文档库 最新最全的文档下载
当前位置:文档库 › 关于电场线的认识和理解

关于电场线的认识和理解

关于电场线的认识和理解
关于电场线的认识和理解

关于电场线的认识和理解

众所周知,描述电场的最精确方法是写出场强E的函数式,如

及等,但这种描述不够直观形象.为了能形象化地把客观存在的电场表示出来,常引入电场线这一辅助工具.由于电场内每一点的电场强度都有确定的方向,我们可以在电场内人为地画一组曲线,使曲线上的每一点的切线方向与相应点场强的方向一致,这种曲线称为电场线.显然它可以把电场内各点场强的方向表示出来.若进一步作如下规定:电场线的密度与该点的场强成正比,则画出的电场线既可以表示场强的方向,又可以表示场强的大小.所谓电场线的密度,就是通过垂直于场强方向的单位面积的电场线的条数.于是,电场线的疏密程度正好与杨强的大小相对应,凡是电场线密集的地方,场强就大;电场线稀疏的地方,场强就小.

关于对电场线的认识和理解,我们觉得还有三点值得注意.

(1)电场线是形象直观描述电场的空间曲线,是人为假想的线,并不是电场中真有这样的曲线存在.

(2)由于电场强度E在没有电荷的地方是连续的,而电场线却只能是一条一条离散分立的,所以从电场线只能看出电场分布的粗略轮廓,而不能确定某点的电场强度大小.例如,不能说没有电场线的地方(如两条电场线之间)的电场强度为零,反之则可以说没有电场的地方就没有电场线.

(3)电场线按定义是画成代表总电场强度E的连续曲线.

为了便于参考,下面我们特给出中学物理书中未能见到的三幅电场线图.见下图.

电场与磁场在实际中的应用.

电场与磁场在实际中的应用 要点一 速度选择器 即学即用 1.如图所示,一束质量、速度和电荷量不同的正离子垂直地射入匀强磁场和 匀强电场正交的区域里,结果发现有些离子保持原来的运动方向,有些未发生任何偏转.如果让这些不偏转的离子进入另一匀强磁场中,发现这些离子又分裂成几束,对这些进入另一磁场的离子,可得出结论 ( ) A .它们的动能一定各不相同 B .它们的电荷量一定各不相同 C .它们的质量一定各不相同 D .它们的电荷量与质量之比一定各不相同 答案 D 要点二 质谱仪 即学即用 2.质谱仪是一种测定带电粒子质量和分析同位素的重要仪器,它的构造如图所 示.设从离子源S 产生出来的正离子初速度为零,经过加速电场加速后,进入一平行板电容器C 中,电场强度为E 的电场和磁感应强度为B 1的磁场相互垂直,具有某一速度的离子将沿图中所示的直线穿过两板间的空间而不发生偏转,再 进入磁感应强度为B 2的匀强磁场,最后打在记录它的照相底片上的P 点.若测得P 点到入口处S 1的距离为s ,证明离子的质量为m = E s B qB 221. 答案 离子被加速后进入平行板电容器,受到的水平的电场力和洛伦兹力平衡才能够竖直向上进入上面的匀强磁 场,由qvB 1=qE 得v =E/B 1,在匀强磁场中2 2 qB m s v ,将v 代入,可得m =E s B qB 221. 要点三 回旋加速器 即学即用 3.回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D 形金属盒,两盒分别和一高频交流电源两极相接,以便在盒间的窄缝中形成匀强电场,使粒子每次穿过狭缝都得到加速,两盒放在匀强磁场中,磁场 方向垂直于盒底面,离子源置于盒的圆心附近.若离子源射出的离子电荷量为q ,质量为m ,粒子

电场线

学科:物理 教学内容:电场线 【基础知识精讲】 1.电场线 定义:在电场中画出的一系列从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点电场方向相同,这些曲线就叫电场线. 电场是客观存在的,而电场线是为了形象地描述电场场强大小和方向,而人为地引入(画出)的一簇假想曲线,并非是客观存在的物质. 2.电场线的基本性质 (1)电场线上每点的切线方向就是该点电场强度的方向. (2)电场线的疏密反映电场强度的大小(疏弱密强). (3)静电场中电场线始于正电荷或无穷远,止于负电荷或无穷远.它不封闭,也不在无电荷处中断. (4)任意两条电场线不会在无电荷处相交(包括相切). 3.匀强电场 (1)定义:电场中各点场强的大小相等、方向相同的电场就叫匀强电场. (2)匀强电场的电场线:是一组疏密程度相同(等间距)的平行直线.例如,两等大、正对且带等量异种电荷的平行金属板间的电场中,除边缘附近外,就是匀强电场.如图 4.常见电场的电场线

