文档库 最新最全的文档下载
当前位置:文档库 › 符合勾股定理的所有整数

符合勾股定理的所有整数

符合勾股定理的所有整数
符合勾股定理的所有整数

符合勾股定理的所有整数,画在坐标系中长啥样?美国数学竞赛精讲

AMC考试是什么?

AMC 的全称是American Mathematics Competitions,美国数学竞赛。有三种等级:AMC8 / AMC10 / AMC12,分别对应不超过8/10 /12年级的学生参加,中国的中学生都可以参加。

「AMC系列」将连载12期,根据AMC 10/12 体系,讲解各个知识点,并为公立学校和国际学校的学生提供中英文对照。

1

先来做个小练习:已知一个直角三角形两个斜边长分别是2和3,问斜边长为多少?

ok,现在你脑子里一定在想平方、开方的事了。可你有没有想过,为什么要平方和开方。

三角形斜边长的平方为什么就是两个直角边的平方和?谁先发现这个有趣性质的?

这就得从勾股定理这个名字讲起,古人把直角三角形较小的直角边叫做勾,较长的直角边叫做股,斜边叫做弦,描述三者关系的定理就叫勾股定理。早在春秋时期,它就被中国人发现,后记载于《九章算数》。

客观的说,虽然中国人早于西方发现这一性质,但最先将此性质推广到任意直角三角形并予以证明的是古希腊数学家毕达哥拉斯(Pythagoras) ,因此这个定理也叫做毕达哥拉斯定理(Pythagorean Theorem) ,我们常见到的黄金分割、整数、分数这些概念也源于毕达哥拉斯学派。

这个定理怎么证明呢?中国古人的证法是用割补法,仅用正方形面积公式就能证明:

勾股定理新的证明方法不断被人想出,有趣的是,有个叫加菲尔德的人在用他的方法证出本定理5年之后,成为美国第20任总统,所以人们又称这个证法为“总统证法”。

利用梯形面积就是三个三角形面积之和,知道两式相等,然后解出这个式子↓↓

以上两个证法都是基于面积,如果用一些较为现代的数学工具,比如相似三角形(similar triangles) 那么证明过程就会缩短不少:

事实上,勾股定理目前有500多种证法,是证明方法最多的数学定理之一。

3

知道了勾股定理的来源和证明,下面我们来看看它的应用:

一个重要性质(上图性质1)就是在直角三角形三边上做三个相似的图形,最大的图形面积等于两个小图面积之和(如下图右侧三个例子),证明思路是:相似图形面积比等于边长比的平方,而边长的平方之间的关系就是两个小的加起来等于大的。

如果做的图形是半圆,结合“直径所对的圆周角是直角”,可推出:以斜边为直径向内做半圆,会经过直角顶点(如下图)。再用面积做差,推出一个新的性质:两个“月牙”面积之和等于三角形面积。

4

在前面的例子中,我们知道如果一个三角形是直角三角形,那么它的三边(a,b,c) 就满足a 方加b 方等于c 方,并且在实际题目中,常常出现(3,4,5)/(6,8,10)/(5,12,13)这样的(a,b,c) ,这样满足勾股定理的整数,就叫“勾股数”(pythagorean triple) ,勾股数有两个基本性质

1.如果一组数是勾股数,那么它们的倍数依然是勾股数。

比如(3,4,5) 是勾股数,那么(6,8,10) / (9,12,15) / (12,16,20) 以及(300,400,500) 一定都满足勾股定理,这些勾股数就构成了一类,即(3k,4k,5k) 。换个角度讲,如果一组数中三个数可以约分,那么约分到互质(relatively prime) 后的结果也是勾股数,而且这组勾股数是同类中最小的,这些已经互质的最小的勾股数叫做勾股方程的本原解。

(一部分本原解)

2.所有的本原解可以被不重不漏地表示出。

其实我们就是就是想知道“a 方加b 方等于c 方”这个方程有哪些互质的(a,b,c) 解。利用数论知识可以求出,所有互质的解是:

