文档库 最新最全的文档下载
当前位置:文档库 › 函数极限概念

函数极限概念

函数极限概念
函数极限概念

引言

在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法.

一、函数极限概念

定义1[]1

设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在

正数M (a ≥),使得当M x >时有

()f x A ε-<,

则称函数f 当x 趋于+∞时以A 为极限,记作

lim ()x f x A →+∞

= 或()().f x A x →→+∞

定义2[]1

(函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0

U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有

()f x A ε-<,

则称函数f 当x 趋于0x 时以A 为极限,记作

lim ()x f x A →∞

=或0()()f x A x x →→.

定理1[]1

设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若

对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有

()f x A ε-<,

则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

lim ()(lim ())x x x x f x A f x A +-→→==

00()()(()())f x A x x f x A x x +-→→→→.

定理2[]1

(唯一性)若极限0

lim ()x x f x →存在,则此极限是唯一的.

定理3[]1

(局部有界性)若0

lim ()x x f x →存在,则f 在0x 的某空心邻域00()U x 内

有界.

定理4[]1

(局部保号性)0

lim ()0x x f x A →=>若(或<0),则对任何正数r

r <-A ),存在00()U x ,使得对一切00()x U x ∈有

()0f x r >>(或()0f x r <-<).

定理5[]1

(保不等式性)0

lim ()x x f x →设与0

lim ()x x g x →都存在,且在某邻域0'0(;)

U x δ内有()()f x g x ≤,则

lim ()lim ().x x x x f x g x →→≤

二、函数极限的求解与应用

极限一直是数学分析中的一个重点内容,而对函数极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法.求解函数极限的最基本的方法还是利用函数极限的定义,同时也要注意运用两个重要极限,其中可以利用等量代换,展开、约分等方法化成比较好求的数列,也可以利用函数极限的四则运算法则计算.夹逼性定理和拉格朗日中值定理是很重要的定理,在求的时候要重点注意运用. 洛必达法则是针对某些特殊的函数而言的,还有一些比较常用的方法,在本文中都一一列举了.

1、利用函数极限的定义

根据函数极限的定义,是求极限的最基本的方法之一.

例1 证明 1

lim

0x x

→∞=. 证明 ε?>0,?M =

1

ε

,则当x >M 时有,10x -=1x <1M =ε.

所以有1

lim

0x x

→∞=. 例2 用极限的定义证明2

0211lim 0

x x x x -=-→ 0(||1)x <.

证明 由于||1x ≤, 0||1x <, 因此

2222

002200002

2

||1111||||

2||

.

11x x x x x x x x x x x x x x ----=

-+-+--≤

--

于是, 对任给的)10(0<<>εε不妨设, 取,2

12

εδx -=

则当00||x x δ<-<时, 有 .112

02ε<---x x

注 用极限的定义时, 只需要证明存在)(δ或N , 故求解的关键在于不等式的建立. 在求解的过程中往往采用放大、缩小等技巧, 但不能把含有n 的因子移到不等式的另一边再放大, 而是应该直接对要证其极限的式子一步一步放大, 有时还需加入一些限制条件, 限制条件必须和所求的N (或δ)一致, 最后结合在一起考虑.

2.利用极限的运算法则

定理6[]1

(四则运算法则) 若极限0

lim ()lim ()x x x x f x g x →→与都存在,则函数f g ±,

.f g 当0x x →时极限也存在,且

[]0

lim ()()lim ()lim ();x x x x x x f x g x f x g x →→→±=±

[]0

lim ()()lim ().lim ()x x x x x x f x g x f x g x →→→=;

lim ()x x g x →又若00,f g x x ≠→则当时极限存在,且有

0()

lim

lim ()/lim ().()x x x x x x f x f x g x g x →→→=

例3 求221lim 1n

n

n a a a b b b →∞++++++++ , 其中1,1<

解 分子分母均为无穷多项的和,应分别求和,再用四则运算法则求极限

b

b b b b a a a a a n n

n n

--=++++--=++++++111,1111212

,

原式= 1111

lim

111111lim

11n n n n a b a a b a

b

b +→∞+→∞----=

=----

例4 求???

?

??--++→20211lim x x x x . 解 原式???

?

??+-++--+-++=→)211(41121lim 2

20x x x x x x x ???

? ??+-+-++--=→)11)(211()11(2lim

22

20x x x x x x ????

??+-+-++-=→)11)(211(2lim

20x x x x 4

1

-=.

注1 对于和、差、积、商形式的函数求极限, 可以采用极限运算法则, 使用时需要先对函数做某些恒等变换或化简, 变换的方法通常有分式的通分、约分、分解因式、分子分母有理化、三角函数的恒等变化、拆项消去法、比较最高次幂法等.

注2 运用极限法则时, 必须注意只有各项极限都存在(对商, 还要分母极限不为零)时才能适用.

3.利用迫敛性(夹逼准则)

定理7[]1 (迫敛性)0

lim ()lim ()x x x x f x g x A →→==设,且在某0'0(;)U x δ内有

()()()f x h x g x ≤≤,

则 0

lim ().x x h x A →=

例5 求下列函数的极限.

(1)cos lim x x x

x

→-∞-;

(2)2sin lim 4

x x x

x →+∞-.

解 (1)因为-1≤cos 1x ≤,所以当0x <时,

1cos 1x x x x

-≤≤-, 于是 1cos 1

11x x x x x

-+≤≤-,

又因为 11

lim (1)lim (1)1x x x x

→-∞→-∞+=-=,

由迫敛性得 cos lim

1.x x x

x →-∞-= (2)因为1sin 1,x -≤≤2-24x x x >≤-所以当时,22

sin 44x x x

x x ≤--, 又因为 222

1lim lim 0,lim 04

441x x x x x x x x x →+∞→+∞→+∞-

-===---, 又迫敛性得 2sin lim 4

x x x

x →+∞-=0.