【重点难点解析】 重点 用电场线形象地描述电场. 难点 理解电场线的性质,理解电场线是引人的假想的线,并不真实存在. 1.点电荷在电场中只受电场力作用时的运动轨迹即为一条电场线吗? 解析 显然不是.首先,带电粒子在电场中的运动轨迹是带电粒子的位置在空间分布图像,是实际存在的;而电场线是人们为形象地描述电场而引入的假想线,实际上并不存在.其次,运动轨迹的切线方向反映带电粒子的速度方向,而电场线的切线方向即场强方向反映正电荷受力方向,很显然,速度方向与力的方向毫无关系.因此,电场线与运动轨迹是两回事. 但是,当电场线是直线,且带电粒子初速为零或初速方向在这一条直线上时,带电粒子将沿电场线运动,即它们重合,这是一种特例.即使在这种特定的情况下,也不能说运动轨迹就是一条电场线,因为它们是两个完全不同的物理概念. 2.对电场线的疏密的意义的正确理解 (1)电场线的疏密表示场强的大小,但仅有一条电场线是不能判定场强大小的,如图所示为一条水平向右的电场线,由此只能确定三点的场强方向都为水平向右,但不能判断a 、b 、c 三点场强的大小 .设想该电场线是左边某正点电荷发出,则有E a >E b >E 若该电场线是在右边的一负点电荷所形成,则有E a <E b <E c ;若该电场线是某匀强电场中的一条,则有E a =E b =E c ,故一条电场线不能判断场强大小. (2)就电场线的疏密而言,必指空间某一范围,因此用电场线的疏密表示某点场强的大小, 应以该点周围一个小面积内的电场线条数来考虑,同时不能错误认为电场线经过点的场强一定大于电场线间不在电场线上点的场强. 【难题巧解点拨】 例1 A 、B 为带异种电量的两点电荷,c 、d 为A 、B 连线上的两点,且Ac=Bd ,如图所示,关于c 、d 两点间电场强度的情况是( ) A.由c 到d 电场强度由大变小 B.由c 到d 电场强度由小变大 C.由c 到d 电场强度不变 D.由c 到d 电场强度先变小后变大 解析 c 、d 间的电场处于A 、B 两异种点电荷所形成的叠加场,各点场强可由E A +E B 表示,但计算起来较繁杂,可借助电场线来描绘,如下图所示,从电场线分布看,c —d 电场线密—疏—密,因此电场强度先变小后变大.

电场与电磁场的区别

电场与电磁场 电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。电场具有通常物质所具有的力和能量等客观属性。电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷作功(这说明电 场具有能量)。 静止电荷在其周围空间产生的电场,称为静电场;随时间变化的磁场在其周围空间激发的电场称为有旋电场[1](也称感应电场或涡旋电场)。静电场是有源无旋场,电荷是场源;有旋电场是无源有旋场。普遍意义的电场则是静电场和有旋电场两者之和。 电场是一个矢量场,其方向为正电荷的受力方向。电场的力的性质用电场强度来描述。 对放入其中的小磁针有磁力的作用的物质叫做磁场。磁场是一种看不见,而又摸不着的特殊物质。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。

电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力距皆源于此。而现代理论则说明,磁力是电场力的相对论效应。 与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。 电磁场(electromagnetic field)是有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,

电场强度的几种计算方法

电场强度的几种求法 一.公式法 1.q F E =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。 2.2 r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。 3.d U E =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。 二.对称叠加法 当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。 例:如图,带电量为+q 的点电荷与均匀带电。 例:如图,带电量为+q 的点电荷与均匀带

电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大 例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r q k =?。假设左侧部分在M 点的电场强度为 E 1,电势为1?;右侧部分在M 点的电场强 度为E 2,电势为2?;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1?>2 ?

B .若左右两部分的表面积相等,有E 1<E 2,1?<2 ? C .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4 D .不论左右两部分的表面积是否相等,总有 E 1>E 2,E 3=E 4 答案:D 例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。则以下说法正确的是( ) A .两处的电场方向相同, E1>E2 B .两处的电场方向相反, E1>E2 C .两处的电场方向相同,E1<E2 D .两处的电场方向相反,E1<E2 A B M O N L

电场与磁场的对比

电场与磁场的对比 电场力、磁场力跟重力、弹力、摩擦力一样,都是中学物理常见的性质力,但在直观感受性上却不同,多数学生感到前者比较“疏远”,后者比较“亲近”。究其原因一则电场、磁场部分概念较多且比较抽象而多数学生还停留在形象、直观思维的阶段;二则多数学生缺乏良好的学习习惯和方法,不善于观察和积累,已有经验匮乏;不善于运用科学思维,严密推理,学习自主性、自觉性不高;不重视实验操作,缺乏探究意识;不注意学科思想方法和知识总结等。 为了使学生对电场和磁场的认识更确切、更明晰,更亲合学生实际,在高考复习备考的第一阶段,当结束了电场、磁场两部分的系统复习后,很有必要组织、引导学生:⑴、从万有引力定律与库仑定律的比较开始,将电场与重力场(万有引力场)相关概念、规律一一进行类比;⑵、将电场和磁场两部分内容的研究对象、研究思路和方法及重要概念如电场与磁场、电场强度与磁感强度、电场线与磁场线、匀强电场与匀强磁场、电场力与磁场力等的对比。现选择性对比如下: 一、研究对象、思路和方法对比:表1