也就是说,有了这个表达式,任意选取两个两个符合条件的m,n 就能立马“生成”一组勾股数。

更直观来看,所有的勾股数,把两直角边的长度作为横纵坐标(下图是实轴坐标和虚轴坐标),就能把所有的勾股数画在图上,每组勾股数的(a,b,c)分别对应横坐标、纵坐标、到原点的距离,这三个量都是整数。

(图片来源:3BLUE1BROWN)

好,学到这里,让我们来复习一下今天的知识点:

恭喜你,又学完了AMC的一节课。下一次,我们将学习相似三角形。

关于AMC竞赛详细的介绍,你可以看我之前的文章:常青藤大学都认可的申请加分项:AMC 美国数学竞赛

继续学习AMC的第一课:AMC系列|第一讲:数学中的面积公式都是怎么来的?

关注史蒂文爱学习,获取更多深度学习的方法和考试技巧。

勾股定理应用题

2.勾股定理实际问题应用 1.若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为 ( ) A. 48 cm 2 B. 36 cm 2 C. 24 cm 2 D.12 cm 2 2.一根32厘米的绳子被折成如图所示的形状钉在P 、Q 两点,PQ=16厘米,且RP ⊥PQ , 则RQ= 厘米 3.小明和小强的跑步速度分别是6m/s 和8m/s ,他们同时从同一地点分别向东、南练习跑 步,那么从出发开始需__________s 可以相距160m 4.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸 地点偏离目标地点200m ,他在水中实际游了520m ,那么该河的宽度为 ( ) A.440 m B.460 m C.480 m D. 500 m 5、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱 形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取 值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm 6.一架5m 长的梯子靠在一面墙上,梯子的底部离建筑物2m ,若梯子底部滑开1m ,则梯 子顶部下滑的距离是___________(结果可含根号) 7、有一圆柱形食品盒,它的高等于16cm ,底面直径为20cm , 蚂蚁爬行的速度为2cm/s. 如果在盒外下底面的A 处有一只蚂蚁,它想吃到盒外对面中部点B 需要多少时间? (结果保留π) 8.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 大约是 ( ) A.6cm B.10cm C.14cm D. 18cm 9、如图,笔直的公路上A 、B 两点相距25km ,C 、D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于 点B ,已知DA=15km ,CB=10km ,现在要在公路的AB 段上建一个土特产品收购站E ,使得C 、 D 两村到收购站 E 的距离相等,则收购站E 应建在离A 点多远处? A D E B C A · B · A B · ·

勾股定理的证明方法探究

a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC 中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股4弦5”知 AC=4cm,BC=3cm,AB>AC,∴AB=5cm.剖析:这种解法受“勾3股4弦5”思维定势的影响,见题中有BC=3,AC=4,就认为AB=5,而忘记了“勾3股4弦5”是在直角三角形的条件下才成立,而本题中没有指明是直角三角形,因此,只能用三角形三条边之间的关系来解。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂。

我们都喜欢把日子过成一首诗,温婉,雅致;也喜欢把生活雕琢成一朵花,灿烂,美丽。可是,前行的道路有时会曲折迂回,让心迷茫无措。生活的上空有时会飘来一场风雨,淋湿了原本热情洋溢的心。 不是每一个人都能做自己想做的事情,也不是每一个人都能到达想去的远方。可是,既然选择了远方,便只有风雨兼程。也许生活会辜负你,但你不可以辜负生活。 匆匆忙忙地奔赴中,不仅要能在阳光下灿烂,也要能在风雨中奔跑!真正的幸福不是拥有多少财富,而是在前行中成就一个优秀的自己! 生命没有输赢,只有值不值得。坚持做对的事情,就是值得。不辜负岁月,不辜负梦想,就是生活最美的样子。 北大才女陈更曾说过:“即使能力有限,也要全力以赴,即使输了,也要比从前更强,我一直都在与自己比,我要把最美好的自己,留在这终于相逢的决赛赛场。” 她用坚韧和执着给自己的人生添上了浓墨重彩的一笔。 我们都无法预测未来的日子是阳光明媚,还是风雨如晦,但前行路上点点滴滴的收获和惊喜,都是此生的感动和珍藏。 有些风景,如果不站在高处,你永远欣赏不到它的美丽;脚下有路,如果不启程,你永远无法揭晓远方的神秘。 我们踮起脚尖,是想离太阳更近一点儿;我们努力奔跑,是想到达远方欣赏最美的风景。 我们都在努力奔跑,我们都是追梦人!没有伞的时候,学会为自己撑伞;没有靠山的时候,学会自己屹立成一座伟岸的山! 远方有多远?多久能达到?勇敢往前冲的人,全世界都会向他微笑。相信,只要启程,哪怕会走许多弯路,也会有到达的那一天。