例6 求???

?

?→x x x x 1sin sin 1lim 20.

解 当0≠x 时, 有 222111|sin sin ||sin |x x x x x x ??≤≤ ??

?,

从而 2

110|sin sin |||x x x x ??≤≤ ???,

由夹逼准则得 2

011lim |sin sin |0x x x x →??= ???

, 所以 01sin sin 1lim 20=???

?

?→x x x x .

注1 迫敛性(夹逼准则)多适用于所考虑的函数比较容易适度放大或缩小, 而且放大和缩小的函数是容易求得相同的极限. 基本思想是把要求解的极限转

化为求放大或缩小的函数或数列的极限.

注2 利用夹逼准则求函数极限的关键:

(1)构造函数)(x f , )(x h , 使)(x f ≤)(x g ≤)(x h ; (2)A x h x f x x x x ==→→)(lim )(lim 0

, 由此可得A x g x x =→)(lim 0

.

4.利用两个重要极限

两个重要极限:(1)1sin lim

0=→x

x

x ;

(2)e x x

x =??

?

??+∞

→11lim .

根据复合函数的极限运算法则, 可将以上两个公式进行推广: (1)1)

()

(sin lim

0=→x f x f x x ()(,sin ,0)(lim 0x f u u u y x f x x ==

=→); (2)e x g x g x x =???

? ??+→)

()(11lim 0 ???

? ??=??? ??+=∞=→)(,11,)(lim 0x g u u y x g u

x x . 例7 求下列函数的极限

(1)1

lim sin ;x x x

→+∞

(2)3

0tan sin lim x x x

x →- .

解(1)令

1

t x

=, 0t 0.

1sin lim sin lim 1.

x t x t

x x t

++→+∞→→+∞→==则当 时, 于是 (2)2

3330002sin sin tan sin sin (1cos )2lim

lim lim cos cos x x x x

x x x x x x x x

x x

→→→--==

220sin

sin 12lim ..2cos 21

1.1.21.2x x x x x x →??

????=?????? ?

????==

例8 求下列函数的极限

(1)02

lim(1);x x x

-→-

(2)1

01lim()1x x x x

→+- . 解(1)2

2221lim(1)=lim 1+-2x

x x x e x x --→∞→∞?

????? ???

-= ??? ?????????

. (2)1112

2

100122lim()lim(1)lim(1)111x x x x x x n x x x x x x x

--→→∞→+=+=+---

=2

112202lim 11x x

x

x x e x --→?

??

???+= ???-??

?

?

.

5.利用无穷小的性质和等价无穷小代换

定理8[]

1 设函数(),(),()f x g x h x 在0(,)U x δ'内有定义, 且有 )(~)(x g x f )(0x x →. (1) 若A x h x f x x =→)()(lim 0

, 则A x h x g x x =→)()(lim 0

(2) 若B x f x h x x =→)

()(lim

, 则B x g x h x x =→)()

(lim 0.

性质1 有限个无穷小量的代数和为无穷小量; 性质2 有限个无穷小量的乘积为无穷小量;

性质3 常数与无穷小量的乘积是无穷小量.

定理9[]1 设α,β均为无穷小, 且~,~ααββ'', 且αβ'

'

lim 存在,

则 αβαβ'

'

=lim lim .

例9 求极限2

22

01cos lim sin x x x x →- .

解 因为 22

2

()1cos ~

;2x x -

所以 22

20sin cos 1lim x x x x -→=212)(2

22

2=x x x .

例10 计算30sin sin tan lim

x

x x x -→. 解 由于 )cos 1(cos sin sin tan x x

x

x x -=

-, 而 )0(~sin →x x x , )0(2

~cos 12

→-x x x , )0(~sin 33→x x x ,

故有 2

12cos 1lim sin sin tan lim 32030=?

?=-→→x x x x x x x x x .

例[]

611 计算 2011

lim 1cos x x x →+--.

解 因为 2

11cos (0),2

x x x -→

且 2

2

00022

2sin sin 1cos 22lim lim lim 111222x x x x x x x x x

→→→?? ?-=== ? ???

. 由定理得,

2011lim

1cos x x x →+--(

)

22

2

000

2

22112lim lim lim

11111

11

22

x x x x x x x x x →→→+-====++++.

注1 对于分子或分母中的两个无穷小之差不能直接用无穷小代换.

注2[]7

常用等价代换公式: 当0→x 时, x x ~sin , x x ~arcsin , x x ~tan ,

x x ~arctan , x e x ~1-, a x a x ln ~1-等.在求解极限的时候要特别注意无穷小等价替换,无穷小等价替换可以很好的简化解题.

6.利用恒等变形法

在求函数极限时,利用简单的恒等变形可使极限易于计算,恒等变形的手段有约分法有和有理化法. (1)约分法

适用于计算0

0型函数极限,如果所求函数的分子分母都是整式且有公因子

(特别是零因子)时,可通过约简式计算极限值.

例12[]

3 计算21lim 1

n x x x x n

x →+++-- 的值(n 为正整数).

解 原式=21(1)(1)(1)

lim 1

n x x x x x →-+-++--

= 12

1

lim 1(1)(1)n n x x x x x --→??++++++++??

12n =+++ =

(1)2

n n

+. 注 要首先将分子分母因式分解,找到公因子(特别是零因子),接着即可约

去公因子,求函数极限. (2)有理化法

在求解存在根号的函数极限时,通过选择分子或分母,或分子分母同时有理化约去零因子,即可转化为一般的极限问题. 例13

[]

4 计算:20lim x a x a

x

→+- (其中0a >).