二、 概念对比:表2 注意⒈用“比值”定义的物理量的共同特点是被定义的量与用来定义的量均无关; ⒉磁感应强度三种定义的条件。 表3 降低;电场线与等势面处处正交。 三、 对比规律、公式 Ⅰ、电场力 ⑴、F qE = (0q >时F 与E 同向),此式具有一般性,可计算点电荷在任何电场中的受到的电 场力。在n 个点电荷形成的静电场中1n i i E E == ∑(矢量式) 。在真空中,点电荷场强2 i i i Q E k r = ;在匀强电场中4U kQ E d S πε= = (Q 为电容器的电量,ε为介电常数)。 ⑵、库仑定律122Q Q F k r =(1Q 与2Q 同号相斥,异号相吸),可计算真空中两个点电荷间的静电力。 n 个点电荷之一q 所受库仑力大小1 2 1 n i i i qQ F k r -== ∑(矢量式) 注:对于电场力与磁场力的比较不要只停留在概念或性质、特点上,而应侧重于两者的本质区别。 Ⅱ、磁场力 ⑴、洛伦兹力 sin L f q B υθ =( L f 、υ、B 三者方向关系遵从左手定则, L f 垂直于υ和B 所决定

电场线

单元(片)名称:电场线和电场强度(共用3课时) 一、教学重点 知识点1:电场强度 (一)理解要点: 电场强度的物理意义 电场强度是描述电场强弱及方向的物理量,反映了电场力的特性。 (二)注意事项: 电场强度的定义 在电场中放一个检验电荷,它所受到的电场力跟它所带电量的比值叫做这个位置上的电场强度,简称场强。 定义式: 单位:牛/库(N / C) ①矢量性:场强是矢量,其大小按定义式计算即可,其方向规定为正电荷在该点的受力方向。负电荷受电场力方向与该点场强方向相反。 ②唯一性:电场中某一点处的电场强度E的大小和方向是唯一的,其大小和方向取决于场源电荷及空间位置。是客观存在的,与放不放检验电荷以及放入检验电荷的正、负电量的多少均无关,既不能认为与成正比,也不能认为与成反比。 (三)应用形式: 选择、填空、计算 知识点2:电场线的意义及规定 (一)理解要点: 电场线是形象地描述电场而引入的假想曲线,规定电场线上每点的场强方向沿该点的切线方向,也就是正电荷在该点受电场力的方向(负电荷受力方向相反)。曲线的疏密表示电场的强弱。 (二)注意事项: ①电场线是人们为了研究电场而假想的曲线,不是实际存在的线。

②没有电场线通过的位置不一定就没有电场存在。 ③电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。 带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。电场中的电场线确定以后是不变的,但是电荷在电场中运动时初速度不同,得到的运动轨迹可以有无数种。只有当电场线是直线,而带电粒子又只受电场力作用时运动轨迹才有可能与电场线重合。 1、电场强度的理解 2、电场强度和电场力的比较 ①由电场强度的定义式,可导出电场力F=qE。 只要场源确定,电场中某一点的电场强度的大小和方向就都唯一地确定了。若知道某点的电场强度的大小和方向,就可求出电荷在该点受的电场力的大小和方向。 ②电场力是由电荷和场强共同决定的,而场强是由电场本身决定的。 (三)应用形式: 选择、填空、计算 知识点3:常见电场的电场线 (一)理解要点:

高中物理引力场电场磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导 【考点透视】 一万有引力定律 万有引力定律的数学表达式:2 21r m m G F =,适用条件是:两个质点间的万有引力的计算。 在高考试题中,应用万有引力定律解题常集中于三点:①在地球表面处地球对物体的万有引力近似等于物体的重力,即mg R Mm G =2,从而得出2gR GM =,它在物理量间的代换时非常有用。②天体作圆周运动需要的向心力来源于天体之间的万有引力,即r mv r Mm G 22=;③圆周运动的有关公式:T πω2=,r v ω=。 二电场 库仑定律:221r Q kQ F =,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E = (实用任何电场),其方向为正电荷受力的方向。电场强度是矢量。 真空中点电荷的场强:2r kQ E =,匀强电场中的场强:d U E =。 电势、电势差:q W U AB B A AB = -=??。 电容的定义式:U Q C =,平行板电容器的决定式kd S C πε4=。 电场对带电粒子的作用:直线加速 221mv Uq = 。偏转:带电粒子垂直进入平行板间的 匀强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线