勾股定理的证明和应用

第3章勾股定理知识结构: 勾股定理1.勾股定理 (1)直角三角形中两直角边的平方和等于斜边的平方 (2)勾股定理的验证-------用拼图法,借助面积不变的关系来证明 (3)应用 1.在直角三角形中已知两边求第三边 2.在直角三角形中已知两边求第三边上的高 2.勾股定理 的逆定理 (1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角 三角形 (2)勾股数 1.满足a2+b2=c2的三个正整数a,b,c称为 勾股数 2.常见的勾股数 (1)3,4,5 (2)5,12,13 (3)8,15,17 3.应用 (1)勾股定理的简单应用 求几何体表面上两点间的最短距离 解决实际应用问题 (2)勾股定理逆定理的应用---------判定某个三角形是否为直角三角

形 勾股定理 一、求网格中图形的面积 求网格中图形的面积,通常用两种方法:“割”或“补”。 二、勾股定理 直角三角形两条直角边的平方和等于斜边的平方。 拓展延伸:(1)勾股定理揭示的是直角三角形的三边关系,所以必须注意“在直角三角形中”这一前提。 (2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把所求线段转化为某一直角三角形的边,然后利用勾股定理求解。 三、勾股定理的验证 运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。 勾股定理的逆定理 一、勾股定理的逆定理 如果三角形的三边长分别为a,b,c且a2+b2=c2,那么这个三角形是直角三角形。 注意:(1)还没确定一个三角形是否为直角三角形时,不能说“斜边”“直角边”。 (2)不是所有的c都是斜边,要根据题意具体分析。当满足a2+b2=c2时,c是斜边,它所对的角是直角。 勾股定理与勾股定理的逆定理之间既有区别,又有联系,如下表所示:

勾股定理的实际运用

勾股定理的实际运用 一.勾股定理: (1)直角三角形两直角边的_______等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么_____. (2)我国古代把直角三角形中较短的直角边称为_____,较长的直角边称为________,斜边称为______. 二.直角三角形的判别条件 1.直角三角形的判别条件(也称为勾股定理的逆定理) 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形(此判别条件也称为勾股定理的逆定理).如图所示,在△ABC中,如果AC2+BC2=AB2.那么△ABC就是以∠C为直角的直角三角形. 2.判断直角三角形的步骤 (1)确定最长边. (2)算出最长边的平方与另两边的平方和.(3)比较最长边的平方与另两边的平方和是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形. 3.直角三角形的判别条件与勾股定理的联系和区别 (1)联系 都是和直角三角形有关的内容,都和三角形的三边有关系,都渗透了数形结合的思想. (2)区别 勾股定理是由形到数,即由直角三角形得到三边之间的数量关系,是直角三角形的一个性质;而直角三角形的判别条件是由数到形,即由三边关系得到三角形的形状—直角三角形,是直角三角形的一种判别方法.