解 原式=222

()()

lim

()

x a x a a x a x a x a →+-++++

=222

()lim

()

x a x a x a x a →+-++

=2

1lim

x a x a

→++

=

12a

注 此题是通过分子有理化来简化运算,在具体解题时根据简便原则进行选择何种方式的有理化.

7.利用洛必达法则

(1)0

型不定式极限

定理10[]1 若函数)(x f 和)(x g 满足: (i ) 0)(lim )(lim 0

==→→x g x f x x x x ;

(ii ) 在点0x 的某空心邻域00(,)U x δ'内两者都可导, 且0)(≠'x g ;

(iii ) A x g x f x x =''→)

()

(lim

(A 可为实数, 也可为∞), 则

=→)()(lim

x g x f x x A x g x f x x =''→)

()

(lim 0. (2)

型不定式极限 定理 11[]1 若函数f 和g 满足: (i ) ∞==→→)(lim )(lim 0

x g x f x x x x ;

(ii ) 在点0x 的某空心邻域00(,)U x δ内两者都可导, 且0)(≠'x g ; (iii ) A x g x f x x =''→)

()

(lim

(A 可为实数,也可为∞), 则

=→)

()(lim

x g x f x x A x g x f x x =''→)()

(lim 0. 注[]8

洛必达法则是求两个无穷小量或两个无穷大量之比的极限的, 在同

一运算过程中可连续使用, 直到求出所求极限. 但是, 对于其他不定式的极限(如,0∞? 001,0,,∞∞∞-∞等类型)如果无法判断其极限状态, 则洛必达法则失败, 但只需经过简单变换, 它们一般可以化为

00型和∞

型的极限. 例 12[]3 计算:(1) 3

arcsin lim

;(arcsin )

x x x x →- (2) 0

lim ln x x x +

→; (3) ()

1

ln 2

lim 1x

x x x →+∞

++.

解 (1)这是一个

型的不定式极限, 直接应用洛必达法则得: 2

23

222

0001

1arcsin 111lim lim

lim 331x x x x x

x x x x x x →→→-

----==-

)

11(13lim

222

2

+---=→x x x x x 61-=.

(2)这是一个∞?0型的不定式极限, 用恒等变形x

x

x x 1ln ln =

将它转化 为

型不定式极限, 并应用洛必达法则得到 x x x ln lim 0+→0)(lim 11

lim

1ln lim 02

00=-=-==+

++→→→x x

x x x x x x . (3)这是个0∞型不定式极限.类似地先求其对数的极限(∞

∞型):

(

)2

2+1ln 11lim

lim

11ln x x x x

x x

x

→∞

→+∞

+++== 于是有

()

1ln 2

lim 1x

x x x →+∞

++=e .

注1 要注意条件,也即是说,在没有化为0,0∞

时不可求导.

注2 应用洛必达法则,要分别的求分子、分母的导数,而不是求整个分式的导数.

注3 要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用洛必达法则,否则会引起错误.

8.利用泰勒展开式

泰勒展开式[]9

:若()f x 在0x =点有直到1n +阶连续导数,那么

,,()2(0)(0)()(0)(0)...()2!

n n

n f f f x f f x x x o x n =+++++,

对于求某些不定式的极限来说,应用泰勒公式比使用洛必达法则更为方便,下列为常用的展开式:

(1)21()2!!

n

x

n x x e x o x n =+++++

(2) 35211

2sin (1)()3!5!(21)!

n n n x x x x x o x n --=-+++-+-

(3)24221cos 1(1)()2!4!(2)!n n n x x x x o x n +=-+++-+ (4)21ln(1)(1)()2n

n n x x x x o x n

-+=-++-+ (5)2(1)

(1)(1)

(1)1()2!

!

n n n x x x x o x n ααααααα---++=++++

+

(6)

21

1x x ()1n n x o x x

=+++++- 上述展开式中的符号)(n x o 都有:

0)

(lim 0=→n n x x

x o 例13[]1 计算 2

2

40

cos lim

x x x e x -

→- .

解 利用泰勒公式求解 24

5cos 1()224

x x x o x =-++

2252

1()28

x x x

e

o x -

=-++

24

52

cos ()12

x x x e o x --=-+ 因而求得

2

4

52

4

40010()

cos 1

12lim

lim 12

x x x x x x e x x -

→→-

+-==-.

9.利用拉格朗日中值定理

定理12[]

1 若函数f 满足如下条件: (1)f 在闭区间上连续;

(2)f 在(,)a b 内可导;

则在(,)a b 内至少存在一点ξ,使得

'()()

().f b f a f b a

ξ-=

-

此式变形可为:

)10( ))(()

()('<<-+=--θθa b a f a

b a f b f

例14

[]

10 求x x e e x

x x sin lim sin 0--→.

解 令x e x f =)( 对它应用中值定理得

sin '

()(sin )(sin )(sin (sin )) (01).x x e e f x f x x x f x x x θθ-=-=-+-<< 即

sin '(sin (sin )) (01).sin x x

e e

f x x x x x

θθ-=+-<<-

x

e x

f =)(' 连续, ''0

lim (sin (sin ))(0) 1.

x f x x x f θ→∴+-==

从而有 sin 0lim

1.sin x x

x e e x x →-=-

结论

求解函数极限时,不同的函数类型所采用的技巧是各不相同的.对同一题也可能有多种求法,有难有易,有时甚至需要结合上述各种方法,所以我们必须要细心分析仔细甄选,选择出适当的方法.这样不仅准确率更高,而且会省去许多不必要的麻烦,起到事半功倍的效果.这就要求我们要吃透其精髓,明了其中的道理,体会出做题的窍门.达到这样的境界非一日之功,必须要多做题善于总结,日积月累,定会熟能生巧,在做题时才可能得心应手.从上述的介绍中可以看出求极限的方法不拘一格,我们应具体问题具体分析,不能机械地用某种方法,对具体题目要具体分析,有时解题时可多种方法相结合,要学会灵活运用.

