文档库 最新最全的文档下载
当前位置:文档库 › Measurement of CP Asymmetries and Branching Fractions in B0 - pi+ pi-, B0 - K+ pi-, B0 - pi

Measurement of CP Asymmetries and Branching Fractions in B0 - pi+ pi-, B0 - K+ pi-, B0 - pi

Measurement of CP Asymmetries and Branching Fractions in B0 - pi+ pi-, B0 - K+ pi-, B0 - pi
Measurement of CP Asymmetries and Branching Fractions in B0 - pi+ pi-, B0 - K+ pi-, B0 - pi

a r X i v :0807.4226v 2 [h e p -e x ] 31 J u l 2008

B A B A R -CONF-08/014SLAC-PUB-13326arXiv:0807.4226[hep-ex]

Measurement of C P Asymmetries and Branching Fractions in

B 0→π+π?,B 0→K +π?,B 0→π0π0,B 0→K 0π0

and Isospin Analysis of B →ππDecays

The B A B A R Collaboration

July 31,2008Abstract

We present preliminary results of improved measurements of the CP -violating asymmetries and branching fractions in the decays B 0→π+π?,B 0→K +π?,B 0→π0π0,and B 0→K 0π0.This update includes all data taken at the Υ(4S )resonance by the B A B A R experiment at the asymmetric PEP-II B -meson factory at SLAC,corresponding to 467±5million B

Work supported in part by Department of Energy contract DE-AC03-76SF00515.

The B A B A R Collaboration,

B.Aubert,M.Bona,Y.Karyotakis,J.P.Lees,V.Poireau,E.Prencipe,X.Prudent,V.Tisserand Laboratoire de Physique des Particules,IN2P3/CNRS et Universit′e de Savoie,F-74941Annecy-Le-Vieux,

France

J.Garra Tico,E.Grauges

Universitat de Barcelona,Facultat de Fisica,Departament ECM,E-08028Barcelona,Spain

L.Lopez ab,A.Palano ab,M.Pappagallo ab

INFN Sezione di Bari a;Dipartmento di Fisica,Universit`a di Bari b,I-70126Bari,Italy

G.Eigen,B.Stugu,L.Sun

University of Bergen,Institute of Physics,N-5007Bergen,Norway

G.S.Abrams,M.Battaglia,D.N.Brown,R.N.Cahn,R.G.Jacobsen,L.T.Kerth,Yu.G.Kolomensky,

G.Lynch,I.L.Osipenkov,M.T.Ronan,1K.Tackmann,T.Tanabe

Lawrence Berkeley National Laboratory and University of California,Berkeley,California94720,USA

C.M.Hawkes,N.Soni,A.T.Watson

University of Birmingham,Birmingham,B152TT,United Kingdom

H.Koch,T.Schroeder

Ruhr Universit¨a t Bochum,Institut f¨u r Experimentalphysik1,D-44780Bochum,Germany

D.Walker

University of Bristol,Bristol BS81TL,United Kingdom

D.J.Asgeirsson,B.G.Fulsom,C.Hearty,T.S.Mattison,J.A.McKenna

University of British Columbia,Vancouver,British Columbia,Canada V6T1Z1

M.Barrett,A.Khan

Brunel University,Uxbridge,Middlesex UB83PH,United Kingdom V.E.Blinov,A.D.Bukin,A.R.Buzykaev,V.P.Druzhinin,V.B.Golubev,A.P.Onuchin, S.I.Serednyakov,Yu.I.Skovpen,E.P.Solodov,K.Yu.Todyshev

Budker Institute of Nuclear Physics,Novosibirsk630090,Russia

M.Bondioli,S.Curry,I.Eschrich,D.Kirkby,https://www.wendangku.net/doc/1610003794.html,nkford,P.Lund,M.Mandelkern,E.C.Martin,

D.P.Stoker

University of California at Irvine,Irvine,California92697,USA

S.Abachi,C.Buchanan

University of California at Los Angeles,Los Angeles,California90024,USA

J.W.Gary,F.Liu,O.Long,B.C.Shen,1G.M.Vitug,Z.Yasin,L.Zhang

University of California at Riverside,Riverside,California92521,USA

V.Sharma

University of California at San Diego,La Jolla,California92093,USA

C.Campagnari,T.M.Hong,

D.Kovalskyi,M.A.Mazur,J.D.Richman

University of California at Santa Barbara,Santa Barbara,California93106,USA

T.W.Beck,A.M.Eisner,C.J.Flacco,C.A.Heusch,J.Kroseberg,W.S.Lockman,A.J.Martinez, T.Schalk,B.A.Schumm,A.Seiden,M.G.Wilson,L.O.Winstrom

University of California at Santa Cruz,Institute for Particle Physics,Santa Cruz,California95064,USA

C.H.Cheng,

D.A.Doll,B.Echenard,F.Fang,D.G.Hitlin,I.Narsky,T.Piatenko,F.C.Porter

California Institute of Technology,Pasadena,California91125,USA

R.Andreassen,G.Mancinelli,B.T.Meadows,K.Mishra,M.D.Sokolo?

University of Cincinnati,Cincinnati,Ohio45221,USA

P.C.Bloom,W.T.Ford,A.Gaz,J.F.Hirschauer,M.Nagel,U.Nauenberg,J.G.Smith,K.A.Ulmer,

S.R.Wagner

University of Colorado,Boulder,Colorado80309,USA

R.Ayad,2A.So?er,3W.H.Toki,R.J.Wilson

Colorado State University,Fort Collins,Colorado80523,USA

D.D.Altenburg,

E.Feltresi,A.Hauke,H.Jasper,M.Karbach,J.Merkel,A.Petzold,B.Spaan,K.Wacker

Technische Universit¨a t Dortmund,Fakult¨a t Physik,D-44221Dortmund,Germany

M.J.Kobel,W.F.Mader,R.Nogowski,K.R.Schubert,R.Schwierz,A.Volk Technische Universit¨a t Dresden,Institut f¨u r Kern-und Teilchenphysik,D-01062Dresden,Germany

D.Bernard,G.R.Bonneaud,

https://www.wendangku.net/doc/1610003794.html,tour,M.Verderi

Laboratoire Leprince-Ringuet,CNRS/IN2P3,Ecole Polytechnique,F-91128Palaiseau,France

P.J.Clark,S.Playfer,J.E.Watson

University of Edinburgh,Edinburgh EH93JZ,United Kingdom

M.Andreotti ab,D.Bettoni a,C.Bozzi a,R.Calabrese ab,A.Cecchi ab,G.Cibinetto ab,P.Franchini ab,

E.Luppi ab,M.Negrini ab,A.Petrella ab,L.Piemontese a,V.Santoro ab

INFN Sezione di Ferrara a;Dipartimento di Fisica,Universit`a di Ferrara b,I-44100Ferrara,Italy

R.Baldini-Ferroli,A.Calcaterra,R.de Sangro,G.Finocchiaro,S.Pacetti,P.Patteri,I.M.Peruzzi,4

M.Piccolo,M.Rama,A.Zallo

INFN Laboratori Nazionali di Frascati,I-00044Frascati,Italy

A.Buzzo a,R.Contri ab,M.Lo Vetere ab,M.M.Macri a,M.R.Monge ab,S.Passaggio a,C.Patrignani ab,

E.Robutti a,A.Santroni ab,S.Tosi ab

INFN Sezione di Genova a;Dipartimento di Fisica,Universit`a di Genova b,I-16146Genova,Italy

K.S.Chaisanguanthum,M.Morii

Harvard University,Cambridge,Massachusetts02138,USA

A.Adametz,J.Marks,S.Schenk,U.Uwer

Universit¨a t Heidelberg,Physikalisches Institut,Philosophenweg12,D-69120Heidelberg,Germany

V.Klose,https://www.wendangku.net/doc/1610003794.html,cker

Humboldt-Universit¨a t zu Berlin,Institut f¨u r Physik,Newtonstr.15,D-12489Berlin,Germany

D.J.Bard,P.D.Dauncey,J.A.Nash,M.Tibbetts

Imperial College London,London,SW72AZ,United Kingdom

P.K.Behera,X.Chai,M.J.Charles,U.Mallik

University of Iowa,Iowa City,Iowa52242,USA

J.Cochran,H.B.Crawley,L.Dong,W.T.Meyer,S.Prell,E.I.Rosenberg,A.E.Rubin

Iowa State University,Ames,Iowa50011-3160,USA

Y.Y.Gao,A.V.Gritsan,Z.J.Guo,https://www.wendangku.net/doc/1610003794.html,e

Johns Hopkins University,Baltimore,Maryland21218,USA

N.Arnaud,J.B′e quilleux,A.D’Orazio,M.Davier,J.Firmino da Costa,G.Grosdidier,A.H¨o cker, V.Lepeltier,F.Le Diberder,A.M.Lutz,S.Pruvot,P.Roudeau,M.H.Schune,J.Serrano,V.Sordini,5

A.Stocchi,G.Wormser

Laboratoire de l’Acc′e l′e rateur Lin′e aire,IN2P3/CNRS et Universit′e Paris-Sud11,Centre Scienti?que

d’Orsay,B.P.34,F-91898Orsay Cedex,France

https://www.wendangku.net/doc/1610003794.html,nge,D.M.Wright

Lawrence Livermore National Laboratory,Livermore,California94550,USA

I.Bingham,J.P.Burke,C.A.Chavez,J.R.Fry,E.Gabathuler,R.Gamet,D.E.Hutchcroft,D.J.Payne,

