到的知识面广,方法灵活多样,是高考中每年必考知识,而且试题占比很大,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下。 一、观察法求函数的值域 1 1+=x y 23+=x y 3 42-=x y 42sin +=θy 5 32-=x y 6 11+= x y 7 3cos 2+=θy 提示:(1)一次函数R y b kx y ∈+=,。 (2)二次函数0,2≥=y x y 。 (3)幂函数0,≥=y x y 。 (4)指数函数0,>=y a y x 。 (5)反比例函数0,≠=y x k y 。 (6)三角函数]1,1[,cos ,sin -∈==y y y θθ 二、利用函数的单调性求值域 1已知[0,1]x ∈,则函数21y x x = +-的值域是 23?? . 2函数4()([3,6])2 f x x x =∈-的值域为______[]1,4______。 3 已知函数]2,1[,42)(∈-=x x x x f 的值域 ]2,2[- 4 已知函数),1[,22+∞∈-=-x y x x 的值域 ),2 3[+∞ 5求函数]10,2[,1log 225∈-+=-x x y x 的值域。]33,8 1[ 提示:(1)利用函数的单调性,将定义域的取值带入函数求值。 三、分离常数法求函数的值域 1求函数x x y -+= 132的值域2-≠y 2求函数2323--=x x y 的值域 32-≠y 3求函数2 5422----=x x x x y 的值域 R y ∈{2≠y 且1≠y } 提示:(1)函数a c y b ax d cx y ≠++=,。(2)函数e f a b e f c d y a c y f ex b ax f ex d cx y --≠≠++++=且,,))(())(( 四、二次函数的值域问题 1函数22)(2+-=x x x f 在区间]4,0(的值域为( ]10,1[ ) 2函数2 1,(12)y x x =-+-≤<的值域是( (]3,1- ) 3函数1422 -+=x x y 的值域 ),3[+∞-

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域.值域基本知识点总结 函数概念 1.映射的概念 设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则 注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。 2.函数的概念 (1)函数的定义: 设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都

冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常

⑵函数的定义域、值域 在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。 (3)函数的三要素:定义域、值域和对丿应法则 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式來表示。 4.分段函数 在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。 (-)考点分析 考点1:映射的概念 例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ; (2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ; (3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x . 上述三个对应是A到B的映射. 例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个 例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对 (4)8 个(3)12 个(C)16 个(0)18 个 M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是() 考点2:判断两函数是否为同一个函数

函数的定义域和值域映射

函数定义域、值域、解析式、映射 知识点一:求各种类型函数的定义域 类型一: 含有分母和偶次方根 例1 求下列函数的定义域 1. y= 3102++x x 2. y = 类型二: 偶方根下有二次三项式 例2 求下列函数的定义域 1.. 1 ||1 42 -+-=x x y 2.2 3 568 4x x x y ---= 类型三:含有零次方和对数式 例3 求下列函数的定义域(用区间表示) (1)02 )23() 12lg(2)(x x x x x f -+--=; 练习:求下列函数的定义域 1. y=x x -||1 2. 122+--=x x y

3.()f x = 4.)13(log 2+=x y 5. 函数y =1122---x x 的取定义域是( ) A.[-1,1] B.(][)+∞-?-∞-,11, C.[0,1] D.{-1,1} 6. 求函数的定义域。 知识点二:抽象函数定义域 类型一:“已知f(x),求f(…)”型 例1:已知f(x)的定义域是[0,5],求f(x+1)的定义域。 类型二: “已知f(…) ,求f(x)”型 例2:已知f(x+1) 的定义域是[0,5],求f(x)的定义域。 类型三: “已知f(…),求f(…)”型 例3:已知f(x+2)的定义域为[-2,3),求f(4x-3)的定义域。 练习: 1、函数()f x 的定义域是[0,2],则函数(2)f x +的定义域是 ___________. 2、已知函数()f x 的定义域是[-1,1],则(2)(1)f x f x +++的定义域为 ___________.