知识点一.确定几何体表面上的最短路线 1.解决几何体表面上两点之间最短路线问题的关键是把立体图形转化为平面图形,具体步骤是:(1)把立体图形展开成平面图形;(2)确定最短路线;(3)确定直角三角形;(4)根据直角三角形的边长,利用勾股定理求解 2.求立体图形表面上两点之间的最短路线长,主要涉及如下问题: (1)圆柱形物体表面上两点之间的最短路线长,主要涉及如下问题:(1)圆 柱形污图表面两点之间的最短路线长;(2)长方体表面两点之间的最短路线长;(3)台阶表面两点之间的最短路线长. 例题1:如图所示,有一个圆柱形油罐,要从点A处环绕油罐建梯子,正好到 点A的正上方点B,问梯子最短需要多长?(已知油罐的底面周长是12m,高AB 是5m) 知识点二.利用直角三角形的判别条件判断垂直 利用直角三角形的判别条件判断三角形是直角三角形也是判断垂直的一种方法.在实际生活中常常需要判断两直线是否垂直,解决此类问题的一般方法是将实 际问题转化为数学问题.首先,结合题意画出符合要求的三角形,再利用直角三角形的判别条件判断垂直. 例题2.如图所示,如果只给你一把带有刻度的直尺,你能否检验∠P是不是直角?简述你的作法,并说明理由.

勾股定理的证明

勾股定理的证明 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 2 142 142 2 2 ? +=? ++, 整理得 2 2 2 c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 2 1. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF , ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于() 2 b a +. ∴ () 2 2 2 14c ab b a +? =+. ∴ 2 2 2 c b a =+. D G C F A H E B a b c a b c a b c a b c b a b a b a b a c b a c b a c b a c b a c b a c b a

勾股定理的证明的方法

【】() 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上, B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ R t ΔEBF,

∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB.

勾股定理的应用

卓邦教育勾股定理应用练习 1.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)() A、3 B、5 C、4.2 D、4 1题2题3题4题 2.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为() A、10米 B、6米 C、7米 D、8米 3.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺. A、10 B、12 C、13 D、14 4.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为() A、10米 B、16米 C、15米 D、14米 5.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA⊥AB 于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是()km. A、5 B、10 C、15 D、25 6.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=8m,AD=6m,CD=24m,BC=26m,又已知∠A=90°.求这块土地的面积. 7.如图,某地方政府决定在相距50km的两站之间的公路旁E点,修建一个土特产加工基地,且C、D两村到点E的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) ? 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________; __________;___________. 2. 请你画出圆柱的侧面展开图. 3. 读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 的长度来估计爬行的路程,如图1. 方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,的方法,动手测量一下这条线的长度. ? 知识点睛

蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. ?精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8 cm,底面半径等于2 cm.在 圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A上升到点B,已知 AB=5 cm,树干的直径为4 cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3) 3.如图所示,有一根高为2 m的木柱,它的底面周长为0.3 m,为了营造喜庆的气 氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正

勾股定理16种经典证明方法与在实际生活中的应用

2 证法 1】(课本的证明) 做 8 个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为 c ,再做三个边长分别为 a 、b 、 c 的正 方形,把它们像上图那样拼成两个正方形 . 从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等 . 即 证法 2】(邹元治证明) ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠ BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180 o ― 90o= 90 o. ∴ 四边形 EFGH 是一个边长为 c 的 正方形 . 它的 面积等于 c 2. ∵ Rt Δ GDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180 o. ∴ ABCD 是一个边长为 a + b 的正方形,它的面积 等于 ∠HEF = 90 o. EFGH 是一个边长为 b ―a 的正方形,它的面积等于 1 ab 以 a 、 b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等 于 角形拼成如图所示形状,使 A 、E 、B 三点在一条直线上, B 、F 、C 三点在一条直 线上, 把这四个直角三 C 、G 、D 三点在一条直线上 b 2 4 12 ab c 2 4 1 ab 2 整理得 c 2 1 4 ab 2 c 2 a 2 b 2 c 2 【证法 3】(赵爽证明) 以 a 、 b 为直角边( b>a ), 以 c 为斜 边作四个全等的直角三角形,则每个直角 1ab 三角形的面积等于 把这四个直角三 角形拼成如图所示形状 ∵ Rt Δ DAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90o , ∴ ∠EAB + ∠HAD = 90o , ∴ ABCD 是一个边长为 c 的正方形,它的面积等于 c 2. ∵ EF = FG =GH =HE = b ― a , ba

勾股定理的证明方法

【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 a^2+b^2+4*(ab/2)=c^2+4*(ab/2), 整理得到:a^2+b^2=c^2。 【证法2】 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 ab/2.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴四边形EFGH是一个边长为c的 正方形. 它的面积等于c^2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)^2. ∴(a+b)^2=c^2+4*(ab/2),∴ a^2+b^2=c^2。

【证法3】 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c^2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)^2. ∴(b-a)^2+4*(ab/2)=c^2,∴ a^2+b^2=c^2。 【证法4】 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴∠ADE = ∠BEC.