C.Touramanis

University of Liverpool,Liverpool L697ZE,United Kingdom

A.J.Bevan,C.K.Clarke,K.A.George,F.Di Lodovico,R.Sacco,M.Sigamani

Queen Mary,University of London,London,E14NS,United Kingdom

G.Cowan,H.U.Flaecher,D.A.Hopkins,S.Paramesvaran,F.Salvatore,A.C.Wren

University of London,Royal Holloway and Bedford New College,Egham,Surrey TW200EX,United

Kingdom

D.N.Brown,C.L.Davis

University of Louisville,Louisville,Kentucky40292,USA

A.G.Denig,M.Fritsch,W.Gradl,G.Schott

Johannes Gutenberg-Universit¨a t Mainz,Institut f¨u r Kernphysik,D-55099Mainz,Germany

K.E.Alwyn,D.Bailey,R.J.Barlow,Y.M.Chia,C.L.Edgar,G.Jackson,https://www.wendangku.net/doc/1610003794.html,?erty,T.J.West,

J.I.Yi

University of Manchester,Manchester M139PL,United Kingdom

J.Anderson,C.Chen,A.Jawahery,D.A.Roberts,G.Simi,J.M.Tuggle

University of Maryland,College Park,Maryland20742,USA

C.Dallapiccola,X.Li,E.Salvati,S.Saremi

University of Massachusetts,Amherst,Massachusetts01003,USA

R.Cowan,D.Dujmic,P.H.Fisher,G.Sciolla,M.Spitznagel,F.Taylor,R.K.Yamamoto,M.Zhao Massachusetts Institute of Technology,Laboratory for Nuclear Science,Cambridge,Massachusetts02139,

USA

P.M.Patel,S.H.Robertson

McGill University,Montr′e al,Qu′e bec,Canada H3A2T8

https://www.wendangku.net/doc/1610003794.html,zzaro ab,V.Lombardo a,F.Palombo ab

INFN Sezione di Milano a;Dipartimento di Fisica,Universit`a di Milano b,I-20133Milano,Italy

J.M.Bauer,L.Cremaldi,R.Godang,6R.Kroeger,D.A.Sanders,D.J.Summers,H.W.Zhao

University of Mississippi,University,Mississippi38677,USA

M.Simard,P.Taras,F.B.Viaud

Universit′e de Montr′e al,Physique des Particules,Montr′e al,Qu′e bec,Canada H3C3J7

H.Nicholson

Mount Holyoke College,South Hadley,Massachusetts01075,USA

G.De Nardo ab,L.Lista a,D.Monorchio ab,G.Onorato ab,C.Sciacca ab

INFN Sezione di Napoli a;Dipartimento di Scienze Fisiche,Universit`a di Napoli Federico II b,I-80126

Napoli,Italy

G.Raven,H.L.Snoek

NIKHEF,National Institute for Nuclear Physics and High Energy Physics,NL-1009DB Amsterdam,The

Netherlands

C.P.Jessop,K.J.Knoepfel,J.M.LoSecco,W.F.Wang

University of Notre Dame,Notre Dame,Indiana46556,USA

G.Benelli,L.A.Corwin,K.Honscheid,H.Kagan,R.Kass,J.P.Morris,A.M.Rahimi,

J.J.Regensburger,S.J.Sekula,Q.K.Wong

Ohio State University,Columbus,Ohio43210,USA

N.L.Blount,J.Brau,R.Frey,O.Igonkina,J.A.Kolb,M.Lu,R.Rahmat,N.B.Sinev,D.Strom,

J.Strube,E.Torrence

University of Oregon,Eugene,Oregon97403,USA

G.Castelli ab,N.Gagliardi ab,M.Margoni ab,M.Morandin a,M.Posocco a,M.Rotondo a,F.Simonetto ab,

R.Stroili ab,C.Voci ab

INFN Sezione di Padova a;Dipartimento di Fisica,Universit`a di Padova b,I-35131Padova,Italy

P.del Amo Sanchez,E.Ben-Haim,H.Briand,G.Calderini,J.Chauveau,P.David,L.Del Buono, O.Hamon,Ph.Leruste,J.Ocariz,A.Perez,J.Prendki,S.Sitt Laboratoire de Physique Nucl′e aire et de Hautes Energies,IN2P3/CNRS,Universit′e Pierre et Marie Curie-Paris6,Universit′e Denis Diderot-Paris7,F-75252Paris,France

L.Gladney

University of Pennsylvania,Philadelphia,Pennsylvania19104,USA

M.Biasini ab,R.Covarelli ab,E.Manoni ab,

INFN Sezione di Perugia a;Dipartimento di Fisica,Universit`a di Perugia b,I-06100Perugia,Italy

C.Angelini ab,G.Batignani ab,S.Bettarini ab,M.Carpinelli ab,7A.Cervelli ab,F.Forti ab,M.A.Giorgi ab,

A.Lusiani ac,G.Marchiori ab,M.Morganti ab,N.Neri ab,E.Paoloni ab,G.Rizzo ab,J.J.Walsh a INFN Sezione di Pisa a;Dipartimento di Fisica,Universit`a di Pisa b;Scuola Normale Superiore di Pisa c,

I-56127Pisa,Italy

D.Lopes Pegna,C.Lu,J.Olsen,A.J.S.Smith,A.V.Telnov

Princeton University,Princeton,New Jersey08544,USA

F.Anulli a,E.Baracchini ab,

G.Cavoto a,D.del Re ab,E.Di Marco ab,R.Faccini ab,F.Ferrarotto a,

F.Ferroni ab,M.Gaspero ab,P.D.Jackson a,L.Li Gioi a,M.A.Mazzoni a,S.Morganti a,

G.Piredda a,

F.Polci ab,F.Renga ab,C.Voena a

INFN Sezione di Roma a;Dipartimento di Fisica,Universit`a di Roma La Sapienza b,I-00185Roma,Italy

M.Ebert,T.Hartmann,H.Schr¨o der,R.Waldi

Universit¨a t Rostock,D-18051Rostock,Germany

T.Adye,B.Franek,E.O.Olaiya,F.F.Wilson

Rutherford Appleton Laboratory,Chilton,Didcot,Oxon,OX110QX,United Kingdom

S.Emery,M.Escalier,L.Esteve,S.F.Ganzhur,G.Hamel de Monchenault,W.Kozanecki,G.Vasseur,

Ch.Y`e che,M.Zito

CEA,Irfu,SPP,Centre de Saclay,F-91191Gif-sur-Yvette,France

X.R.Chen,H.Liu,W.Park,M.V.Purohit,R.M.White,J.R.Wilson

University of South Carolina,Columbia,South Carolina29208,USA

M.T.Allen,D.Aston,R.Bartoldus,P.Bechtle,J.F.Benitez,R.Cenci,J.P.Coleman,M.R.Convery, J.C.Dingfelder,J.Dorfan,G.P.Dubois-Felsmann,W.Dunwoodie,R.C.Field,A.M.Gabareen, S.J.Gowdy,M.T.Graham,P.Grenier,C.Hast,W.R.Innes,J.Kaminski,M.H.Kelsey,H.Kim,P.Kim, M.L.Kocian,D.W.G.S.Leith,S.Li,B.Lindquist,S.Luitz,V.Luth,H.L.Lynch,D.B.MacFarlane, H.Marsiske,R.Messner,D.R.Muller,H.Neal,S.Nelson,C.P.O’Grady,I.Ofte,A.Perazzo,M.Perl,

B.N.Ratcli?,A.Roodman,A.A.Salnikov,R.H.Schindler,J.Schwiening,A.Snyder,D.Su,

M.K.Sullivan,K.Suzuki,S.K.Swain,J.M.Thompson,J.Va’vra,A.P.Wagner,M.Weaver,C.A.West, W.J.Wisniewski,M.Wittgen,D.H.Wright,H.W.Wulsin,A.K.Yarritu,K.Yi,C.C.Young,V.Ziegler Stanford Linear Accelerator Center,Stanford,California94309,USA

P.R.Burchat,A.J.Edwards,S.A.Majewski,T.S.Miyashita,B.A.Petersen,L.Wilden

Stanford University,Stanford,California94305-4060,USA

S.Ahmed,M.S.Alam,J.A.Ernst,B.Pan,M.A.Saeed,S.B.Zain

State University of New York,Albany,New York12222,USA

S.M.Spanier,B.J.Wogsland

University of Tennessee,Knoxville,Tennessee37996,USA

R.Eckmann,J.L.Ritchie,A.M.Ruland,C.J.Schilling,R.F.Schwitters

University of Texas at Austin,Austin,Texas78712,USA

B.W.Drummond,J.M.Izen,X.