函数的定义域值域和解析式

函数的定义域、值域和解析式 1.函数的定义域 函数的定义域是指使函数有意义的自变量的取值范围. 2.求函数定义域的主要依据: ①分式函数:分母不为0; ②偶次方根:被开方数为非负数; ③对数函数:真数大于0,底数大于0且不为1; ④零次幂的底数不等于0 注意:①当通过解不等式或不等式组求定义域时,常常借助数轴求交集,同时考虑端点是否可取;②在解决函数问题时首先考虑定义域,“定义域优先原则”;③定义域的最终结果一定要写成集合或者区间的形式;④实际问题的自变量范围应根据实际情况确定。 指数函数 x a y =(a >0且a ≠1) R (0,+∞) 对数函数 x y a log =(a >0且a ≠ 1) (0,+∞) R 正、余弦函数 y =sin x ,y =cos x R [-1,1] 正切函数 y =tan x {x |x ≠k π +2 π,k ∈Z} R 解析式 定义域 值域 一次函数 y =kx +b (k ≠0) R R 二次函数 c bx ax y ++=2 (a ≠0) R 当a >0时,),44( 2 +∞-a b a c 当a <0时,)44, (2 a b a c --∞ 反比例函数 x k y = (k ≠0) {x |x ≠0} {y |y ≠0} 均值函数 x b ax y + =(a >0,b >0) {x |x ≠0} (-∞,-2ab ]∪[2ab ,+∞) 常见函数的定义域与值域

,0 ||0 1?? ?>-≠+x x x ,||1 ? ??>-≠x x x 例1求下列函数的定义域 (1)1 log 1 )(2-=x x f (2))1(log 1 |2|)(2---=x x x f (3)y=x x x -+||)1(0 ; 解:(1)由题意可得???>->01log 0 2 x x 解得x >2. ∴所求定义域为(2,+∞) ?? ? ??≠->-≥--110 10 1|2|x x x 解得x ≥3 (2)由题意得 ∴所求定义域为(3,+∞) (3)由题意 化简 故函数的定义域为{x|x <0且x ≠-1}. 练习:求函数的定义域 (1) y=2 3 2 531 x x -+-; (2))34lg(1 3)(22-+-+-=x x x x x f 3.抽象函数的定义域 求复合函数y =f(t),t =q(x)的定义域的方法: ①若y =f(t)的定义域为(a ,b),则解不等式得a <q(x)<b 即可求出y =f(q(x))的定义域; ②若y =f(g(x))的定义域为(a ,b),则求出g(x)的值域即为f(t)的定义域. 例2. 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f(x 1);(3)y=f( )31 ()31-++x f x ; 解:(1)0≤3x ≤1,故0≤x ≤3 1 , y=f(3x)的定义域为[0, 3 1] . (2)仿(1)解得定义域为[1,+∞ ). (3)由条件,y 的定义域是f )31(+x 与)3 1 (-x 定义域的交集 .

函数的定义域和值域

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1) 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x

函数的定义、定义域、值域

函数的概念 教学目的: 1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.理解静与动的辩证关系,激发学生学习数学的兴趣和积极性 教学重点:理解函数的概念; 教学难点:函数的概念 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 函数是数学的重要的基础概念之一论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,其他学科如物理学等学科也是以丰富的辩证思想,是对学生进行辩证唯物主义观点教育的好素材法也广泛地诊透到中学数学的全过程和其他学科中 函数是中学数学的主体内容它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用后续内容的极限、微积分初步知识等都是函数的内容数列可 以看作整标函数,等差数列的通项反映的点对(n ,a n )都分布在直线y =kx+b 的图象上,等差数列的前n 项和公式也可以看作关于n(n ∈N)的二次函数关系式,等比数列的内容也都属于指数函数类型的整标函数与函数内容有关 本节的函数是用初中代数中“对应”来描述的函数概念,高一学生的数学知识较少,接受能力有限,用原始概念“对应”一词来描述函数定义是合适的 教学过程: 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:1=y (R x ∈)是函数吗?

求复合函数的定义域、值域、解析式(集锦)

求复合的定义域、值域、解析式(集锦) 一、 基本类型: 1、 求下列函数的定义域。 (1)12 )(-+=x x x f (2)x x x x f -+= 0)1()( (3) 1 11--= x y (4)()28 x f x = - 二、复合函数的定义域 1、 若函数y =f (x )的定义域是[-2, 4], 求函数g (x )=f (x )+f (1-x )的定义域 2(江西卷3)若函数()y f x =的定义域是[0,2],求函数(2) ()1 f x g x x =-的定义域 2、 函数y =f (2x +1)的定义域是(1, 3],求函数y =f (x )的定义域 3、 函数f (2x -1)的定义域是[0, 1),求函数f (1-3x )的定义域是 求函数的值域 一、二次函数法 (1)求二次函数232y x x =-+的值域 (2)求函数225,[1,2]y x x x =-+∈-的值域. 二、换元法: (1) 求函数 y x =+

分分式法 求2 1+-=x x y 的值域。 解:(反解x 法) 四、判别式法 (1)求函数22221 x x y x x -+=++;的值域 2)已知函数2 1 ax b y x += +的值域为[-1,4],求常数b a ,的值。 五:有界性法: (1)求函数1e 1e y x x +-=的值域 六、数形结合法---扩展到n 个相加 (1)|1||4|y x x =-++(中间为减号的情况?) 求解析式 换元法 已知 23,f x =- 求 f (x ). 解方程组法 设函数f (x )满足f (x )+2 f (x 1)= x (x ≠0),求f (x )函数解析式. 一变:若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数 ,x y ,总有2 ()()(21),f x f x y x y y +=+++求()f x 。 令x=0,y=2x 待定系数法 设 f (2x )+f (3x +1)=13x 2+6x -1, 求 f (x ).