和等势面,理解沿电场线电势降低,电场线垂直于等势面。 三磁场 磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运动电荷有力的作用。 熟悉几种常见的磁场磁感线的分布。 通电导线垂直于匀强磁场放置,所受安培力的大小:BIL F =,方向:用左手定则判定。 带电粒子垂直进入匀强磁场时所受洛伦兹力的大小: qvB F =,方向:用左手定则判定。若不计带电粒子的重力粒子将做匀速圆周运动,有qB mv R =,qB m T π2=。 【例题解析】 一万有引力 例1地球(看作质量均匀分布的球体)上空有许多同步卫星,同步卫星绕地球近似作匀速圆周运动,根据所学知识推断这些同步卫星的相关特点。 解析:同步卫星的周期与地球自转周期相同。因所需向心力由地球对它的万有引力提供,轨道平面只能在赤道上空。设地球的质量为M ,同步卫星的质量为m ,地球半径为R ,同步 卫星距离地面的高度为h ,由向万F F =,有 )(4)(22 2h R T m h R GmM ++π=,得R GMT h -=3224π;又由h R v m h R GmM +=+22)(得h R GM v +=;再由ma h R GmM =+2)(得2 )(h R GM a +=。由以分析可看出:地球同步卫星除质量可以不同外,其轨道平面、距地面高度、线速度、向心加速度、角速度、周期等都应是相同的。 点拨:同步卫星、近地卫星、双星问题是高考对万有引力定律中考查的落足点,对此应引起足够的重视,应注意准确理解相关概念。 例2某星球的质量为M ,在该星球表面某一倾角为θ的山坡上以初速度0v 平抛一个物体,经t 时间该物体落到山坡上。欲使该物体不再落回该星球的表面,至少应以多大的速度

电势和电场强度的关系

1.下列说法正确的是( ) A .在同一等势面上各点的电场强度必定相等 B .两等势面一定相互平行 C .若相邻两等势面间的电势差相等,则等势面密的地方电场强度大 D .沿电场强度的方向,等势面的电势逐渐降低 2.如图1-5-13所示,实线表示电场线,虚线表示等势线,a 、b 两点的电势分别为φa =-50 V ,φb =-20 V ,则a 、b 连线的中点c 的电势φc 应为( ) A .φc =-35 V B .φc >-35 V C .φc <-35 V D .无法判定 3.如图9所示,a 、b 是电场线上的两点,将一点电荷q 从a 移到b ,电场力做功为W ,且知a 、b 间的距离为d ,以下说法正确的是( ) A .a 、b 两点间的电势差为W q B .a 处的电场强度为E =W qd C .b 处的电场强度为E =W qd D .a 点的电势为W q 4.如图10所示,两个等量异种电荷在真空中相隔一定距离,OO ′ 代表两点电荷连线的中垂面,在两点电荷所在的某一平面上取图示1、2、 3三点,则这三点的电势大小关系是( ) A .φ1>φ2>φ3 B .φ2>φ1>φ3 C .φ2>φ3>φ1 D .φ3>φ2>φ1 5.对于点电荷电场,我们取无穷远处为零势点,无穷远处电场强度也为零.那么( ) A.电势为零的点,场强也为零 B.电势为零的点,场强不一定为零;但场强为零的点电势一定为零 C.场强为零的点,电势不一定为零;电势为零的点,场强不一定为零 D.场强为零的点,电势不一定为零;电势为零的点,场强一定为零 6. 如图13所示,在匀强电场中,有A 、B 两点,它们间的距离为2 cm ,两点的连线与 场强方向成60°角.将一个电荷量为-2×10-5 C 的电荷由A 移到 B ,其电势能增加了0.1 J .问: (1)在此过程中,电场力对该电荷做了多少功? (2)A 、B 两点的电势差U AB 为多大? (3)匀强电场的场强为多大? 7.如图14所示的电场,等势面是一簇互相平行的竖直平面,间隔均为d ,各等势面电势已在图中标出.现有一质量为m 的带电小球以初速度v 0与水平方向成45°角斜向上射入电场,要使小球做直线运动.问: (1)小球应带何种电荷?电荷量是多少? (2)在入射方向上小球最大位移是多少?(电场范围足够大)