参考文献:

[1] 华东师范大学数学系. 数学分析[M].第三版. 北京: 高等教育出版社, 2001.

[2] 彭辉. 高等数学辅导[M].北京: 高等教育出版社, 2003.

[3] 裴礼文. 数学分析中的典型问题与方法[M]. 北京: 高等教育出版社, 1995.

[4] 丁家泰. 微积分解题方法[M]. 北京: 北京师范大学出版社, 1981.

[5] 刘三阳. 高等数学典型题解[M]. 西安: 西北工业大学出版社, 2003.

[6] 吉米多维奇. 数学分析习题集解题[M]. 济南: 山东科学技术出版社, 1999.

[7] 钱志良. 谈极限的求法[J]. 常州信息职业技术学院学报,2003, 4(17):24-26.

[8] 张敏捷. 函数极限的几种特殊求法[J]. 黄石理工学院学报, 2008, 4(24):56-58.

[9] 程鹏, 张洪瑞, 李占现. 求函数极限的方法[J]. 河南科技学院学报, 2008,

9(36):133-134.

[10] Rudin W. Principle of Mathematical Analysis[M]. New York: John Pearson Edution, 1990.

致谢

在本次论文的撰写中,我得到了崇金凤老师的精心指导,不管是从开始定方向还是在查资料准备的过程中,一直都耐心地给予我指导和意见,使我在总结学业及撰写论文方面都有了较大提高;同时也显示了老师高度的敬业精神和责任感.在此,我对崇金凤教授表示诚挚的感谢以及真心的祝福.

四年大学生活即将结束,回顾几年的历程,老师们给了我们很多指导和帮助。他们严谨的治学,优良的作风和敬业的态度,为我们树立了为人师表的典范.在此,我对信息学院的老师表示感谢,祝你们身体健康,工作顺利!

最后,我要向百忙之中抽时间对本文进行审阅,评议和参与本人论文答辩的各位老师表示感谢.

对函数极限相关性质的理解及应用1111

对函数极限相关性质的理解及应用 定西师范高等专科学校 数学系 数学教育专业 09级3班 程艳君 摘 要:函数极限的概念和存在条件是我们理解函数极限和判断函数极限是否存在的主要依据,函数的极限在数学分析中占有十分重要的地位,因此,较为复杂函数极限的计算也是我们学者应该掌握的。本文浅略地介绍了函数极限的概念和存在条件,函数极限的性质以及两个重要极限在计算比较复杂的函数极限中的应用。 关键词:函数极限;重要极限;四则运算;迫敛法。 引 言: 函数极限是数学分析的重要概念,它贯彻于整个数学分析中,函数极限理论是研究函数连续、导数、积分、级数等的基本工具,而一些较为复杂的函数极限计算又在解决实际问题中是必不可少的。本文最主要介绍函数极限的概念和函数极限存在的条件,还有两个重要函数极限、迫敛法和四则运算法在解较复杂函数极限中的应用。 1 . 函数的极限和极限存在的条件 1.1 函数的极限 1.1.1 x 趋于∞+时函数的极限 设函数f 定义在 ),[∞a 上,类似于数列的情形,我们研究当自变量x 趋于∞+时,对应的函数值能否无限的接近于某个正数A 。例如,对于函数x x f 1)(=,从图像上可见,当x 无限的增大时,函数值无限的接近于0;而对于函数 x crc x g tan )(=,则当x 趋于∞+时函数值无限的接近于2 π。我们称这两个函数当x 趋于∞+时有极限。一般地,当x 趋于∞+ 时函数的极限饿精确定义如下: 设f 为定义在),[∞a 上的函数,A 为定数。若对任给的0>ε,存在正数M(a ≥),使得当M x >时有ε<-a x f )(,则称函数f 当x 趋于∞+时以A 为极限,记作

函数极限的定义的多种表达

函数极限的定义 林芳 20101101903 数学科学学院 2010级(1)班 指导教师 韩刚 摘要 极限是数分中的重要内容,用定义证明极限类型题都要用到它。本文就给出二十四个函数极限的定义。 关键词 极限 1函数在一点的极限的定义 1.1函数在0x 点的极限的定义 设函数f(x)在0x 点的附近(但可能除掉点本身)有定义,又设A 是一个定数。如果对任意给定的ε>0,一定存在δ>0,使得当0<0x x -<δ时,总有A x f -)(<ε,我们就称A 是函数在点0x 的极限,记为 A x f x x =→0 )(lim , 或者记为 f(x)→A(x 0x →). 这时也称函数f(x)在0x 点极限存在,其极限值是A. 1.2函数在点0x 右侧的极限的定义 设函数f(x)在(0x ,η+0x )内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0

我们就称A 是函数f(x)在点x 0的右极限,记为 0)(lim +→x x x f =A 或f(x 0+0)=A 或 f(x)→A (x 0x →+0) 这时也称函数f(x)在点0x 右极限存在。 1.3函数在0x 点左侧的极限的定义 设函数f(x)在(00,x x η-)内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0<δ<-x x 0时,有A x f -)(<ε,我们就称A 是函数f(x)在点的左极限,记为 0)(lim -→x x x f =A 或 f(00-x )=A 或 f(x))0(0-→→x x A 这时也称函数f(x)在0x 点左极限存在. 2函数在无限远处的极限 2.1函数在无限远处极限的定义 若对任意给定的ε>0,存在X>0,当X x >时,总有ε<-A x f )(,我们说A 是f(x)在无限远处的极限,或者说A 是当x 的极限时)(x f ∞→,记为 ) ()()()(lim ∞→→=∞=∞→x A x f A f A x f x 或 这时也称函数f(x)在无限远处极限存在 2.2函数在正无限远处的极限的定义