C.Lou

University of Texas at Dallas,Richardson,Texas75083,USA

F.Bianchi ab,D.Gamba ab,M.Pelliccioni ab

INFN Sezione di Torino a;Dipartimento di Fisica Sperimentale,Universit`a di Torino b,I-10125Torino,

Italy

M.Bomben ab,L.Bosisio ab,C.Cartaro ab,G.Della Ricca ab,https://www.wendangku.net/doc/1610003794.html,nceri ab,L.Vitale ab INFN Sezione di Trieste a;Dipartimento di Fisica,Universit`a di Trieste b,I-34127Trieste,Italy

V.Azzolini,N.Lopez-March,F.Martinez-Vidal,https://www.wendangku.net/doc/1610003794.html,anes,A.Oyanguren

IFIC,Universitat de Valencia-CSIC,E-46071Valencia,Spain

J.Albert,Sw.Banerjee,B.Bhuyan,H.H.F.Choi,K.Hamano,R.Kowalewski,M.J.Lewczuk,

I.M.Nugent,J.M.Roney,R.J.Sobie

University of Victoria,Victoria,British Columbia,Canada V8W3P6

T.J.Gershon,P.F.Harrison,J.Ilic,https://www.wendangku.net/doc/1610003794.html,tham,G.B.Mohanty

Department of Physics,University of Warwick,Coventry CV47AL,United Kingdom

H.R.Band,X.Chen,S.Dasu,K.T.Flood,Y.Pan,M.Pierini,R.Prepost,C.O.Vuosalo,S.L.Wu

University of Wisconsin,Madison,Wisconsin53706,USA

1INTRODUCTION

Large CP-violating e?ects[1]in the B-meson system are among the most remarkable predictions of the Cabibbo–Kobayashi–Maskawa(CKM)quark-mixing model[2].These predictions have been con?rmed in recent years by the B A B A R and Belle collaborations,both in the interference of B0 decays to CP eigenstates with and without B0–

B0mixing.Multiple measurements ofα,with di?erent decays,further test the consistency of the CKM model.The time-dependent asymmetry in B0→π+π?is proportional to sin2αin the limit that only the b→u(“tree”)quark-level amplitude contributes to this decay.In the presence of b→d(“penguin”)amplitudes,the time-dependent asymmetry in B0→π+π?is modi?ed to

a(?t)=||

A|2

A|2

Sππ= 1?C2ππsin2αe?,(1)

where?t is the di?erence between the proper decay times of the signal-and tag-side neutral B

mesons and?m d is the B0mixing frequency.Both the phase di?erence?αππ=α?αe?and the

direct CP asymmetry Cππmay di?er from zero due to the penguin contribution to the B0→π+π?decay amplitude A.

The magnitude and relative phase of the penguin contribution to the asymmetry Sππmay be

unraveled with an analysis of isospin relations between the B→ππdecay amplitudes[11].The

amplitudes A ij of the B→πiπj decays and B→πiπj decays satisfy the relations

A+0=

1

2

A+?+A00,√A+?+

A?0.We de?ne the direct CP asymmetry Cπ0π0in B0→π0π0as

Cπ0π0=|A00|2?|

|A00|2+|ˉA00|2.(3)

From the di?erence in shape of these triangles for the B and

B pairs were used.The preliminary results presented here supersede the results in prior publications[5,13,16].Roughly22%more B

E(GeV).

3ANALYSIS METHOD

Many elements of the measurements discussed in this paper are common to the decay modes B0→h+h′?(h=πor K),B0→π0π0,and B0→K0Sπ0.The signal B-meson candidates(B rec)

candidates.The event selection are formed by combining two particles,either tracks orπ0or K0

S

di?ers for each mode,and is described in detail below.

The number of B decays and the corresponding CP asymmetries are determined in extended unbinned maximum likelihood(M.L.)?ts to variables described below.The likelihood is given by the expression

L=exp ?M i n i N j M i n i P i( x j; αi) ,(4)

where the product is over the number of events N,the sums are over the event categories M,n i is the coe?cient for each category as described below,and the probability-density function(PDF)P

describes the distribution of the variables x in terms of parameters α.The PDF functional forms

are discussed in Sec.3.3.1,3.3.2,and3.4.

Selection

3.1Track and K0

S

For particle identi?cation in the B0→h+h′?sample,we make use of the track’s Cherenkov radiation in the DIRC as well as its ionization energy loss d E/d x in the DCH.

For the DIRC information to be used,we require that each track have the associated Cherenkov

angle(θC)measured with at least six signal photons detected in the DIRC,where the value ofθC is

required to be within4.0standard deviations from either the pion or kaon hypothesis,which e?ec-

tively removes any candidate containing high-momentum protons.Electrons are explicitly removed

based primarily on a comparison of the track momentum and the associated energy deposition in

the EMC,with additional information provided by DCH d E/d x and DIRCθC measurements.

The ionization energy loss d E/d x in the DCH is used either in combination with DIRC informa-

tion or alone,which enables a35%increase in the B0→h+h′?reconstruction e?ciency compared to using only the tracks with good DIRC information.A detailed DCH d E/d x calibration that

we developed for the B0→h+h′?analysis takes into account variations in the mean value and resolution of d E/d x values with respect to changes in the DCH running conditions over time and

the track’s charge,polar and azimuthal angles,and number of ionization samples.The calibration

is performed with large high-purity samples(>106events)of protons fromΛ→pπ?,pions and

kaons from D?+→D0π+(D0→K?π+),and K0S→π+π?decays that occur in the vicinity of the interaction region.

K0

S→π+π?candidates are reconstructed from pairs of oppositely charged tracks.The two-track combinations are required to form a vertex with aχ2probability greater than0.001and a

mass[23].

π+π?invariant mass within11.2MeV/c2(3.7σ)of the K0

S

3.2π0Selection

We formπ0→γγcandidates from pairs of clusters in the EMC that are isolated from any charged tracks.Clusters are required to have a transverse energy deposition consistent with that of a photon and to have an energy Eγ>30MeV for B0→π0π0and Eγ>50MeV for B0→K0Sπ0.We useπ0 candidates that fall within the invariant-mass range110

For the B0→π0π0sample,we also useπ0candidates from a single EMC cluster containing two adjacent photons(a mergedπ0),or one EMC cluster and two tracks from a photon conversion to an e+e?pair inside the detector.To reduce the background from random photon combinations, the angleθγbetween the photon momentum vector in theπ0rest frame and theπ0momentum vector in the laboratory frame is required to satisfy|cosθγ|<0.95.Theπ0candidates are?tted kinematically with their mass constrained to the nominalπ0mass[23].

Photon conversions are selected from pairs of oppositely charged tracks with an invariant mass

below30MeV/c2whose combined momentum vector points straight away from the beam spot.The

conversion point is required to lie inside the detector material.Converted photons are combined

with photons from single EMC clusters to formπ0candidates.

Single EMC clusters containing two photons are selected with the transverse second moment,

S= i E i×(?αi)2/E,where E i is the energy in each CsI(Tl)crystal and?αi is the angle

between the cluster centroid and the crystal.The second moment is used to distinguish mergedπ0 candidates from both single photons and neutral hadrons.

3.3Event Selection in B0→π+π?,B0→K+π?,and B0→π0π0

Two kinematic variables are used in the B0→h+h′?and B0→π0π0analyses to separate B-meson decays from the large e+e?→qˉq(q=u,d,s,c)combinatoric background[22].One is the beam-energy–substituted mass m ES= s is the total e+e?c.m.energy,(E i,p i)is the four-momentum of the initial e+e?system in the laboratory frame,and p B is the laboratory momentum of the B candidate.The other is?E=E?B?√

B0(?avor tag).We perform an unbinned extended M.L.?t to separate B0→π+π?and B0→K+π?decays and determine simultaneously their CP-violating asymmetries Sππ,Cππ,and A Kπand the signal and background yields and PDF parameters.The?t uses particle-identi?cation,kinematic,event-shape,B tag?avor,and?t information.

The variables m ES and?E are calculated assuming that both tracks are charged pions.The B0→π+π?events are described by a Gaussian distribution for both m ES and?E,where the resolutions are found to be2.6MeV/c2and29MeV,respectively.For each kaon in the?nal state, the?E peak position is shifted from zero by an amount that depends on the kaon momentum,with an average shift of?45MeV.We require m ES>5.20GeV/c2and|?E|<0.150GeV.The large region below the signal in m ES e?ectively determines the background shape parameters,while the wide range in?E allows us to separate B0decays to all four?nal states(π+π?,K+π?,π+K?, and K+K?)in a single?t.

We constructθC PDFs for the pion and kaon hypotheses,and d E/d x PDFs for the pion,kaon,

Figure1:The average di?erence between the expected values of DIRCθC and DCH d E/d x for pions and kaons at0.35<θlab<2.40,divided by the uncertainty,as a function of laboratory momentum in B0→K+π?decays in B A B A R.

Table1:Average tagging e?ciency?,average mistag fraction w,mistag fraction di?erence?w=w(B0)?w(

Lepton8.96±0.072.9±0.30.2±0.57.95±0.11

Kaon I10.81±0.075.3±0.30.0±0.68.64±0.14

Kaon II17.18±0.0914.5±0.30.4±0.68.64±0.17

Kaon Pion13.67±0.0823.3±0.4?0.6±0.73.91±0.12

Pion14.19±0.0832.6±0.45.1±0.71.73±0.09

Other9.55±0.0741.5±0.53.8±0.80.28±0.04

B0.Table1summarizes the

tagging performance measured in a large data sample of fully reconstructed neutral B?av decays to D(?)?(π+,ρ+,a+1).

The time di?erence?t=?z/βγc is obtained from the known boost of the e+e?system (βγ=0.56)and the measured distance?z along the beam(z)axis between the B rec and B tag decay vertices.A description of the inclusive reconstruction of the B tag vertex is given in[28].We require|?t|<20ps andσ?t<2.5ps,whereσ?t is the error on?t determined separately for each event.The signal?t PDF for B0→π+π?is given by

f±k(?t meas)=

e?|?t|/τ

B0)?avor tag and the index k indicates the tagging category. The resolution function R(?t meas??t)for signal candidates is a sum of three Gaussian functions, identical to the one described in Ref.[28],with parameters determined from a?t to the B?av sample (including events in all seven tagging categories).The background?t distribution is also modeled as the sum of three Gaussians,where the common parameters used to describe the background shape for all tagging categories are determined simultaneously with the CP parameters in the maximum likelihood?t.

