文档库 最新最全的文档下载
当前位置:文档库 › 高阶单步拟动力试验算法

高阶单步拟动力试验算法

高阶单步拟动力试验算法
高阶单步拟动力试验算法

第25卷第11期 V ol.25 No.11 工 程 力 学 2008年 11 月 Nov. 2008 ENGINEERING MECHANICS

14

———————————————

收稿日期:2007-06-26;修改日期:2008-01-12 基金项目:国家自然科学基金项目(50508012)

作者简介:王焕定(1942―),男,浙江仙居人,教授,博导,主要从事结构力学、工程抗震理论及防灾减灾研究(E-mail: hdwhrb@https://www.wendangku.net/doc/1b7419751.html,); *陈再现(1981―),男,河南平顶山人,博士生,主要从事拟动力子结构试验及算法研究(E-mail: jinbei_81@https://www.wendangku.net/doc/1b7419751.html,); 王凤来(1971―),男,黑龙江宁安人,教授,博士,硕导,主要从事土木工程诊治与加固研究(E-mail: wflai@https://www.wendangku.net/doc/1b7419751.html,); 陶少华(1982―),男,江西南昌人,硕士生,主要从事拟动力算法研究(E-mail: yb642001@https://www.wendangku.net/doc/1b7419751.html,).

文章编号:1000-4750(2008)11-0014-06

高阶单步拟动力试验算法

王焕定,*陈再现,王凤来,陶少华

(哈尔滨工业大学土木工程学院,哈尔滨 150090)

摘 要:由于高阶单步法具有无条件稳定、优良的算法阻尼特性、无超越现象、截断误差为5

?t 的特性,已成功地应用于结构地震非线性反应分析、主动半主动及智能振动控制、刚度解析表示的动力反应等分析。该文根据结构拟动力试验的特点,考虑到试验中系统所能达到的精度条件,引入等效剪切刚度的思想,提出了高阶单步拟动力试验算法。单自由度和两自由度数值模拟算例分析以及3层足尺拟动力试验结果,证实了算法的可行性和优越性。 关键词:高阶单步法;拟动力试验算法;等效剪切;足尺模型;刚度修正 中图分类号:P315.9; TU31 文献标识码:A

HIGH ORDER SINGLE STEP ALGORITHM OF

PSEUDO-DYNAMIC TESTING

WANG Huan-ding , *CHEN Zai-xian , WANG Feng-lai , TAO Shao-hua

(School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China)

Abstract: Due to the characteristics of unconditionally stable, good algorithm damping properties, no transcendental phenomenon, and 5?t of truncation error, the high order single-step method had been successfully applied in nonlinear seismic response analysis and vibration controls. Based on the characteristics of the pseudo-dynamic testing and taking into account the permissible system accuracy, this paper introduces the concept of equivalent shear stiffness, and proposes the high order single-step algorithm of pseudo-dynamic testing. The feasibility and advantages of this algorithm are demonstrated by a comparison between numerical simulation results of the SDOF and 2 DOF structure with those of the three-level full-scale testing.

Key words: high order single step method; pseudo-dynamic testing method; equivalent shear; full-scale model;

stiffness correction

拟动力实验[1

―2]

(也称计算机联机实验)的数值计算方法可以分成两大类:显式积分方法和隐式积分方法。传统显式积分方法主要由中心差分法和显式Newmark 法等,隐式方法主要有Wilson-θ法、隐式Newmark 法、α方法等几种方法。清华大学土木工程系邱法维对拟动力显隐式算法做了详细的研究讨论,指出传统的显式积分方法是有条件稳

定的,所以时间步长的选择受到结构动力参数和自由度的限制,而时间步长太小将造成试验累计误差增大,试验结果失真[3];隐式算法具有无条件稳定,在精度上明显优于传统显式方法[4

―5]

。尽管隐式算

法是一种无条件稳定的算法,但其计算时需要进行迭代过程,迭代的收敛性和很多因素有关,耗费在调整迭代收敛问题上的时间将非常多,这实际上降

工 程 力 学 15

低了计算效率。

高阶单步法具有无条件稳定、优良的算法阻尼特性、无超越现象、截断误差为5?t 的特性,已成功地应用于结构地震非线性反应分析[6]、主动半主动及智能振动控制[7―9]

、刚度解析表示的动力反

应[10

―11]

等分析。本文将高阶单步法应用于拟动力实

验中,通过理论分析和数值模拟,并进行了三层足尺模型的拟动力试验,证明该方法具有可行性和优越性。

1 高阶单步算法用于拟动力试验的

困难及解决思路

1.1 高阶单步法基本公式

根据文献[10]给出高阶单步法的逐步积分公 式为:

111111212121

1121

111

212222221122

1

(43),(43),n n n n n n n n n n n n n n F F F F ?

?

??++?+??++?+=++++ ×?×=++++ ×?×X P X P X Q M F R M F A M F

F X P X P X Q M F R M F A M F

F

1

11111

()n n n n ??++++=?+X M F M KX CX (1) 其中:

1112111211121

212221

2221

22???

?

???????

==×??????????????P P A A B B A B P P B B A A (2)

1112111211121

21

2221

22212211111?

?

?

?

???????==×??????????????Q Q A A D D A D Q Q D D A A (3)

1112111211121

2122212221

2222222?

?

?

?