电场之电场强度之点电荷电场强度公式

电场之电场强度之点电荷电场强度公式 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

电场之 电场强度之 点电荷电场强度公式 1.真空中两个等量异种点电荷电量的值均为q ,相距r ,两点电荷连线中点处的场强为 [ ] A .0 B .2kq /r 2 C .4kq /r 2 D .8kq /r 2 2.如图6,正点电荷Q 的电场中,A 点场强为100N /C ,C 点场强为36N/C ,B 是AC 的中点,则B 点的场强为______N /C . 3.下列关于点电荷的场强公式的几种不同的理解,不正确的是( ) A.在点电荷Q 的电场中,某点的场强大小与Q 成正比,与r 2成反比 B.当r→0时,E→∞;当r→∞时,E→0 C.点电荷Q 产生的电场中,各点的场强方向一定是背向点电荷Q D.以点电荷Q 为中心,r 为半径的球面上各处的场强相等 4. 在同一直线上依次有A 、B 、C 三点,且BC =3AB ,在A 点固定一个带正电的小球,在B 点引入电量为2.0×10-8c 的试探电荷,其所受电场力为2.0×10-6N 。将该试探电荷移去后,B 点的场强为_______,C 点的场强为__________。如果要使B 点的场强为零,可能在C 点放一个电量是A 点处带电小球的电量的_________倍的________电荷. 5.下列关于电场强度的两个表达式E=F/q 和E=kQ/r 2的叙述,正确的是 ( ) =F/q 是电场强度的定义式,F 是放入电场中的电荷所受的力,q 是产生电场的电荷的电荷量 =F/q 是电场强度的定义式,F 是放入电场中电荷受的力,q 是放入电场中电荷的电荷量,它适用于任何电场 =kQ/r 2是点电荷场强的计算式,Q 是产生电场的电荷电荷量,它不适用于匀强电场 D.从点电荷场强计算式分析库仑定律的表达式221r q q k F =,式22r q k 是点电荷q 2产生的电场在点电荷q 1处的场强大小,而2 1r q k 是点电荷q 1产生的电场在q 2处的场强大小 本类题的特征是: __________________________________________________________________________________ _________________________________________________________________________________________________ 本类题的做法是: __________________________________________________________________________________ _________________________________________________________________________________________________ 答案 1.D 2. q ,q ,9,正 5. 【答案】B 、C 、D 【解析】E=F/q 为定义式,适用于任何电场,式中q 为检验电荷的电荷量,F 为 2r Q k E =

电磁场与电磁波第四版课后思考题答案

点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离r的平方成反比;电偶极子的电场强度与距离r的立方成反比。 简述和所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。 表明静电场是无旋场。 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以与闭合面外的电荷无关,即在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。 简述和所表征的静电场特性。 表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍,即如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P与极化电荷密度的关系为极化强度P与极化电荷面的密度 电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为其单位是库伦/平方米(C/m2) 简述磁场与磁介质相互作用的物理现象?在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质

电场强度的几种计算方法

电场强度的几种求法 一. 公式法 1.q F E = 是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。 2.2r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。 3.d U E = 是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。 二.对称叠加法 当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。 例:如图,带电量为+q 的点电荷与均匀带电。 例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大? 例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r q k =?。假设左侧部分在M 点的电场强度为E 1,电势为1?;右侧部分在M 点的电场强度为E 2,电势为2?;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1?>2? B .若左右两部分的表面积相等,有E 1<E 2,1?<2?

C .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4 D .不论左右两部分的表面积是否相等,总有 E 1>E 2,E 3=E 4 答案:D 例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。则以下说法正确的是( ) A .两处的电场方向相同,E1>E2 B .两处的电场方向相反,E1>E2 C .两处的电场方向相同,E1<E2 D .两处的电场方向相反,E1<E2 三.等效替代法 例:均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场,如图,在半球面A 、B 上均匀分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球顶点与球心O 的轴线,在轴线上有M 、N 两点,OM=ON=2R ,已知M 点的场强大小为E ,则N 点场强大小为( ) A .E R -22kq B .24kq R C .E R -24kq D .E R +2 4kq 答案:A 例:【2013安徽20】如图所示,xOy 平面是无穷大导体的表面,该导体充满0z <的空间, 0z >的空间为真空。将电荷为q 的点电荷置于z 轴上z=h 处,则在xOy 平面上会产生感应 电荷。空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的。已知静电平衡时导体内部场强处处为零,则在z 轴上2 h z = 处的场强大小为(k 为静电力常量) A .24q k h B .249q k h C .2329q k h D .2 409q k h 【答案】D C D A B

电场线电场强度的理解及计算

1.考点及要求:(1)静电场(Ⅰ);(2)电场强度、点电荷的场强(Ⅱ);(3)电场线(Ⅰ).2.方法与技巧:(1)分清是平面上场强的叠加还是立体空间中场强的叠加,再