(完整版)勾股定理的实际应用题

18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起? 19.(2007?义乌市)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长. (1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处; (2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处; (3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A. 20.(2013?贵阳模拟)请阅读下列材料: 问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线: 路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π) (1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短. (2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:= _________.路线2:=_________.所以选择路线_________(填1或2)较短. (3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例 一、利用勾股定理解决立体图形问题 勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。 一、长方体问题 例1、如图1,图中有一长、宽、高分别为5cm、4cm、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是() A、41cm B、34cm C、50cm D、75cm 分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC,根据已知条件,可以判断BD 是Rt△BCD 的斜边,BD 是Rt△ BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。 解:在Rt△ABC 中,AB=5 ,AC=4,根据勾股定理, 得BC= AB2 AC2 = 41 , 在Rt△BCD 中,CD=3,BC= 41 , 22 BD= BC2 CD2 = 50 。所以选C。说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。二、圆柱问题 例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?

分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。由题意可知,S、 F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3 的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。 解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm),FB=18―1―1=16 (cm),在Rt△SBF 中,∠SBF=90°,由勾股定理得,SF= SB2 FB 2 = 302 162 =34(cm),所以蜘蛛所走的最短路线的长度是34cm。 说明:将立体图形展开,转化为平面图形,或将曲面转化为平面,然后再运用“两点之间,线段最短”和勾股定理,则是求立体图形上任意两点间的最短距离的常用的方法,这也是一种重要的数学思想转化思想。 二、利用勾股定理确定最短问题 我们知道,两点之间线段最短,但这两点之间的距离往往要通过适当的知识求出其大小,现介绍一种方法,用勾股定理确定最短问题. 例1(恩施自治州)如图 1 ,长方体的长为15,宽为10 ,高为20,点 B 离点 C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是() 图1 ①

勾股定理的证明方法及应用研究开题报告

天津师范大学津沽学院2015届本科毕业论文(设计)选题审批表 学生姓名顾鹏飞学号13583115 指导教师张筱玮职称教授所选题目名称:勾股定理的证明方法及应用研究 选题性质:()A.理论研究(√)B.应用研究()C.应用理论研究 选题的目的和理论、实践意义: 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。 它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础。 勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后 希帕索斯根据勾股定理发现了第一个无理数( 2),导致第一次数学危机。 指导教师意见: 签字:年月日系领导小组意见: 签字:年月日备注:

天津师范大学津沽学院2015届本科毕业论文(设计)开题 报告 系别:理学系专业:数学与应用数学 论文题目勾股定理的证明方法及应用研究 指导教师张筱玮职称教授学生姓名顾鹏飞学号13583115 一、研究目的(选题的意义和预期应用价值) 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础, 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后希帕索斯根据勾股定 理发现了第一个无理数( 2),导致第一次数学危机。 二、与本课题相关的国内外研究现状,预计可能有所突破和创新的方面(文献综述) 中国:公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。 公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。 在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。 外国:在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。 公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

(完整版)勾股定理解答证明题

《勾股定理》证明解答题练习 1、在ABC ?中,AC AB =,D 为BC 边上任一点,求证:DC BD AD AB ?=-2 2 2、已知:如图,在ABC Rt ?中,ο 90=∠C ,D 是AC 的中点,AB ED ⊥于E 求证:(1)2 2 2 43BD BC AB =+ (2)2 2 2 BC AE BE =- 3、如图,在ABC ?中,ο 90=∠C ,13=AB ,12=BC ,BC BD 2 1 = (1)AD 的长. (2)ABD ?的面积. 4、求边长为a 的等边三角形的高和面积 2 5、如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠, 3 使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? B C A C B B C