求解函数定义域,值域,解析式讲义(精华版)

求解函数定义域、值域、解析式 【课堂笔记】 知识点一 定义域、值域的定义 在函数)(x f y =中,x 叫做自变量,x 的取值范围的集合A 叫作函数的定义域;与x 的值相对应的值y 叫作函数值,函数值的集合})({A x x f ∈叫作函数的值域。 下面我们就以求简单函数的定义域做一讲解。 (1)当函数是以解析式的形式给出的时候,其定义域是使函数解析式有意义的自变量的取值的集合。 (2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义。 注意:(1)求函数的定义域,一般是转化为解不等式或不等式组的问题,要注意逻辑连接词的恰当使用。 (2)定义域是一个集合,其结果可用集合或区间来表示。 (3)若函数)(x f 是整式型函数,则定义域为全体实数。 (4)若函数)(x f 是分式型函数,则定义域为使分母不为零的实数构成的集合。 (5)若函数)(x f 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 (6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 (7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有 意义的公共部分的集合。 (8)复合函数的定义域问题: ①若已知)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域可由不等式b x g a ≤≤)(解出; ②若已知))((x g f 的定义域为],[b a ,则函数)(x f 的定义域,即为当],[b a x ∈时函数)(x g 的值域。 【例1】求下列函数的定义域 (1)1+= x y (2)x y -= 21 (3)0)1(21-+-= x x y 【例2】 求下列函数的定义域 (1)x y ++ = 11 11; (2)1 42 --= x x y ;

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

定义域和值域

定义域、解析式、值域方法总结 (一)定义域: 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? () ()例:函数的定义域是 y x x x =--432lg ()()()(答:,,,)022334 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 反三角函数的定义域 ● 函数y =arcsinx 的定义域是 [-1, 1] ,值域是, 函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y = arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条 件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? []的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [] (答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的 定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。 例 若函数)(x f y =的定义域为??????2,21,则)(log 2x f 的定义域为 。

函数的定义域与求法讲解

函数 一、函数的定义域及求法 1、分式的分母≠0;偶次方根的被开方数≥0; 2、对数函数的真数>0;对数函数的底数>0且≠1; 3、正切函数:x ≠ kπ + π/2 ,k∈Z;余切函数:x ≠ kπ ,k ∈Z ; 4、一次函数、二次函数、指数函数的定义域为R; 5、定义域的相关求法:利用函数的图象(或数轴)法;利用其反函数的值域法; 6、复合函数定义域的求法:推理、取交集及分类讨论. [例题]: 1、求下列函数的定义域

3、已知函数y=lg(mx2-4mx+m+3)的定义域为R,求实数m的取值范围.[解析]:[利用复合函数的定义域进行分类讨论] 当m=0时,则mx2-4mx+m+3=3,→ 原函数的定义域为R; 当m≠0时,则 mx2-4mx+m+3>0, ①m<0时,显然原函数定义域不为R; ②m>0,且△=(-4m)2-4m(m+3)<0 时,即0<m<1,原函数定义域为R, 所以当m∈[0,1) 时,原函数定义域为R.

4、求函数y=log x + 1 (x≥4) 的反函数的定义域. 2 [解析]:[求原函数的值域] 由题意可知,即求原函数的值域, ∵x≥4,∴log x≥2∴y≥3 2 x + 1 (x≥4) 的反函数的定义域是[3,+∞).所以函数y=log 2 x)的定义域. 5、函数f(2x)的定义域是[-1,1],求f(log 2 [解析]:由题意可知2-1≤2x≤21→ f(x)定义域为[1/2,2] x≤2→ √ ̄2≤x≤4. → 1/2≤log 2 所以f(log x)的定义域是[√ ̄2,4]. 2 二、函数的值域及求法 1、一次函数y=kx+b(k≠0)的值域为R; 2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时, y≤-△/4a ; 3、反比例函数的值域:y≠0 ; 4、指数函数的值域为(0,+∞);对数函数的值域为R; 5、正弦、余弦函数的值域为[-1,1](即有界性);正切余切函数的值域为R; 6、值域的相关求法:配方法;零点讨论法;函数图象法;利用 求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法. [例题]::求下列函数的值域

相关文档
相关文档 最新文档