利用几何知识求解;(2)利用带电体或电场的对称性求合场强;(3)利用整体法与隔离法处理平衡问题. 1.(点电荷场强的计算与场强的合成)如图1所示,A、B、C、D为真空中矩形图形的4个顶点,AB长为3cm,BC长为4cm,在矩形顶点A、B、C三处各放置一个点电荷qA、qB、qC,其中qA、qC为负电荷,qB为正电荷.已知它们的电荷量大小之比为qA∶qB∶qC=64∶125∶27,点电荷qA产生的电场在D处的场强大小为E.则D处的合场强大小应为( ) A.1.25E C.0 B.2E D.2.5E 2.(应用整体法与隔离法分析电场内的平衡问题)a、b两个带电小球的质量均为m,所带电荷量分别为+3q和-q,两球间用绝缘细线连接,a球又用长度相同的绝缘细线悬挂在天花板上,在两球所在的空间有方向向左的匀强电场,电场强度为E,平衡时细线都被拉紧,则平衡时可能位置是( ) 3.已知表面电荷均匀分布的带电球壳,其内部电场强度处处为零.现有表面电荷均匀分布的带电半球壳,如图2所示,CD为通过半球顶点C与球心O的轴线.P、Q为CD轴上关于O点对称的两点.则( ) A.P点的电场强度与Q点的电场强度大小相等,方向相同 B.P点的电场强度与Q点的电场强度大小相等,方向相反 C.P点的电场强度比Q点的电场强度强 D.P点的电场强度比Q点的电场强度弱 4.(多选)如图3所示,有一正方体空间ABCDEFGH,则下列说法正确的是A.若A点放置一正点电荷,则B、H两点的电场强度大小相等 B.若A点放置一正点电荷,则电势差UBC>UHG C.若在A、E两点处放置等量异种点电荷,则C、G两点的电势相等 D.若在A、E两点处放置等量异种点电荷,则D、F两点的电场强度大小相等5.(多选)如图4所示,虚线AB和CD分别为椭圆的长轴和短轴,相交于O点,两个等量异种点电荷分别处于椭圆的两个焦点M、N上,下列说法中正确的是( ) A.A、B两处电势、场强均相同 B.C、D两处电势、场强均相同 C.在虚线AB上O点的场强最大 D.带正电的试探电荷在O处的电势能大于在B处的电势能

电场强度教学设计

电场强度教学设计 一、知识与技能 1、了解物理学史上对电荷间相互作用力的认识过程。 2、知道电荷间的相互作用是通过电场发生的,电场是客观存在的一 种特殊的形态。 3、理解电场强度的概念及其定义,会根据电场强度的定义进行有关的计算。知道电场强度是矢量,知道电场强度的方向是怎样规定的。 4、能根据库仑定律和电场强度的定义推导点电荷场强的计算式,并 能用此公式进行有关的计算。 5、知道场强的叠加原理,并能应用这一原理进行简单的计算。 二、过程与方法 1、经历探究描述电场强弱的物理量”的过程,获得探究活动的体验。 2、领略通过电荷在电场中所受静电力研究电场、理想模型法、比值法、类比法等物理学研究方法。 三、情感态度与价值观 建立科学的物质观。养成求真、求实严谨的科学态度。 教学重点: 1、探究描述电场强弱的物理量。 2、理解电场、电场强度的概念,并会根据电场强度的定义进行有关 的计算。 教学难点: 探究描述电场强弱的物理量。 教学用具:多媒体课件

设计思路:本节课是一节概念课,让学生体会概念的建立过程,知道为什么建立此概念?这个概念是什么?这个概念建立后能干什么?在学习的过程中整合以往学习的概念,通过物理概念的学习,了解物理学的研究方法。教学中充分调动学生的学习积极性,让学生感到学习物理不仅仅是解题、记忆,而是对大自然规律的探索。 电场强度是“电场”一章的重要概念,本章的概念比较抽象,教材强调弄清建立概念的背景,把抽象概念具体化,以便于学生理解。在教学设计上,一方面不必期望学生通过一节课的学习,就将电场强度这个概念理解得非常透彻,只要让学生初步认识到电场强度是描述电场强弱的物理量,是表示电场本质属性的物理量就好。学生通过一段时间的学习,会逐步深化对此概念的理解。另一方面采用教师引导下的探究式教学方法,以科学探究为学生的主要学习方式,发挥学生的积极性、主动性和创造性。 教学设计 一、复习提问、新课导入 教师:上一节课我们学习了库仑定律,请同学们回忆一下:库仑定律 的内容是什么? 学生回答:略 教师:两个电荷接触了没?没有接触怎么产生了力?: 投影展示1 (猜1):超距作用:相隔一定距离的两个物体之间存在 着直接、瞬时的相互作用,不需要任何媒质传递,也不需要任何传递时间。 二、新课教学 (一)电场

我总结(电场能量守恒与磁场)