6、若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状. 7、已知:如图, ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A。 求:BD的长。(8分) 8、甲、乙两船同时从港口A出发,甲船一12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行。2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距40海里,问乙船的速度是每小时多少海里?9.如图所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,?求该四边形的面积. B C A D 10.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积. 11.如图,某购物中心在会十.一间准备将高5 m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 5m 13m 8m 20m

勾股定理简单应用

勾股定理应用的教学设计 教学目标 1 ?会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、 复习旧知 复习勾股定理以及一些简单的计算 ⑴勾股定理: ____________________________________________________ (2)求出下列直角三角形中未知的边. 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口, 则圆形盖半径至 少为多少米? ? 问题2.如图所示,一旗杆在离地面 5 m 处断裂,旗杆顶部落在离底部 12 m 处,问旗杆 折断前有多咼? 合作探究 B A 2 C C C

问题4.如图,一个5米长的梯子AB 斜着靠在竖直的墙A0上,这时A0的距离为3米. ① 球梯子的底端B 距墙角0多少米? ② 如果梯的顶端A 沿墙下滑1米至C,请同学们猜一猜,底端 B 也将滑动1米吗? 算一算,底端滑动的距离。(结果保留 1位小数). 三. 深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺 , 引 葭赴岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树 的顶端飞到另一棵树的顶端,小鸟至少要飞 ___________ 米。 2如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离 问题3.如下图,要将楼梯铺上地毯,则需要 _____ 米长的地毯.

勾股定理逆定理八种证明方法

证法1 作四个全等的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条直线上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC 的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上,

勾股定理的证明和应用

知识结构: 2. 勾股定理 的逆定理 (2)勾股数 (1)勾股定理的简单应用 3. 应用 (2)勾股定理逆定理的应用 a,b,c 满足a 2+b 2=c 2 ,那么这个三角形是直角 三 1. 满 足 a 2+ b 2=c 2 的三个正整数 a,b,c 称为勾 股数 (1)3,4,5 2. 常见的勾股数 (2)5,12,13 (3)8,15,17 求几何体表面上两点间的最短距离 解决实际应用问题 ----- 判定某个三角形是否为直角三角形 3.1 勾股定理 一、 求网格中图形的面积 求网格中图形的面积,通常用两种方法: “割 ”或“补”。 二、 勾股定理 直角三角形两条直角边的平方和等于斜边的平方。 拓展延伸 :(1)勾股定理揭示的是直角三角形的三边关系, 所以必须注意 “在直角三角形中 这一前提。 (2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把 所求线段转化为某一直角三角形的边,然后利用勾股定理求解。 三、 勾股定理的验证 运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。 第 3 章 勾股定理 勾股定理 (1)直角三角形中两直角边的平方和等于斜边的平方 (2)勾股定理的验证 1.勾股定理 1.在直角三角形中已知两边求第三边 (3)应用 2.在直角三角形中已知两边求第三边上的高 (1)如果三角形的三边长 角形 用拼图法 ,借助面积不变的关系来证明

3.2勾股定理的逆定理 一、勾股定理的逆定理 如果三角形的三边长分别为a,b,c且a2 3+b2=c2,那么这个三角形是直角三角形。 注意:(1)还没确定一个三角形是否为直角三角形时,不能说斜边”直角边”。 (2)不是所有的c都是斜边,要根据题意具体分析。当满足a2+b2=c2时,c是斜边,它所 对的角是直角。 下表所示: 二、勾股数 满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。 勾股数必须是正整数。 一组勾股数中各数的相同的正整数倍也是一组新的勾股数。 记住常用的勾股数可以提高做题速度。 3.3勾股定理的简单应用 一、勾股定理的应用 运用勾股定理可以解决生活中的一些实际问题。在应用勾股定理解决实际问题时,应先 构造出直角三角形,然后把直角三角形的某两条边表示出来。 注意:应用勾股定理解决实际问题时,先弄清直角三角形中哪边是斜边,哪两条边是直角边, 以便进行计算或推理。对于实际问题,应从中抽象出直角三角形或通过添加辅助线构造出直角三角形,以便正确运用勾股定理。

相关文档
相关文档 最新文档