The M.L.?t includes28components:B0signal decays and background with the?nal states π+π?,K+π?,K?π+,and K+K?where either the positively charged or the negatively charged track,or both,have good DIRC information(2×4×3=24components)plus the pπ?,pK?,π+ p background components where the(anti)proton has no DIRC information.The K±π?

event yields are parameterized as n K±π?=n Kπ(1?A raw

Kπ)/2.All other coe?cients are products

of the fraction of events in each tagging category,taken from B?av events,and the event yield. The background PDFs are a threshold function[29]for m ES and a second-order polynomial for ?E.The F PDF is a sum of two asymmetric Gaussians for both the signal and background.We used large samples of simulated B decays to investigate the e?ects of backgrounds from other B decays on the determination of the CP-violating asymmetries in B0→π+π?and B0→K+π?and determined them to be negligible.

3.3.2B0→π0π0

B0→π0π0events are identi?ed with an M.L.?t to the variables m ES,?E,and NN,the output of the event-shape neural network.We require m ES>5.20GeV/c2and|?E|<0.2GeV.Tails in the EMC response produce a correlation between m ES and?E,so a two-dimensional PDF,derived from detailed Monte Carlo(MC)simulation,is used to describe signal.The NN distribution is binned in ten bins(equally populated for signal)and described by a parametric step-function PDF with9height parameters taken from the MC and?xed in the?t.B?av data are used to verify that the MC accurately reproduces the NN distribution.The qˉq background PDFs are a threshold function[29]for m ES,a second-order polynomial for?E,and a parametric step function for NN. For qˉq events,NN is not distributed uniformly across the bins but rises sharply toward the highest bins.We see a small linear correlation between the shape parameter of the m ES threshold function and the NN bin number,and this linear relation is taken into account in the?t.All qˉq background PDF parameters are allowed to?oat in the M.L.?t.

The decays B+→ρ+π0and B0→K0Sπ0(K0S→π0π0)add71±10background events to B0→π0π0and are included as an additional?xed component in the M.L.?t.We model these B-

decay backgrounds with a two-dimensional PDF to describe m ES and?E,and with a step function for NN,all taken from MC simulation.

The time-integrated CP asymmetry is measured by the B-?avor tagging algorithm described previously.The fraction of events in each tagging category is also constrained to the corresponding fraction determined from MC simulation.The PDF coe?cient for the B0→π0π0signal is given by the expression

1

nπ0π0,k=

B0).

3.4B0→K0π0

For each B0→K0Sπ0candidate,two independent kinematic variables are computed.The?rst one is m B,the invariant mass of the reconstructed B meson,B rec.The second one is m miss, the invariant mass of the other B,B tag,computed from the known beam energy,by applying a mass constraint to B rec[30].For signal decays,m B and m miss peak near the B0mass with resolutions of~36MeV/c2and~5.3MeV/c2,respectively.Both the m miss and m B distributions exhibit a low-side tail due to the leakage of energy deposits out of the EMC.We select candidates within the ranges5.11

We exploit topological observables,computed in the c.m.frame,to discriminate jet-like e+e?→q B events.In order to reduce the number of background events,we require L2/L0<0.55,where L j≡ i|p?i|cos jθ?i andθ?i are computed with respect to the sphericity axis[24]of the B rec candidate.We compute cosθ?B,the cosine of the angle between the direction of the B meson and the nominal direction of the magnetic?eld(z axis).This variable is distributed as1?cos2θ?B for signal events and is nearly?at for background events.We select events with|cosθ?B|<0.9.We also use the distributions of L2/L0and cosθ?B to discriminate the signal from the residual background in a M.L.?https://www.wendangku.net/doc/1610003794.html,ing a full detector simulation, we estimate that our selection retains(34.2±1.2)%of the signal events,where the error includes both statistical and systematic contributions.The selected sample of B0→K0Sπ0candidates is

π0combinations from e+e?→q

dominated by random K0

S

B events,we?nd that backgrounds from other B-meson decays are small,O(0.1%); however,we study in detail the e?ect of a number of speci?c B decay channels.The dominant ones are B+→ρ+K0S,B+→K?+π0,and B+→K0Sπ0π+,and we include this e?ect in our study of the systematic errors.

For the B0→K0Sπ0decay,where no charged particles are present at the decay vertex,we

trajectory from the measurement compute the decay point of the B rec using the knowledge of the K0

S

ofπ+π?momenta and the knowledge of the average interaction point[31].

We extract the signal yield from an extended unbinned M.L.?t to kinematic,event-shape,?avor-tag,and decay-time quantities.The use of tagging and decay-time information in the M.L.?t further improves discrimination between signal and background.We have veri?ed that all

correlations are negligible,and so construct the likelihood function as a product of one-dimensional PDFs.Residual correlations are taken into account in the systematic uncertainty,as explained below.

The PDFs for signal events are parameterized based on a large sample of fully reconstructed B decays in data and from simulated events.For background PDFs,we select the functional form from the background-dominated sideband regions in the data.

The likelihood function is de?ned as:

L(S f,C f,N sig,N bkg,f sig,f bkg, α)=e?(N sig+N bkg)

B0→π0π0247±29(28.8±1.8)%(1.83±0.21±0.13)×10?6?0.43±0.26±0.05 B0→K0Sπ0556±32(34.2±1.2)%(10.1±0.6±0.4)×10?6[33]

Figure2:s P lots for B0→π0π0signal(background shown in the inset plots):(top left)m ES,(top right)?E,(bottom)the binned NN.The line in each plot shows the corresponding PDF.

means and resolutions by amounts determined from MC–data comparison in a control sample of B+→π+π0events.We also take an uncertainty of1.5%,determined from the B?av sample,due to the|cosθS|requirement.Systematic uncertainties involving the M.L.?t are evaluated by vary-ing the PDF parameters and re?tting the data.These contribute an uncertainty of8.3events to the branching-fraction measurement and an uncertainty of0.05to Cπ0π0.The various systematics sources are tabulated in Table3.

4.2B0→π+π?and B0→K+π?Results

Results for the B0→h+h′?decay modes are listed in Table4.The correlation coe?cient between Sππand Cππis found to be?0.056,and the correlation between Cππand A Kπis0.019.In Fig.3, we show s P lots for m ES,?E,and F for the B0→h+h′?signal and background.The direct CP asymmetry in B0→K+π?is apparent in the distribution of?E plotted separately for B0and

B0,and the asymmetry a(?t).The central values and errors for Sππand Cππare shown in Fig.7,along with con?dence-level contours corresponding to statistical signi?cances ranging from 1to7standard deviations.Our measurement excludes the absence of CP violation in B0→π+π?(Sππ=0,Cππ=0)at a con?dence level of2×10?11,or6.7σ(where systematic errors are taken into account).

Table3:Systematic uncertainties in the determination of the B0→π0π0signal yield(Nπ0π0)and branch-ing fraction,and the direct CP asymmetry Cπ0π0.The total branching-fraction systematic is the sum in quadrature of the uncertainties on the signal yield,the signal e?ciency,and the B-meson counting.

Source

Peaking background

±0.35±0.034

Background shape

±3.8±0.020

±8.3 3.4%±0.055

π0e?ciency

1.5%

neutrals resolution

0.5%

6.3%

Number of B1.1%

Total systematic error

N sig Asymmetry

1394±54Sππ=?0.68±0.10±0.03;Cππ=?0.25±0.08±0.02 B0→K+π?

Material interactions+0.0053?0.0025

θC and d E/d x PDFs0.0020

Potential MC bias0.0011

Alternative DIRC parameterization0.0016

Figure3:The distributions of(left)m ES,(middle)?E,and(right)Fisher discriminant F:(top) background-subtracted for B0→π+π?signal,(middle)background-subtracted for B0→K+π?signal, (bottom)signal-subtracted for all h+h′?background candidates in the data.The curves represent the PDFs used in the?t and re?ect the?t result.The structure to the left of the signal?E peak for B0→π+π?is consistent with the expected background from other charmless modes,which is negligible above?0.10GeV.

Figure4:The background-subtracted distribution of?E for signal K±π?events,comparing(solid)B0

and(dashed)

Figure5:(Left)the background-subtracted distribution of?t for signal K±π?and(right)the signal-subtracted?t distribution for background candidates in the data.The curves represent the PDFs used in the?t and re?ect the?t result.

Table6:Summary of systematic uncertainties on Sππand Cππ.