电场 1.电荷周围存在电场.:库仑定律。 2.电场的大小:单位电量的电荷在电场中受到的电场力。检验电荷受到的力越大那 。电场线越密集电场越大。 3.场强是描述电场性质的物质的物理量,只由电场决定,与检验电荷无关.例如在 A q的大小无关, .不能理解为 ,. 4. 场强是矢量., 其方向为正电荷的受力方向为该点场强方向. 5.电场强度和电场力是两个不同的物理量,就像速度和位移是完全不同的两个 概念.最 根本不同的是:场强是表示电场的性质的物理量 ,电场力是电荷在电场中受的电场的作用力. 注意 .而 . 6.场强可以合成分解,并遵守平行四边形法则,如图示2 所示.Q A与Q B在C处的场强分别为E A、E B,E即是E A与 E B的合成场强.若在C处放一个-q点电荷,所受电场力方 向应与E反方向. 7.电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 8. 三.电场线 1.电场线是描述电场强度分布的一族曲线.描述方法:用曲线的疏密描述电场的强弱,用曲线某点的切线方向表示该点场强方向. 2.电场的特点: (1).在静电场中,电场线从正电荷起,终于负电荷,不闭合曲线. (2).电场线不能相交,否则一点将有两个场强方向. (3).电场线不是电场里实际存在的线,是为使电场形象化的假想线.

3. 点电荷的电场线. 图3、图4为正、负点电荷电场线的分布,应熟悉. 从图5可看出,E 1为+Q 在A 处的场强,E 2为-Q 在A 处的场强,E 为E 1与E 2的 合场强,正好为电场线在A 的切线。两个点电荷形成的电场中,每条电场线上 每个点符合上述的关系。 4.匀强电场 (1) .定义:在电场的某一区域里,如果各点场强大小和方向都相同,这个区域的 电场叫匀强电场. (2) .电场线如图6所示.电场线互相平行的直线,线间距离相等. (3) .两块靠近、正对且等大平行的金属板,分别带等量 正负电荷时,它们之间的电场是匀强电场.边缘附近除 外. 5、公式 四.电场中的导体. 1. 导体的特征:导体内部有大量可以自由移动的电荷.金属导体可自由移动是自由电子. 2. 静电感应:导体内的自由电荷是电场的作用而重新分布的现象. 认真分析如图所示的物理过程:把金属导体置于匀强电 场中.金 属导体中自由电子在电场力作用向左运动,达到左外表面,而 右外表面带正电.金属导体外表面带的等量正负电荷称为感 应电荷,感应电荷形成电场E '的方向与电场E 方向相反向 左,E '随着感应电荷增加而变大,当E '=E 时,导体内场强为零, 自由电子不受电场力作用,停止定向运动.达到静电平衡. 静电平衡:导体中(包括表面)没有电荷走向移动的状态叫静电平衡. 3. 在导体处于静电平衡状态时有 (1) .在导体内部的场强处处为零 (2) .导体表面任何一点场强方向与该点表面垂直. (3) .电荷只能分布在外表面上. 4. 利用处于静电平衡状态时,导体内部场强处处为零的特点,利用金属网罩(金 属包皮)把外 电场遮住,使内部不受电场影响即静电屏数. 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。

电场线在电场中的作用

电场线在电场中的作用 江西省都昌县第一中学李一新 电场线是为了形象地描述电场中各点电场强度的强弱和方向而引入的假想的曲线。她在解决带电粒子在电场中有关问题时所起的作用是很大的,主要表现在以下几个方面。 一、利用电场线的稀密能判断电场强度的大小 电场线的稀密表示电场强度的大小,电场线越密的地方电场强度越大,电场线越稀的地方电场强度越小。 例1两带电量分别为q和-q的点电荷放在x轴上,相距为L,能正确反映两电荷连线上场强大小E与x关系的是如图1所示中的() 解析:根据题意画出等量异种点电荷的电场线分布图,如图2所示,两电荷连线上场强大小E与x关系是关于两点电荷连线的中垂线对称,靠近两点电荷附近电场线越密电场强度较大,中央最稀电场强度最小,但不是零,因此正确的选项为A。 二、利用电场线的方向来判断电场力的方向 电场线在某点的切线方向为电场强度的方向。正电荷所受的电场力方向与电场强度方向相同,负电荷所受的电场力方向与电场强度方向相反。根据电场力的方向和电场强度的方向可判断带电体的电性,根据电场力的方向和电荷移动情况还可以判断电场力做功情况。 例2如图3所示,初速度为v的带电粒子,从A点射入电场,只受电场力作用沿虚线运动到B点,试判断: (1)粒子带电性质;