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

函数极限的综合分析与理解

函数极限的综合分析与理解 PB 王欣 极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。 一、函数极限的定义和基本性质 函数极限可以分成x →0x ,x →∞两类,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以0x x →的极限为例,()x f 在点0x 以A 极限的定义是:,0,0>?>?δε使当δ<-<00x x 时,有()().f x A A ε-<为常数问题的关键在于找到符合定义要求的δ,在这一过程中会用到一些不等式技巧,例如放缩法等。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若0 lim x x →存在,则在该点的极限是唯一的)可以体现在用海涅定理证明()x f 在0x 处的极限不存在。即如果()A x f n →,()B x f n →'(0',x x x n n n →∞→和), 则()x f 在0x 处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式()()() x Q x P x f =(()()x Q x P ,均为多项式,()0≠x Q )。设()x P 的次数为n ,()x Q 的次数为m , 当∞→x 时,若m n <,则()0→x f ;若m n =,则()→x f ()x P 与()x Q 的最高次项系数之比;若 m n >,则()∞→x f 。 000()()(()0)()P x f x Q x Q x →→≠0当x x 时,。 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数()x g 与()x h ,并且要满足()()()x h x f x g ≤≤,从而证明或求得函数()x f 的极限值。

对函数极限概念的理解

对函数极限概念的理解 函数极限概念,不易理解。由于极限概念具有高度的抽象性,因此,令人很难快速正确理解和掌握极限数学语言的真正内涵,以致于学完了极限,极限的意识还很薄弱。因此,要抓住理解的关键,我们体会,宜抓住以下三点: (一)将“任意近处”的描绘性语言,转化为可进行量化比较的准确表达 考察数集X={x},若在点x0的任意近处包含有X中异于x0的x的值,则点x0称为这数集的聚点。 为着要更准确地表达这定义,我们引入点x0的邻域的概念:以点x0为中心的开区间(x0?δ,x0+δ)称为点x0的邻域。下边我们将聚点做可进行量化比较的准确表达:若在点x0的任一邻域内包含X中异于x0的x的值,则x0是数集X的聚点。关于“任一邻域”,δ=1cm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1mm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1nm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;……,点x0的邻域可以无穷小。因此,“任一邻域”是一个无穷集。 对聚点x0本身来说,可以属于X,或不属于X。也就是说x0在X上可以有定义或无定义。x0在X上无定义时,它的邻域也存在,叫做空心领域。 (二)注意函数f(x)在x接近于x0时的性态。 设在区域X内给定函数f(x),且x0是X的聚点。这函数f(x)在x接近于x0时的性态是值得注意的。相对于自变量x,通过法则f,得到f(x),若出现了f(x)无限趋近于数A的性态,或者叫做f(x)与数A的差距无限小的性态,则可类似于x0的邻域δ,把ε看作A的邻域, 而把这种性态更准确地表达为:Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)。这个表达就具备了可 进行量化比较性。 (三)δ与ε的关系 从x与f(x)的关系看,前者为因,后者为果。但是从x0的邻域δ与A的邻域ε的关系看,则是前者依赖后者,总是要先给定任一ε>0,而后求那个能保证ε成立的δ。即δ的几何空 间受ε的几何空间的约束。既然f(x)无限趋近于数A的性态,可更准确地表达为:Ⅰf(x)- A Ⅰ<ε(ε是任一大于零的数),那么,使Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)成立的δ应是什么样呢?也就是如何依赖Ⅰf(x)- AⅠ<ε求δ呢?具体过程如下: 将Ⅰf(x)- AⅠ变形:Ⅰf(x)- AⅠ=MⅠx-x0Ⅰ,其中M是一个与x无关的常量。 再取δ=ε M ,则当0<Ⅰx-x0Ⅰ<δ时,有0<Ⅰx-x0Ⅰ<ε M ,整理为00能求出δ>0,只须Ⅰx-x 0Ⅰ<δ能使Ⅰf(x)- AⅠ<ε(式中的x取自X 内且异于x0)成立,则称当x趋向于x0时(或在x0)函数f(x)以数A为极限。 记成:lim x→ x0 f x=A

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2,n x x n ≠= ,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A + -→→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ? φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ????? ? ? ? +? -?? () 2 11c o s ~2 (1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ? φ≤≤(,且 0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

函数与极限重点知识归纳

常量与变量 变量的定义 我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 变量的表示 如果变量的变化是连续的,则常用区间来表示其变化范围。 在数轴上来说,区间是指介于某两点之间的线段上点的全体。 以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 邻域 设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 函数 函数的定义 如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。 注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的. 注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 函数的有界性 如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. 函数的单调性

数列与函数的极限公式概念

极限与连续 一、数列的极限定义: 1、给定数列{},如果当n 无限增大时,其通项无限趋过于某个常数A ,则称数列{}以A 为极限,记作: =A 或者 (n ) 2、当数列{}以实数A 为极限时,称数列{}收敛于A ,否则称数列{}发散。 二、数列极限的性质: 1)极限的惟一性:若数列收敛,则其极限惟一,若 =a ,则 =a 2)有界性:收敛数列必有界. (数列有界是数列收敛的必要非充分条件) 3)数列的极限:如数列:ΛΛ,1 2,,432,322,212++n n 则它的极限为3 即:3121 lim 2lim )12(lim =+=++=++∞→∞→∞→n n n n n n n 三、几个需要记忆的常用数列的极限 01lim =∞→n n 11lim =+∞→n n n 0lim =∞→n n q )1(