Source SππCππ

Total0.0270.023

Figure6:The background-subtracted distributions of?t for signalπ+π?events tagged as(top) B0or(middle)

常用计量单位换算表

国际单位制中具有专门名称的导出单位 量的名称单位名称单位符号其它表示式例频率赫[兹] Hz s-1 力、重力牛[顿] N kg?m/s2 压力、压强、应力帕[斯卡] Pa N/m2 能量、功、热焦[耳] J N?m 功率、辐射通量瓦[特] W J/s 电荷量库[仑] C A?s 电位、电压、电动势伏[特] V W/A 电容法[拉] F C/V 电阻欧[姆] S V/A 电导西[门子] Wb A/V 磁通量韦[伯] T V?s 磁通量密度、磁感应强度特[斯拉] H Wb/m2 电感亨[利] C Wb/A 摄氏温度摄氏度1m cd?sr 光通量流[明] 1x 1m/ m2 光照度勒[克斯] Bq s-1 放射性活度贝可[勒尔] Gy J/kg 吸收剂量戈[瑞] Sv J/kg 剂量当量希[沃特] 国家选定的非国际单位制单位 量的名称单位名称单位符号换算关系和说明 时间分 [小]时 天(日) min h d 1min=60s 1h=60min=3600s 1d=24h=86400s 平面角[角]秒 [角]分 度 (″) (′) (°) 1″=( π/640800)rad (π为圆周率) 1′=60″=(π/10800)rad 1°=60′=(π/180)rad 旋转速度转每分r/min 1r/min=(1/60)s-1 长度海里n mile 1n mile=1852m (只用于航行) 速度节kn 1kn=1n mile/h =(1852/3600)m/s (只用于航行) 质量吨原子质量单位t u 1t=103kg 1u≈1.6605655×10-27kg

体积升L,(1) 1L=1dm3=10-3m3 能电子伏eV 1eV≈1.6021892×10-19J 级差分贝dB 线密度特[克斯] tex 1tex=1g/km 常用压力单位换算表

常用国际度量衡换算表

重量换算 7. 重量换算 (一) 公 制 英 制 美 制 中国市制 英 制 港 制 公 制 中国市制 英美制 公 吨 长 吨 短 吨 担 英 担 司马担 公 斤 斤 磅 (Metric (Long (Short (Hundred Kilo- ton) ton) ton) weight) (Picul) gram) (Pound) 1 0.984 2 1.102 3 20 19.68 4 16.53 5 1,000 2,000 2,204.62 1.016 1 1.12 20.32 20 16.8 1,016.05 2,032.1 2,240 0.9072 0.8929 1 18.144 17.857 15 907.2 1,814.4 2,000 0.05 0.04921 0.0551 1 0.9842 0.8267 50 100 110.23 0.0508 0.05 0.056 1.016 1 0.8402 50.8 101.6 112 0.0605 0.05954 0.0667 1.21 1.19 1 60.48 120.96 133.33 1 2 2.2046 0.5 1 0.1023 0.4536 0.9072 1 8. 重量换算 (二) 公 制 英 美 制 常 衡 英 美 制 金 衡 或 药 衡 中 国 市 制 公 斤 克(公分) 磅 两(盎司) 磅 两 (盎司) 两 (Kilo- (pound) (Ounce) gram) (Gram) (Pound) (Ounce) (Troy or A

pothecary) (十量制) 1 1,000 2.2046 2 35.2736 2.679227 32.15072 20 0.001 1 0.0022 0.035274 0.0026792 0.03215 0.02 0.45359 453.592 1 16 1.2152777 14.5833324 9.072 0.02835 28.3495 0.0625 1 0.07595486 0.91145833 0.567 0.37324 373.2418 0.82285714 13.1657 1 12 7.465 0.031103 31.1035 0.06857143 1.0971428 0.08333 1 0.622 0.05 50 0.11023 1.76368 0.13396 1.60752 1 单位长度重量换算 9. 单位长度重量换算 公 制 英 美 制 中 国 市 制 公斤/米 磅/尺 磅/寸 斤/尺 (Kilogram/Meter) (Pound/Foot) (Pound/Inch) 1 0.67 2 0.056 0.667 1.488 1 0.083 0.992 17.858 12 1 11.905 1.5 1.088 0.084 1 ? 单位面积换算 10. 单位面积换算

常用计量单位换算

常用计量单位换算 国际单位制 1.1、起源鉴于国际上使用的单位制种类繁多,换算十分复杂,对经济与技术交流带 来许多困难。根据1954年国际度量衡会议的决定,自1978年1月1日起实行国际单位制,简称国际制。国际代号为SI。我国于1977年5月27日颁发《中华人民共和国计量管理条例(试约)》其中第三条规定:“我国的基本计量制度是米制逐步采用国际单位制。” 1.2、国际单位制的基本单位:在国际单位制中,规定七个基本单位,见表1-1,其 它单位均由这些基本单位和辅助单位导出。 表1-1 国际单位制的基本单位 1.3、国际单位制的辅助单位(见表1-2)有2个,平面角(弧rad)和立体角(球面 度Sr)。 1.4、表1-2 国际单位制的辅助单位

1.5、由词头和单位所构成的十进制倍数和分数单位(表1-3)

3、换算原则 3.1、换算后的量值应满足产品的使用要求。 3.2、换算误差应控制在误量值的规定换算精度值之内(表3-1) 3.3、换算后的量值应与仪器、仪表原定精度等级相一致。 4、计算值修约 4.1、计量值就修约到规定精算精度值的最左一位非零数位的前一位(例如:规定换算精度值为0。2,用β/G计算值应修约到个位数),并按国标0.5单位修约和0.2单位修约的顺序进行修约,直至换算误差小于等于规定换算精度为止. 4.2、极限的修约 不小于101.4→不小于102 不大于116.6→不大于116 4.3、例1、给定单向极限值的换算 例:将不低于2500kcal换算成以焦[耳](J)为单位的量值。 A、求计算值:

因1kcal=4.1868kj 故计算值为:2500*4.1868kj=10.467MJ B、计算规定换算精度值: 查表2-6换算精度值为计算值的1% 故规定的换算精度值为:△=10.467*1%≈0.10。 C、修约计算值: 因规定的换算精度值为0.10,故应修约到个位数。 按GB8170“进舍规则”修约:10.467→10 换算误差为:10-10.467=0.467>0.10 再按GB8170“0.5单位修约”:10.467→10.5 换算误差为: ︳10.5-10.467︳=0.038<0.10 所以:不低于2500Kcal→不低于10.5MJ 例2、给定带偏差值的换算 例1 将110±10kgf/mm2换算成以帕[斯卡](Pa)为单位的量值。a、求计算值: 因1kgf=9.080665Mpa, 故基本值换算为:110*9.80665Mpa=1087.73Mpa. 偏差值换算为:10*9.80665Mpa=98.0665Mpa. b、计算规定的换算精度值为公差值的5%,即规定的换算精度值为 [98.0665-(-98.0665)]*5%≈9.8 D、计算值的修约: 因规定的换算精度值为9.8,故应修约到十数位。 基本本值按GB8170:“进舍规则”修约:1087→1080。 其换算误差为:1080-1078.73=1.27<9.8符合要求. 偏差值按GB8170“进舍规则”修约:98.0665→100,其换算误码差为︳100-98.0665︳=1.9335<9.8,符合要求. 所以最后结果为: 110±10kgf/mm2→1080±100

单位换算表

S1单位换算表?度量衡换算表 公制单位 中 文 英 文 缩 写 与公尺之关系 互相间之关系 公 里 Kilo-meter km 103m =10公引=100公丈=1000公尺 公 引 Hectometer hm 102m =10公丈=100公尺 公 丈 Dekameter dam 101 m =10公尺 公 尺 Meter m 100m =10公寸=100公分=1000公厘 公 寸 Decimeter dm 10-1m =10公分=100公厘 公 分 Centimeter cm 10-2m =10公厘=104公忽 公 厘 Millimeter mm 10-3m =103公忽=106微毫=107埃 公 忽 Micron μ或μm 10-6 m =103 微毫=104 埃=10-3 mm 微 毫 Millimicron mμ或μμ 10-9m =10-1埃=10-3μ=10-6mm 埃 Angstrom Ao或Aμ 10-10m =10-7mm 英制单位 公英制互换 中 文 英 文 缩 写 与公尺之关系 互相间之关系 公制 1公厘(km)=0.6214哩(mile) 哩 mile 63360 in =1760码=5280呎 1公尺(m)=1.0936码(yd) 码 yard yd 36 in =3呎 ↓ 1公分(cm)=0.3937吋(in) 呎 foot ft(1') 12 in =1000英毫=1/3码 英制 1公厘(mm)=0.03937吋(in) 吋 inch in(1'') 1 in =1/36码=1/12呎 公制 1哩(mile)=1.609公厘(km) 英 分 line 10-1in =1/120呎=1/10吋 1码(yd)=0.914公尺(m) 毫吋(英毫) mil 10-3 in =10-2 英分 ↓ 1尺(ft)=30.48公分(cm) 微 吋 microinch μin 10-6in =10-3毫吋 英制 1寸(in)=25.4公厘(mm) ■对S1单位换算率表(粗线框内为S1单位) 比热 J/kg.k) kcal(kg.℃) 压力 1 2.388 89×10-4 Pa bar kgf/cm2 atm mmH 2o mmHg 4.186 05×103 1 1 1×10-5 1.019 72×105 9.869 23×10-6 1.019 72×10-17.500 23×10-3 注:1cal=4.186 05J(依日本计量法) 1×105 1 1.019 72 9.869 23×10-1 1.019 72×1047.500 23×102 9.806 65×104 9.806 65×10-1 1 9.678 41×10-1 1×104 7.355 41×102 热传达系数 1.013 25×105 1.013 25 1.033 23 1 1.033 23×1047.600 00×102 w/(m 2.k ) kval/(h.m 2.℃) 9.806 65 9.806 65×10-5 1×10-4 9.678 41×10-5 1 7.355 59×10-2 1 8.600 0×10-1 1.333 22×102 1.359 22×10-3 1.359 55×10-3 1.315 79×10-3 1.359 55×10 1 1.162 79 1 注:1Pa=1n/m 2 注:1cal=4.186 05J(依日本计量法) 功率(功率\动力)热流 kw kgf.m/s ps kcal/h 1 1.019 72×102 1.359 62 8.600 0×10-4 9.806 65×103 1 1.333 33×10-2 8.433 71 注:1w=1J/S.PS:法国马力 7.355 ×10-1 7.5 ×10 1 6.325 29×102 1PS=0.735 5kw (依日本计量施行法) 1.162 79×10-3 1.185 72×10-1 1.580 95×10-3 1 1cal=4.186 05J (依日本计量法) 应力 Pa MPaN/mm 2 kgf/mm 2 kgf/cm 2 J Kw.h Kgf.m kcal 1 1×10-6 1.019 72×10--7 1.019 72×10-5 1 2.777 78×10-7 1.019 72×10-1 2.388 89×104 1×106 1 1.019 72×10-1 1.019 72×10 3.600 ×106 1 3.670 98×105 8.600 0×102 9.806 65×106 9.806 65 1 1×10-2 9.806 65 2.724 07 ×10-6 1 2.342 70×10-3 9.806 65×104 9.806 65×10-2 1×10-2 1 4.186 05×103 1.162 79×10-3 4.268 58×102 1 注:1J=1w.s 1J=IN.M. 1cal=4.186 05J (依计量法)