(2)粒子加速度大小如何变化; (3)粒子的速度大小如何变化。 解析:(1)带电粒子只受电场力作用沿虚线运动到B点,则所受电场力的方向指向弯曲的内侧,与电场线的方向相同,所以粒子带正电。 (2)粒子向电场线密的地方运动,所受的电场力不断增大,则加速度不断增大。 (3)粒子速度方向为轨迹的切线方向,与电场力方向的夹角小于900,电场力做正功,粒子的速度大小不断增大。 例3在光滑的绝缘水平面上,有一个正方形的abcd,顶点a、c处分别固定一个正点电荷,电荷量相等,如图4所示。若将一个带负电的粒子置于b点,自由释放,粒子将沿着对角线bd往复运动。粒子从b点运动到d点的过程中() A.先作匀加速运动,后作匀减速运动 B.先从高电势到低电势,后从低电势到高电势 C.电势能与机械能之和先增大,后减小 D.电势能先减小,后增大

电磁场的远场和近场划分

电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(感应场)和近区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。近区场通常具有如下特点: 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E 377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。 远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到1米。 2、远区场的测量 在远区场(辐射场区),可引入功率密度矢量(波印廷矢量),电场矢量、磁场矢量、波印廷矢量三者方向互相垂直,波印廷矢量的方向为电磁波传播方向。 在数值上,E=377H,S=EH=E2/377。其中电场强度E的单位是(V/m),磁场强度H的单位是(A/m),功率密度的单位是(W/m2),全部是国际单位制(SI)。 由公式可看出,在远场区,电场与磁场不是独立的,可以只测电场强度,磁场强度及功率密度中的一个项目,其他两个项目均可由此换算出来。 一般情况,关于远场和近场的测量问题可以简化为: 国标规定,当电磁辐射体的工作频率低于300MHz时,应对工作场所的电场强度和磁场强度分别测量。当电磁辐射体的工作频率大于300MHz时,可以只测电场强度。 300MHz频率相应的波长为1米,λ/6为16cm,16cm之外辐射场占优势。如按3λ的划分界限,距辐射源3米之外可认为是远场区。

电场和磁场的基本性质

电荷和电荷守恒定律 电场 电场力的性质 电场场强:E=F/q 矢量 电场线 真空中点电荷电场的场强:2 /r KQ E = 匀强电场场强E=U/d 电场能的性质 电势:q E p /=? 标量 电势差:B A AB U ??-= 等势面 电场力 qE F =(任何电场) 2 21r q q K F =(真空中点电荷) 电场能:?q E p = 电场力的功:PAB AB E qU W ?== 磁场 运动电荷 性质 对通电导体的作用:BIL F = 对运动电荷的作用 磁感应强度:S B IL F B Φ= =、 磁感线:引入磁通量 BS =Φ 0//=F B v , 直线运动 qvB F B v =⊥, 匀速圆周运动 向心力:r v m F 2 = 半径:qB mv r = 周期:qB m T π2=

一.电场的性质 1.库仑定律 例1.2009(江苏卷)两个分别带有电荷量-Q 和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F ,两小球相互接触后将其固定距离变为r 2, 则两球间库仑力的大小为( ) A.112F B.34F C.4 3F D .12F 答案:C 解析:两电荷间的作用力F =k 3Q2 r2 ,两电荷接触电量先中和再平均分配,每个小球带电量为Q ,F ′=2 22?? ? ??r Q k , F ′F =4 3 ,C 正确. 2.电场力 例2.(2009-广东卷)如图6,一带负电粒子以某速度进入水平向右的匀强 电场中,在电场力作用下形成图中所示的运动轨迹。M 和N 是轨迹上的两点,其中M 点在轨迹的最右点。不计重力,下列表述正确的是 A .粒子在M 点的速率最大 B .粒子所受电场力沿电场方向 C .粒子在电场中的加速度不变 D .粒子在电场中的电势能始终在增加 答案.C 【解析】根据做曲线运动物体的受力特点合力指向轨迹的凹一侧,再结合电场力的特点可知粒子带负电,即受到的电场力方向与电场线方向相反,B 错。从N 到M 电场力做负功,减速,电势能在增加,当达到M 点后电场力做正功加速电势能在减小则在M 点的速度最小A 错,D 错。在整个过程中只受电场力根据牛顿第二定律加速度不变。 3.对电场强度的三个公式的理解 例3.2010(安徽卷)如图所示,在xOy 平面内有一个以O 为圆心、半径R=0.1m 的圆,P 为圆周上的一点,O 、P 两点连线与x 轴正方向的夹角为θ。若空间存在沿y 轴负方向的匀强电场,场强大小E=100V/m ,则O 、P 两点的电势差可表示为( ) A .10sin (V )op U θ=- B .10sin (V )op U θ= C . 10cos (V ) op U θ=- D . 10cos (V ) op U θ= 【答案】A 【解析】在匀强电场中,两点间的电势差U=Ed ,而d 是沿场强方向上的距 x/m y/m O P θ ·

相关文档
相关文档 最新文档