?极限运算法则: 设limf(x)=A,limg(x)=B,则 1)lim[f(x)]=A B 2)lim[f(x)g(x)]=AB 3)当B时,lim= 4)lim[cf(x)]=climf(x) (c为常数) 5)lim[f(x)= [limf(x)(k为常数) ?小结 ..:.当,时,有= ?复合函数运算法则:= ?数列的夹逼准则:设有3个数列{}{}{},满足条件: 1)(n=1,2,…); 2)==a,则数列{}收敛,且=a ?函数夹逼准则:设函数f(x),g(x),h(x)在点的某去心邻域内有定义,且满足条件: 1)g(x)f(x)h(x); 2)=A,. 则极限存在且等于A. ?单调有界准则:单调有界数列必有极限.即单调增加有上界的数列必有极限;即单调减少有下界的数列必有极限. ?两个重要的极限: ?重要极限Ⅰ:=1

函数极限的定义与基本性质

函数极限的定义与基本性质 本章主要阐述函数的定义与基本性质,其中,最为重要的函数的极限的模型来自于对自由落体运动,由平均速度, h gt h t g 2 221)(21-+(1) 求解瞬时速度,也就是说要考察上述函数(1)中h (注意,t 是固定的),当h 无限变小时,它的变化趋势,也就是看它是否无限接近于一个数。 首先看到,这个函数在0=h 是没有定义的,但至少在包含0的一个开区间(0点除外)有定义,h 不等于0的时候,有 gh gt h gt h t g 2 121)(2122+=-+ 当{}h 很小的时候,左边的函数值与右边的函数值的差也很小,而且当h 无限接近于0的时候,左边的函数值也无限接近于gt 。 接下来,把“接近”、“无限”等语言精确化,便得到我们所要的函数极限概念的定义: 1.1定义: 设)(x f 在0x 点附近(除0x 点以外)有定义,A 是一定数,若对任意给定的0>ε,存在0>δ,当δ<-<00x x 的时候,有 ε<-A x f )(, 则称A 是函数)(x f 当x 趋于0x 的时候的极限,记为 A x f x x =→)(lim 0 或者记为: A x f →)( (0x x →)

1.2 定理: 若 B x g x x A x f x x =→=→)(lim ,)(lim 00,则 (1) B A x g x f x x ±=±→))()((lim 0 (2) B A x g x f x x ?=?→))()((lim 0 (3)B A x g x f x x =→)()(lim 0 1.3 推论: 若 A x f x x =→)(lim 0,c 为常数,则 []cA x cf x x =→)(lim 0 1.4 局部有界性定理: 若 A x f x x =→)(lim 0 ,则存在0>δ,使得)(x f 在 ),(),(0000δδ+?-x x x x 上有界。 1.5 局部保号性定理: A x f x x =→)(lim 0 >0, 则存在0>δ,当δ<-<00x x 的时候, 有: 02)(>> A x f 1.6定理: 若 0)(lim 0=→x f x x ,且存在0>δ,)(x g 在),(),(0000δδ+?-x x x x 上有界,则 0)()(lim 0 =→x g x f x x

极限的概念_函数的连续性详解

第二章.极限概念 函数的连续性 对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解,因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,如何定量地加以描述,并把这种描述作为一般的判别标准。 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限描述(数列存在极限判别定理,定义法、柯西法、子数列法、夹逼法、单调有界法) 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时每一个元素都可以加上唯一的标志,而自然数是最为适宜作这件工作的。比如说,把一个数列写成这样的样子:,....,,321a a a ,或者简单地记成{}a n 。 观察这个数列取值变化, 有的数列变化具有下面的变化规律: 对于数列,....,,321a a a ,假设存在一个确定的常数a ,现在我们考虑变量a a n -(显然这是一个反映数列数值变化的,随着n 而发生变化的变量。),如果我们任意找到一个数ε,无论它的数值有多么大或者多么小,我们总是能够在这个数列当中找到一个元素a N ,使得在这个a N 元素后面的所有的数列元素,都使得相应的变量a a n -的值小于ε, 换一句话来说,对于任意的ε,总是存在一个N ,当n>N 时, 总是有ε <-a a n 成立 这时我们就把a 称为数列,...,,321a a a 的极限。并且称数列 ,....,,321a a a 收敛于极限a 。我们使用记号a a n n =∞→lim 来表示该数列极限。 否则我们就说数列{}a n 是发散的。

函数极限的综合分析与理解解读

函数极限的综合分析与理解 经济学院 财政学 任银涛 0511666 数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际分析、弹性分析等方法。函数极限是高等数学中的一个重要问题。极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。局限于笔者的认知水平,缺点和不足在所难免,欢迎批评指正。 一、函数极限的定义和基本性质 函数极限可以分成x →0x ,x →∞两类,而运用ε-δ定义更多的见诸于已知 极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以0x x →的极限为例,()x f 在点0x 以A 极限的定义是:,0,0>?>?δε使当δ<-<00x x 时,有()().f x A A ε-<为常数问题的关键在于找到符合定义要求的δ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若0 lim x x →存在,则在该点的极限是唯一的)可以体现在用海涅定理证明()x f 在0x 处的极限不存在。即如果()A x f n →,() B x f n →'(0',x x x n n n →∞→和),则()x f 在0x 处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式()()() x Q x P x f =(()()x Q x P ,均为多项式,()0≠x Q )。设()x P 的次数为n ,()x Q 的次数为m , 当∞→x 时,若m n <,则()0→x f ;若m n =,则()→x f ()x P 与()x Q 的最高次项系数之比;若m n >,则()∞→x f 。000()()(()0)() P x f x Q x Q x →→≠0当x x 时,。