密度表及单位换算表

密度表及单位换算表 M=密度*体积 千克千克/立方米立方米 常用金属材料的密度表 材料名称密度,克/立方厘米材料名称密度,克/立方厘米 灰口铸铁 6.6~7.4 不锈钢1Crl8NillNb、Cr23Ni18 7.9 白口铸铁7.4~7.7 2Cr13Ni4Mn9 8.5 可锻铸铁7.2~7.4 3Cr13Ni7Si2 8.0 铸钢7.8 纯铜材8.9 工业纯铁7.87 59、62、65、68黄铜8.5 普通碳素钢7.85 80、85、90黄铜8.7 优质碳素钢7.85 96黄铜8.8 碳素工具钢7.85 59-1、63-3铅黄铜8.5 易切钢7.85 74-3铅黄铜8.7 锰钢7.81 90-1锡黄铜8.8 15CrA铬钢7.74 70-1锡黄铜8.54 20Cr、30Cr、40Cr铬钢7.82 60-1和62-1锡黄铜8.5 38CrA铬钢7.80 77-2铝黄铜8.6

铬钒、铬镍、铬镍钼、铬锰、硅、铬锰硅镍、硅锰、硅铬钢7.85 67-2.5、66-6-3-2、60-1-1铝黄铜8.5 镍黄铜8.5 铬镍钨钢7.80 锰黄铜8.5 铬钼铝钢7.65 硅黄铜、镍黄铜、铁黄铜8.5 含钨9高速工具钢8.3 5-5-5铸锡青铜8.8 含钨18高速工具钢8.7 3-12-5铸锡青铜8.69 高强度合金钢` 7.82 6-6-3铸锡青铜8.82 轴承钢7.81 7-0.2、6.5-0.4、6.5-0.1、4-3锡青铜8.8 不锈钢0Cr13、1Cr13、2Cr13、3Cr13、4Cr13、Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 4-0.3、4-4-4锡青铜8.9 Cr14、Cr17 7.7 4-4-2.5锡青铜8.75 0Cr18Ni9、1Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni9 7.85 5铝青铜8.2 1Cr18Ni11Si4A1Ti 7.52 锻铝LD8 2.77 7铝青铜7.8 LD7、LD9、LD10 2.8 19-2铝青铜7.6 超硬铝 2.85 9-4、10-3-1.5铝青铜7.5 LT1特殊铝 2.75 10-4-4铝青铜7.46 工业纯镁 1.74

常用法定计量单位换算表

常用法定计量单位换算表 我国的法定计量单位(以下简称法定单位)包括: 1.国际单位制的基本单位; 2.国际单位制的辅助单位; 3.国际单位制中具有专门名称的导出单位; 4.国家选定的非国际单位制单位; 5.由以上单位构成的组合形式的单位; 6.由词头和以上单位所构成的十进倍数和分数单位。 国际单位制中具有专门名称的导出单位 量的名称单位名称单位符号其它表示式例频率赫[兹] Hz s-1 力、重力牛[顿] N kgm/s2 压力、压强、应力帕[斯卡] Pa N/m2 能量、功、热焦[耳] J Nm 功率、辐射通量瓦[特] W J/s 电荷量库[仑] C As 电位、电压、电动势伏[特] V W/A 电容法[拉] F C/V 电阻欧[姆] S V/A 电导西[门子] Wb A/V 磁通量韦[伯] T Vs 磁通量密度、磁感应强度特[斯拉] H Wb/m2 电感亨[利] C Wb/A 摄氏温度摄氏度1m cdsr 光通量流[明] 1x 1m/ m2 光照度勒[克斯] Bq s-1

放射性活度贝可[勒尔] Gy J/kg 吸收剂量戈[瑞] Sv J/kg 剂量当量希[沃特] 国家选定的非国际单位制单位 量 的名称单位名 称 单位符号换算关系和说明 时间分 [小] 时天 (日) min h d 1min=60s 1h=60min=3600s 1d=24h=86400s 平面角[角]秒 [角] 分度 (″) (′) (°) 1″=( π/640800)rad (π为圆周率) 1′=60″=(π/10800)rad 1°=60′= (π/180)rad 旋 转 速 度 转每分 r/min 1r/min=(1/60)s-1 长 度 海里n mile 1n mile=1852m (只用于航行) 速度节kn 1kn=1n mile/h =(1852/3600)m/s (只用于航 行) 质量吨原 子质量 单位 t u 1t=103kg1u≈×10-27kg 体 积 升L,(1) 1L=1dm3=10-3m3 能电子伏 eV 1eV≈×10-19J 级 差 分贝dB 线密度特[克 斯] tex 1tex=1g/km

国际常用度量衡换算

国 际 常 用 度 量 衡 常用度量衡有:长度、时间、质量、面积、体积、容积 长度 长度用字母表示为L。 长度的国际单位是米,字母表示为m。 有千米km、米m、分米dm、厘米cm、毫米mm、忽米cmm、丝米dmm、微米μ等。 英尺与英寸都是国际上较通用的长度计量单位,十二进位,,是讲、写英语时的用法,英尺英文foot,简写ft;英寸英文inches,简写in。 1英尺(1/3码)=12英寸,英尺与英寸和标准计量--米的换算:1英尺=0.3048米,1英寸=0.0254米 尺与寸是我国现用的市际长度计量单位的一部份,十进位,尺与寸和标准计量--米的换算:1尺=0.3333米,1寸=0.0333米 1千米(1km)=1000米(1000m) 1米(1m)=10分米(10dm) 1分米(1dm)=10厘米(10cm) 1厘米(1cm)=10毫米(10mm) 1毫米(1mm)=10忽米(10cmm) 1忽米(1cmm)=10丝米(10dmm) 1丝米=10微米(10μ) 英尺(ft)与米(m)的换算:1英尺(1ft)=0.3048米(0.3048m) 米(m)与英尺(ft)的换算:1米(1m)=3.28084英尺(3.28084ft) 毫米(mm)与英寸(in)的换算:1毫米(1mm)=0.039370英寸(0.039370in)英寸(in)与毫米(mm)的换算:1英寸(1in)=25.4毫米(mm) 1米=100厘米=1000毫米 1英尺=0.348米 1英寸=2.540005厘米 1米=3.28084英尺 1厘米=0.3937英寸 1英寸=2.5400 厘米

1英尺=12 英寸=0.3048 米 1码=3 英尺=0.9144 米 1英里=1760 码=1.6093 千米 1尺=0.33333米 1寸=0.1尺 时间 时间的标准单位是秒,字母表示为s。 有小时h、分钟min、秒s。 1h = 60min = 3600s 质量 质量用字母表示为m。 质量的国际单位是千克,字母表示为kg。有千克kg、克g等。 吨=20英担(CWT) 1英担=50.8024公斤 美制1短吨=20短担(CWT) 1短吨

国际常用度量衡换算

国际常用度量衡 常用度量衡有:长度、时间、质量、面积、体积、容积 长度 长度用字母表示为L。 长度的国际单位是米,字母表示为m。 有千米km、米m、分米dm、厘米cm、毫米mm、忽米cmm、丝米dmm、微米μ等。 英尺与英寸都是国际上较通用的长度计量单位,十二进位,,是讲、写英语时的用法,英尺英文foot,简写ft;英寸英文inches,简写in。 1英尺(1/3码)=12英寸,英尺与英寸和标准计量--米的换算:1英尺=0.3048米,1英寸=0.0254米 尺与寸是我国现用的市际长度计量单位的一部份,十进位,尺与寸和标准计量--米的换算:1尺=0.3333米,1寸=0.0333米 1千米(1km)=1000米(1000m) 1米(1m)=10分米(10dm) 1分米(1dm)=10厘米(10cm) 1厘米(1cm)=10毫米(10mm) 1毫米(1mm)=10忽米(10cmm) 1忽米(1cmm)=10丝米(10dmm) 1丝米=10微米(10μ) 英尺(ft)与米(m)的换算:1英尺(1ft)=0.3048米(0.3048m) 米(m)与英尺(ft)的换算:1米(1m)=3.28084英尺(3.28084ft) 毫米(mm)与英寸(in)的换算:1毫米(1mm)=0.039370英寸(0.039370in) 英寸(in)与毫米(mm)的换算:1英寸(1in)=25.4毫米(mm)

1米=100厘米=1000毫米1英尺=0.348米1英寸=2.540005厘米1米=3.28084英尺1厘米=0.3937英寸1英寸=2.5400 厘米1英尺=12 英寸=0.3048 米1码=3 英尺=0.9144 米1英里=1760 码=1.6093 千米1尺=0.33333米 1寸=0.1尺 时间 时间的标准单位是秒,字母表示为s。 有小时h、分钟min、秒s。 1h = 60min = 3600s 质量 质量用字母表示为m。 质量的国际单位是千克,字母表示为kg。有千克kg、克g等。 1千克(1kg)=1000克(1000g)1斤=0.5千克 1千克=2斤