江苏省江阴高级中学高中数学教案:极限的概念

极 限 的 概 念 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

【函数极限的综合分析与理解】函数极限定义的理解

【函数极限的综合分析与理解】函数极限定义的理解 函数极限的综合分析与理解 PB08207031 王欣 极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。 一、函数极限的定义和基本性质 函数极限可以分成x→x0,x→∞两类,而运用ε-δ定义更多的见诸于已知 极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x?x0的极限为例,f?x?在点x0以A极限的定义是:???0,???0,使当0?x?x0??时,有f(x)?A??(A为常数).问题的关键在于找到符合定义要求的?,在这一过程中会用到一些不等式技巧,例如放缩法等。

函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若lim存在,则在该点的极限是唯一的)可以体现在用海涅定理证明x?x0 ""即如果f?xn??A,fxn,f?x?在x0处的极限不存在。?B(n??,xn 和xn?x0)?? 则f?x?在x0处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式f?x??P?x?P?x?,Q?x?均为多项式,Q?x??0)。设P?x?的次数为n,Q?x?的Qx次数为m,当x??时,若n?m,则f?x??0;若n?m,则f?x??P?x?与Q?x?的最高次项系数之比;若 当x?x0时,f(x)?P(x0)(Q(x0)?0)。 Q(x0)n?m,则f?x???。 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是

对函数极限概念的认识与教学方法研究文献综述

毕业论文文献综述 数学与应用数学 对函数极限概念的认识与教学方法研究 一、 前言部分 在我们日常生活中还是学习中,我们会遇到很多类似无穷的问题,这时就需要我们用极限的思想来解决它。他不仅仅涉及我们的生活学习,而且涉及到了很多科学方面的研究,比如科学家们在制造反导系统的时候需要把导弹的路线细分成无数的线段之和,这时必须用到微分极限的思想。可见极限是一个能解决实际问题的理论研究,我们也就有了研究极限的必要性,但是我们研究的极限没有涉及比较深奥的方面,只是初步的研究函数极限的基本概念,性质和极限存在的条件,由数列的极限引出函数极限的方法来进行教学。本文课题研究了数列极限,函数极限,左右极限,无穷小,无穷大,无穷大无穷小的比较,重点介绍了求极限的各种方法,分别为1:零比零的形式,2:无穷比无穷的形式3:无穷减去无穷的形式4:零乘以无穷的形式5:零的零次方形式6:类未定式,其中零比零的形式的求解法可通过分解因式或有理化得方法进行求解,消去零因子再通过运算法则或连续函数的求解法求解或通过利用等价无穷小的运算法则。无穷比无穷的形式可通过洛毕达法则或通过变量替换化为零比零型。无穷减去无穷的形式可以通过通分,有理化,变量替换来求解。零乘以无穷的形式可用可以用法则或抓大头的方法来求解。零的零的方可以通过对数恒等式化为零比零形或无穷比无穷的形式。类未定式是指未能确切肯定某种运算结果的极限,例如在求某个函数极限的过程中)(x f 与)(x g 均无界,则)(x f +)(x g 的极限就不能肯定其不存在,而要具体问题具体分析,又如,若)(x f 有极限,)(x g 无极限,)(x g 的极限也能肯定其不存在。本文还研究极限在经济等方面的应用。目标是使我们能够熟练掌握极限的定义性质等,并学会各种求极限的方法解决实际问题以及如何使同学们更好的学会极限函数的方法和教学步骤。[]1 二、主题部分 18世纪的许多科学家如达兰贝尔,欧拉,拉朗日等都提出了自己的看法,都不同度用极限概念作为微积分基础,占主要地位的是“无穷小方法”,至于“无穷小”到底是什么,没有公认的精确定义。[] 2在19世纪20年代以后,柯西在182l —1823年间出版了《分析教程》、

高等数学(同济大学版) 课程讲解 1.3函数的极限

课时授课计划 课次序号:03 一、课题:§1.3 函数的极限 二、课型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果分析:

第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时, ; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对 于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y =f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的. 定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称x →+∞时,f (x )以A 为极限,记为lim x →+∞ f (x )=A . 若?ε>0,?X >0,当x <-X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称x →-∞时,f (x )以A 为极限,记为lim x →-∞ f (x )=A . 例1 证明lim x =0. 证 0 -?ε>00-<εε, 即x > 2 1 ε.因此,?ε>0,可取X = 2 1 ε,则当x >X 0-<ε,故由定义1得 lim x =0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -=10x <ε,只要x <l gε.因此可取X =|l gε|+1,当x <-X 时, 即有|10x -0|<ε,故由定义1得lim x →+∞ 10x =0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )=A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →+∞);f (x )→A (x →-∞);f (x )→A (x →∞).