小学单位换算表

小学单位换算表 篇一:小学数学单位换算大全 小学数学单位换算大全 长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米 面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分 1立方分米=1000立方厘米1立方分米=1升 1立方厘米=1毫升1立方米=1000升 重量单位换算1吨=1000千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天 1日=24小时1时=60分1分=60秒1时=3600秒几何形体周长面积体积计算公式 三角形的面积=底×高÷2。公式s=a×h÷2 正方形的周长=边长×4c=4a

正方形的面积=边长×边长公式s=a×a 长方形的周长=(长+宽)×2c=(a+b)×2 长方形的面积=长×宽公式s=a×b 平行四边形的面积=底×高公式s=a×h 梯形的面积=(上底+下底)×高÷2公式s=(a+b)h÷2内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 直径=半径×2d=2r半径=直径÷2r=d÷2 圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr 圆的面积=半径×半径×π公式:s=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:s=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:s=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=sh圆锥的体积=1/3底面×积高。公式:V=1/3sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数

常用计量单位换算表大全

常用计量单位换算表大全1.压力单位: 1 公斤力/厘米2(kgf/cm2) = 0.0981 MPa 1 毫米水柱(mmH2O) = 9.81×10-6 MPa 1 巴(bar) = 0.1 MPa 1 毫米水银柱(mmHg) = 1.333×10-3 MPa 1 标准大气压(atm) = 0.1013 MPa 1 英寸水柱(inH2O) = 2.49×10-4 MPa 1 磅/英寸2(psi,lb/in2) = 6.89×10-3 MPa 1 英尺水柱(ftH2O) = 2.984×10-3 MPa 1 盎司/英寸2(ozf/in2) = 4.31×10-4 MPa 1 英寸汞柱(inHg) = 3.386×10-3 MPa 2. 面积单位: 1 in 2 = 6.452×10-4 m2 1 mi 2 = 2.59×106 m2 1 ft 2 = 0.0929 m2 1 km 2 = 106 m2 3. 体积单位: 1 升(L,dm3) = 10-3 m3 1 in3 = 0.01639 L 1 美国加仑(USgal) = 3.78543 L 1 ft3 = 28.317 L 1 英国加仑(UKgal) = 4.54374 L 1 美国夸脱(qt) = 0.94636 L 1 美国桶(bbl,石油) = 158.98 L 4. 质量单位: 1 牛顿(N) = 0.10 2 kg 1 磅(lb) = 0.454 kg 5. 长度单位 1 英寸(in) = 0.0254 m

1 英里(me) = 1609.35 m 1 英尺(ft) = 0.3048 m 1 微米(μm) =10-6 m 6. 温度单位: (℉- 32)×5/9 = ℃ K - 273.15 = ℃ 7. 流量单位: 7.1 体积流量单位 1 m3/h = 0.01667 m3/min 1 UKgal/min = 4.546×10-3 m3/min 1 L/min = 10-3 m3/min 1 USgal/min = 3.785×10-3 m3/min 1 ft3/h = 4.719×10-4 m3/min 1 美国桶/天(bbl/d) = 1.104×10-4 m3/min 7.2 质量流量单位 1 kg/h = 0.01667 kg/min 1 lb/h = 7.56×10-3 kg/min Cv值:水流量(US gal/min)于60℉下,流经差压为 1psi 之阀门而所得出之流量定值。(Cv×1000=l/min) kv值:水流量(L/min)于20℉下,流经差压为 1kgf/cm2 之阀门而所得出之流量定值。 KV值: 水流量(m3/min)于20℉下,流经差压为 1kgf/cm2 之阀门而所得出之流量定值。 S值:气动元件有效截面积(mm2) S.T.P = 标准温度及压力(0 ℃及101.3 kPa绝对压力) N.T.P = 正常温度及压力(20 ℃及101.3 kPa绝对压力) M.S.C = 公制标准情况(15 ℃及101.3 kPa绝对压力) ANR = 温度:20 ℃及相对湿度:65% 流量系数之间的转换:CV = 1.17 KV S = 18.45 CV

度量衡的单位及换算1

课题:度量衡的单位及换算 班级:姓名:组 教师评价: 编制人:审核人: 【学习目标】 1、了解常见的度量衡单位,熟悉它们之间的换算关系。 2. 发展学生运用单位换算的能力。 3. 让学生感受集合语言的意义和作用,通过合作学习培养学生的合作精。 重点:度量衡单位的换算公式 难点:运用换算公式。 【预习案】 【使用说明与学法指导】 1、通读教材,完成预习案.重点关注度量衡单位的换算公式。 2、将预习中不能解决的问题标出来,并写到后面“我的疑惑”处. 一、相关知识: 1、长度单位3、质量的单位及换算 2、体积的单位及换算 二、教材助读: 1、长度单位:测量长度的常用计量单位包括_______、_______、_______、_______、_______等,用符号分别为________、________、_______、_______、_______等。 2、体积的单位:测量体积的公制计量单位包括______、_______、_______、_______、_______,用符号分别为________、________、_______、_______。 3、质量的单位:国际单位制中,质量的基本单位是_______(又称_______)用符号_______表示。常用的质量单位还有_______、_______、_______,用符号分别表示为_______、_______、_______。 三、预习自测: 1、常用长度单位换算公式:1千米(公里)=_______米 1米=_______分米 1分米=_______厘米 1厘米=_______毫米 2、体积(容积)单位的换算公式:1立方米=_______立方分米(升) 1立方分米=_______立方厘米(毫升) 1立方厘米=_______立方毫米 3、质量(重量)单位换算公式:1吨=_______千克(公斤) 1千克=_______克 1克=_______毫克

常用计量单位换算

常用计量单位换算 1)长度单位 公制:米(m)、厘米(cm)、毫米(mm)。l米=100厘米=1000毫米 英制:码(yd)、英尺(ft)、英寸(in)。1码=3英尺,1英尺=12英寸 换算:1码=0.9144米,1英尺=0.3048米,l英寸=2.54厘米=25.4毫米 1米=1.0936码=3.2808英尺。 2)质量(重量)单位 公制:吨(t)、千克(kg)、克(g)。1吨=1000千克,1千克=1000克,1克=1000毫克 英制:磅(lb)、盎司(oz)、格林(gr)。1磅=16盎司=7000格林,1盎司=437.5格林 换算:1磅=0.4536千克=453.6克,1盎司=28.35克,1格林=0.0648克。 1千克=2.2046磅, 1克=15.432格林,1千克=35.27盎司 3)面积单位 公制:米2(m2)、厘米2(cm2)、毫米2(mm2)。1米2=10000厘米2,1厘米2=100毫米2 英制:码2(yd2) 换算:1米2=1.196码21码2 = 0.8361米2 4)力的单位 公制: 牛顿(N)、厘牛顿(cN)、daN 。1牛顿(N)=100厘牛顿(cN),1千克力(kgf)=1000克力(gf),1 daN=10牛顿(N)。 英制:磅力(lbf) , 盎司力(oz) 换算: 1千克力(kgf)=9.807牛顿(N),1克力(gf)=0.9807厘牛顿(cN),1千克力(kgf)=2.2磅力(lbf) 1牛顿(N)=0.225 磅力(lbf), 1盎司力(oz)=28.35克力(gf)=0.06237磅力(lbf) 4)容积单位 公制:米3、升、毫升。1米3=1000升,1升=1000毫升。 英制:加仑、码3。 换算:1米3=1.308码3,1升=0.22加仑,1加仑=4.546升(英制),1加仑=3.78升(美制)。5)面密度单位 公制:千克/米2(kg/m2),克/米2(g/m2)。 英制:盎司/码2(oz/yd2)。 换算:1千克/米2=29.4535盎司/码2 1盎司/码2 =33.91克/米2

常用国际度量衡换算表

常用国际度量衡换算表 一、摄氏和华氏温度换算 华氏 'F(Fahrenheit)= ℃ X 9/5+32 摄氏℃(Celsius or Centigrade)= 9/5X('F-32) 二、粮谷重量、容积换算 一公吨折合蒲式耳一蒲式耳折合 (Metric ton to Bushels) 磅(Pound) 公斤(Kilogram) 小麦,大豆 36.743 60 27.216 玉米 39.368 56 25.402 大麦(英制) 44.092 50 22.68 大麦(美制) 45.931 48 21.773 1 英制蒲式耳(=1.0321美制蒲式耳) 合 36.3677 公斤 三、植物油籽榨油率 (每百公斤油籽榨油公斤数) 椰干 64 大豆 16 蓖麻籽 45 棉籽 16 棕侣仁 46 花生(去壳) 43 亚麻籽 34 菜籽 35 油橄榄 15 花生(带壳) 30 桐果 16 葵花籽 35 1 公斤去壳花生约等于带壳花生 1.5 公斤 四、稻谷折合大米(每百公斤稻谷加工成大米公斤数) 日本 73.7 美国 73.6 缅甸 67.9 泰国 65.0 实用上一般按 65% 计 五、小麦折合面粉 (每百斤小麦出面粉公斤数) 美国 71.5 澳大利亚,阿根廷及其他国家和地区 72 六、原糖,精糖换算 每百斤原糖大致可出 92 斤精糖和 8 斤糖蜜. 但最常用的换算率是: 原糖 100 公斤 = 精糖 90 公斤或, 精糖 100 公斤 = 原糖 111 公斤 七、鲜蛋,蛋品换算 1 吨鲜蛋一般平均约有鲜蛋 17,360 个. 1 吨冰蛋 = 1. 2 吨鲜蛋 1 吨干蛋 = 4.4 吨鲜蛋 八、活畜重量折合屠宰后重量 (活畜重量除去,蹄,皮,血等重量) 牛: 为活牛重量的 57 %. 猪: 为活猪重量的 65-75 %. 羊: 为活羊重量的 40-47 %. 九、棉花的计量单位换算 从棉株直接摘取的棉花,叫籽棉.籽棉经轧花后得到的棉花称为皮棉 (或原棉).皮棉通常占籽