浅谈极限对数学的意义

浅谈极限对数学的意义 极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。 所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果。 极限的思想由来已久.公元前三世纪,古代伟大的科学家阿基米德,利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,而公元前五世纪,我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。这其中就用到了极限思想。这些早期的极限思想还很原始与朴素,但为其后极限的发展奠定了基础。 说到极限的作用,就不得不提到微积分。可以说极限就是微积分的基础,而微积分的发展是建立在极限理论发展之上的。而微积分对现代文明的贡献之大毋庸置疑。由此极限的重要性可见一斑。现在任何一所大学的数学系的学生都会先学极限,之后再学微积分。但历史上微积分却比极限产生的早,可以说微积分是一个早产儿。这个早产儿在实际中应用的非常好,但是在理论上却是模糊不清。由此还引发了第二次数学危机。拯救危机的方法就是清晰的定义极限。 十七世纪,微积分出现了。领军人物是两个伟大的智者。一个家伙叫牛顿,而另一个叫莱布尼茨。牛顿通过对力的研究发明了微积分,虽然现在看来这样的微积分还很原始,仅仅涉及一重,只有一个变量。但是它的意义是无可估量的。而莱布尼茨则通过对切线的研究,得到了微积分。他不仅发明了微积分,而且现代微积分很多符号都是他定义的,他在理论方面的研究价值巨大。可是无论是牛顿,还是莱布尼茨,都有一些基本的理论问题无法解决。而这些问题也困扰了他们一生。 到底是什么样的问题呢?首先我们要来了解微积分是什么。微积分分为微分和积分。微分的定义为:设函数y = f(x)在x0的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) ? f(x0)可表示为Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。其中的A就是我们高中时所学的导数。我们的确这样定义了微分,可是问题来了,什么事无穷小量,这是一个毫无概念东西,既无数学公式,又无严谨的证明。至于高阶无穷小量,它本身就是一个基于无穷小量的概念,没有无穷小量,高阶更无从 谈起。积分的定义:首先有一个连续函数在区间上。让 ... ... 是任意(随机选择)的间隔分区 ,其中分为间隔成子区间(细分)。让... ... 采样(采样点)的子区间选择。也就是说,在,在,在 ... ... ,和在。定义分区网格最大的子区间的长度。也就

求函数极限的方法

求函数极限的方法 1. 预备知识 1.1 函数极限的定义 定义 1 设f 为定义在[],a +∞上的函数,A 为定数.若对任给的0ε>,存在正整数()M a ≥,使得当x M >时有()f x A ε-<,则称函数f 当x 趋于+∞时以A 为极限.记作:()lim x f x A →+∞ =或()()f x A x →→+∞. 定义2 设函数f 在点0x 的某个空心邻域()00;'U x δ内有定义,A 为定数,若对任给的0ε>,存在正数()'δδ<,使得当00x x δ<-<时有()f x A ε-<,则称函数f 当x 趋于0x 时以A 为极限.记作:()0 lim x x f x A →=或()()0f x A x x →→. 定义 3 设函数f 在()0 0;'U x δ+(或()00;'U x δ-)内有定义,A 为定数.若对任 给0ε>的,存在正数()'δδ<,使得当时00x x x δ<<+(或00x x x δ-<<)有 ()f x A ε-<,则称数A 为函数f 当x 趋于0 x +(或0x - )时的右(左)极限.记作: ()()00lim lim x x x x f x A f x A + -→→??== ??? 或()()()()() 00f x A x x f x A x x +-→→→→. 1.2 函数极限的性质 性质1(唯一性) 若极限()0 lim x x f x →存在,则此极限是唯一的. 性质2(局部有界性) 若()0 lim x x f x →存在,则f 在0x 的某空心邻域()00U x 内有界. 性质3(局部保号性) 若()0 lim 0x x f x A →=>(或0<),则对任何正数r A <(或 r A <-) ,存在()00U x ,使得对一切()o o x U x ∈有()0f x r >>(或()0f x r <-<). 性质4(保不等式性) 设()0 lim x x f x →与()0 lim x x g x →都存在,且在某邻域()00;'U x δ内 有()()f x g x <,则()()0 lim lim x x x x f x g x →→≤. 性质5(迫敛性)设()()0 lim lim x x x x f x g x A →→==,且在某邻域()00;'U x δ内有

函数极限的定义的多种表达

函数极限的定义 数学科学学院 2010级(1)班 指导教师 韩刚 摘要 极限是数分中的重要内容,用定义证明极限类型题都要用到它。本文就给出二十四个函数极限的定义。 关键词 极限 1函数在一点的极限的定义 1.1函数在0x 点的极限的定义 设函数f(x)在0x 点的附近(但可能除掉点本身)有定义,又设A 是一个定数。如果对任意给定的ε>0,一定存在δ>0,使得当0<0x x -<δ时,总有A x f -)(<ε,我们就称A 是函数在点0x 的极限,记为 A x f x x =→0 )(lim , 或者记为 f(x)→A(x 0x →). 这时也称函数f(x)在0x 点极限存在,其极限值是A. 1.2函数在点0x 右侧的极限的定义 设函数f(x)在(0x ,η+0x )内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0

0)(lim +→x x x f =A 或f(x 0+0)=A 或 f(x)→A (x 0x →+0) 这时也称函数f(x)在点0x 右极限存在。 1.3函数在0x 点左侧的极限的定义 设函数f(x)在(00,x x η-)内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0<δ<-x x 0时,有A x f -)(<ε,我们就称A 是函数f(x)在点的左极限,记为 0)(lim -→x x x f =A 或 f(00-x )=A 或 f(x))0(0-→→x x A 这时也称函数f(x)在0x 点左极限存在. 2函数在无限远处的极限 2.1函数在无限远处极限的定义 若对任意给定的ε>0,存在X>0,当X x >时,总有ε<-A x f )(,我们说A 是f(x)在无限远处的极限,或者说A 是当x 的极限时)(x f ∞→,记为 这时也称函数f(x)在无限远处极限存在 2.2函数在正无限远处的极限的定义 若对任意给定的0>ε,存在X>0,当x>X 时,总有ε<-A x f )(,就称A 为f(x)在无限远处的极限,或者称A 是当+∞→x 时f(x)的极限,记为 或 f(x))(+∞→→x A 这时也称函数f(x)在正无限远处的极限存在。

相关文档
相关文档 最新文档