密度表及单位换算表

密度表及单位换算表 M =密度*体积 千克千克/立方米立方米 常用金属材料的密度表 材料名称密度,克/立方厘米材料名 称密度,克/立方厘米 灰口铸铁 6.6~7.4 不锈 钢 1Crl8NillNb、Cr23Ni18 7.9 白口铸 铁 7.4~7.7 2Cr13Ni4Mn9 8.5 可锻铸 铁 7.2~7.4 3Cr13Ni7Si2 8.0 铸钢 7.8 纯铜材 8.9 工业纯铁7.87 59、62、65、68黄 铜 8.5 普通碳素钢7.85 80、85、90黄 铜 8.7 优质碳素钢 7.85 96黄铜 8.8

碳素工具钢7.85 59-1、63-3铅黄铜 8.5 易切钢 7.85 74-3铅黄铜 8.7 锰钢 7.81 90-1锡黄铜 8.8 15CrA铬钢7.74 70-1锡黄铜 8.54 20Cr、30Cr、40Cr铬钢 7.82 60-1和62-1锡黄铜 8.5 38CrA铬钢7.80 77-2铝黄铜 8.6 铬钒、铬镍、铬镍钼、铬锰、硅、铬锰硅镍、硅锰、硅铬钢 7.85 67-2.5、66-6-3-2、60-1-1铝黄铜 8.5 镍黄铜 8.5 铬镍钨钢 7.80 锰黄铜 8.5 铬钼铝钢 7.65 硅黄铜、镍黄铜、铁黄铜 8.5 含钨9高速工具钢 8.3 5-5-5铸锡青铜 8.8 含钨18高速工具钢 8.7 3-12-5铸锡青铜 8.69 高强度合金钢` 7.82 6-6-3铸锡青

铜 8.82 轴承钢 7.81 7-0.2、6.5-0.4、6.5-0.1、4-3锡青铜 8.8 不锈钢 0Cr13、1Cr13、2Cr13、3Cr13、4Cr13、Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 4-0.3、4-4-4锡青铜 8.9 Cr14、Cr17 7.7 4-4-2.5锡青铜 8.75 0Cr18Ni9、1Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni9 7.85 5铝青铜 8.2 1Cr18Ni11Si4A1Ti 7.52 锻铝 LD8 2.77 7铝青铜 7.8 LD7、LD9、LD10 2.8 19-2铝青铜 7.6 超硬铝 2.85 9-4、10-3-1.5铝青铜7.5 LT1特殊铝 2.75 10-4-4铝青铜7.46 工业纯镁 1.74 铍青铜8.3 变形镁 MB1 1.76

常用计量单位换算表重量单位及其换算

常用计量单位换算表重量 单位及其换算 Newly compiled on November 23, 2020

常用计量单位换算表重量单位及其换算 更新日期:2011-2-21 10:20:16 点击:2431 单位名称旧名称代号对主单位的比 毫克厘克分克克十克百克公斤公担吨 公丝 公毫 公厘 公分 公钱 公两 公斤,千克 公担 公吨 mg cg dg g dag hg kg q t 公斤 公斤 公斤 公斤 公斤 公斤 主单位 100公斤 1000公斤 常用英美制重量单位表(2) 1英吨(长吨,ton)=2240磅 1美吨(短吨,=2000磅 1磅(1b)=16盎司(oz) 常用重量单位换算表(3) 吨公斤市担市斤英吨美吨磅 吨 1 1000 20 2000 公斤 1 2 市担50 1 100 市斤 1 英吨 1 2240 美吨 1 2000 磅 1 压力单位换算表(4) 公斤/厘米2 大气压水银柱高 度(毫米) 水柱高度 (米) 毫巴磅/寸2 英寸水柱 公斤/厘米2 大气压 水银柱高度(毫米)水柱高度(米) 毫巴 磅/寸2 英寸水柱1 1 1 1 1 1 1 常用长度单位换算表(5)

米厘米毫米市尺英尺英寸 米 1 100 1000 3 厘米 1 10 毫米 1 市尺 1 英尺 1 12 英寸 1 英寸与毫米对照表(6) 寸毫米寸毫米寸毫米寸毫米寸毫米寸毫米 1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16 1 17/16 9/8 19/16 5/4 21/16 11/8 23/16 3/2 25/16 13/8 27/16 7/4 29/16 15/8 31/16 2 17/8 9/4 19/8 5/2 21/8 11/4 23/8 3 25/8 13/4 27/8 7/2 29/8 15/4 31/8 4 常用容量单位换算表(7) 升(市升)立方英寸英加仑美加仑(液量)美加仑(干量) 升(市升) 1 立方英寸 1 英加仑 1 美加仑(液量)231 1 美加仑(干量)101636 1 二、常用化学元素符号表(8) 元素名称符号元素名称符号元素名称符号 铬镍硅锰Cr Ni Si Mn 铌 钽 氢 碳 Nb Ta H C 铝 铋 锕 铈 Pb Bi Ac Ce

常用计量单位换算表

常用计量单位换算表

常用计量单位换算表 重单位及其换算 公制重量单位表 单位名称旧名称代号对主单位的比 毫克厘克分克克十克百克公斤公担吨 公丝 公毫 公厘 公分 公钱 公两 公斤,千克 公担 公吨 mg cg dg g dag hg kg q t 0.000001公斤 0.00001公斤 0.0001公斤 0.001公斤 0.01公斤 0.1公斤 主单位 100公斤 1000公斤 常用英美制重量单位表 1英吨(长吨,ton)=2240磅1美吨(短吨,sh.ton)=2000磅 1磅(1b)=16盎司(oz) 常用重量单位换算表 吨公斤市担市斤英吨美吨磅 吨110002020000.98421 1.10232204.6公 斤 0.00110.0220.0009840.0011022.2046市 担 0.055011000.049210.0551110.231市 斤 0.00050.50.0110.0004920.0005511.1023英 吨 1.016051016.0520.3209203 2.091 1.12002240

美 吨 0.90719 907.19 18.1437 1814.37 0.8929 1 2000 磅 0.000454 0.4536 0.009072 0.9072 0.000446 0.0005 1 压力单位换算表 公斤/厘米2 大气压 水银柱 高 度(毫 米) 水柱高 度 (米) 毫巴 磅/寸2 英寸水柱 公斤/厘米2 大气压 水银柱高度(毫米) 水柱高度(米) 毫巴 磅/寸2 英寸水柱 1 1.0333 0.00136 0.10 0.0010 2 0.070 3 0.0025 4 0.9678 1 0.00131 0.0968 0.000987 0.0680 0.00246 735.56 760.00 1 73.556 0.76863 51.71 5 1.87 10.00 10.3333 0.013 6 1 0.0102 0.703 0.0254 981.00 1013.25 1.3332 98.10 1 68.95 2.49 14.223 14.696 0.0193 1.4223 0.01451 1 0.0361 395.00 407.5 0.535 39.40 0.402 27.72 1 常用长度单位换算表 米 厘米 毫米 市尺 英尺 英寸

度量衡单位换算表(实用)

〖内容〗 度量衡 1.The International (Metric) System国际公制 ◇Units of Length长度单位 millimicron m〖单宽μ〗毫微米= 1/1,000,000,000米 micron 〖单宽μ〗微米= 1/1,000,000米 centimillimetre cmm. 忽米= 1/100,000米 decimillimetre dmm. 丝米= 1/10,000米 millimetre mm. 毫米= 1/1,000米 centimetre cm. 厘米= 1/100米 decimetre dm. 分米= 1/10米 metre m. 米基本单位 decametre dam. 十米= 10米 hectometre hm. 百米= 100米 kilometre km. 公里= 1,000米 ◇Units of Area面积单位 square metre sq.m. 平方米基本单位 are a. 公亩= 100平方米 hectare ha. 公顷= 10,000平方米 square kilometre sq.km. 平方公里= 1,000,000平方米 ◇Units of Weight or Mass重量或质量单位 milligram(me) mg. 毫克= 1/1,000,000千克 centigram(me) cg. 厘克= 1/100,000千克 decigram(me) dg. 分克= 1/10,000千克 gram(me) g. 克= 1/1,000千克 decagram(me) dag. 十克= 1/100千克 hectogram(me) hg. 百克= 1/10千克 kilogram(me) kg. 千克(公斤)基本单位 quintal q. 公担= 100千克 metric ton MT(或t.) 公吨= 1,000千克 ◇Units of Capacity容量单位 microlitre 〖单宽μ〗l. 微升= 1/1,000,000升 millilitre ml. 毫升= 1/1,000升 centilitre cl. 厘升= 1/100升 decilitre dl. 分升= 1/10升 litre l. 升基本单位 decalitre dal. 十升= 10升 hectolitre hl. 百升= 100升 kilolitre kl. 千升= 1,000升 折合市制:1米= 3市尺;1公里= 2市里;1公亩= 0.15市亩;1千克= 2市斤2.The British and U.S. System英美制 ◇Units of Length长度单位 mile mi. 英里880 fm. = 1.6093公里 fathom fm. 英寻2 yd. = 1.829米

相关文档