???????==×??????????????R R A A D D A D R R D D A A (4)

11

4, 33226F F ββ=?=? (5)

式中:

22

22

221,261(1), 3211(1),

321226t t t t t t t t ββββββββ???=??+???????????=+??+????????

?

???=??+???????

?

???=??????????

A I G G

B I G G D I G D I G

(6) 11????=??

????I G M K M C 0

(7) 111211121

21222122, ?

?

?

?

?????==??????????A A B B A B B B A A 111211122122212211221, 21122????

==????????

D D D D D D D D D D (8)

在文献[6]中对此算法进行了理论分析和数值模拟对比计算,证明了高阶单步算法精度高于

4()O t ?。当0.5β>时,算法无条件稳定,有算法阻尼;当0.5β=时,算法无条件稳定,无算法阻尼,算法无超越现象。文中选取0.5β=。

1.2 算法用于拟动力试验需解决的问题

拟动力试验需求解的运动方程为()t +MX

()()()t t t +=CX

R F ,恢复力是由试验测得的,而高阶单步法是基于运动方程为()()t t ++MX

CX ()()t t =KX F 推导的,如何由试验测得的恢复力

()t R 来获得高阶单步法求解所需要的刚度矩阵K ,

这是必须优先解决的问题。

无论是介绍力控制还是位移控制或者混合控制的拟动力算法文献,一般都是认为可以每计算一步就做一次试验以便测回所需的对应量。但是,实验系统都存在测量的最低限值,一般模拟控制的作动筒位移精度为千分之一作动筒行程[12],如果作动筒的行程为500mm ,那么作动筒所能控制的位移每一级为0.5mm 。当计算结果不等于允许最低限值倍数时,例如计算结果需要作动筒位移0.75mm 的话,设备根本不可能按计算结果进行预期的“加载”,即使做了试验(0.75mm 的计算位移,作动筒只能行进到0.5mm 或1.0mm 左右)其结果也将是很差的。如何考虑可能需要多步计算才进行一次试验(例如计算结果位移仅需移动0.1mm ,如果走一级0.5mm 位移显然误差太大了),这也是试验算法控制程序必须解决的问题。

1.3 高阶单步算法的基本思路

进行结构拟动力试验时控制实验进行的是力或位移,试验测回的是位移或恢复力。这一对物理量所表明的结构反应是复杂的,恢复力()t R 将是位移()t X 的复杂函数,其关系是未知的。而为了利用高阶单步法进行拟动力试验,如前所述必须要有每计算步的刚度矩阵。为说明本文算法基本思想,以简支梁为例加以说明。设在一组荷载F 作用下,由简支梁力作用点的位移所组成的位移矩阵记为v ,

16 工 程 力 学

不管此梁实际的变形形式如何,从位移等效的原则出发,可以将此梁视作一根两力作用点之间仅发生剪切变形的变截面剪切梁,如果记此等效剪切梁的刚度矩阵为K S ,则从发生变形位移v 而言,此梁的力-位移关系可写为S =K v F 。如果已知荷载F 和位移v ,由此位移关系即可确定此梁各段的等效剪切刚度K S ,i 。

据此等效剪切的概念,以单自由度拟动力试验为例,高阶单步法的基本思想可用图1示意。图1

中11()/()i

S i i i i K r r x x ??=??为下一步计算用的等效剪切刚度,由图1显然可见11i

S

i i K x r ???i S i i K x r =?。第i 步计算用的运动方程为:

i

S i i Mx Cx K x F P ++=+ (9)

式中,11i

i S

i i P K x r

=?i S i i K x r =?。 图1 高阶单步拟动力算法示意

Fig.1 Illustration of the high order single step method

由于系统测量误差,本文对实测刚度进行了修正:a) 考虑结构为软化模型,如果测得刚度比上一步刚度大,则取上步刚度为本步的计算刚度;

b) 如果测得刚度小于上步刚度,且大于上一步刚度

的 0.9 倍,则取实测刚度为本步的计算刚度; c) 如果测得刚度小于上步刚度的0.9倍,则取0.9倍的上步刚度为本步的计算刚度;d) 对于卸载的速度拐点情况,可以根据上步结构速度和本步结构速

度的乘积判断速度拐点,如果为速度拐点,则取初始刚度为本步的计算刚度。

引入上述等效剪切和刚度修正策略的概念后,就可应用高阶单步这一优秀算法来做拟动力试验了。

2 高阶单步拟动力试验算法

拟动力试验的运动方程为:

()()()()t t t t ++=MX CX R F (10) 实验开始时的结构处于线弹性状态,由理论计算或

静力试验获得初始弹性刚度K 0,而(0)R 可用

0(0)K X 表示,由M 、C 、K 0即可计算高阶单步法

的系数矩阵:

11122122??????P P P P , 12122222??

????

Q R Q R (11)

用高阶单步法从初始条件开始解运动方程可得(地震动激励时下式右边最后一项为零):

?01112?021

221

01212122

22? t t t t t t t t t ====?=?=??????=+?????????????????+???????????X X P P X X P P M F Q R Q R M F 1120?122

0?(43)(43)t

t F F F F ??

????×?× ????

×?×??A M F F A M F F (12) 如果试验系统位移最大可能误差记为εX ,则

当?05t ε?X X X ≥(不一定非5倍,目的是保证试验位移具有足够的实现精度)时,按计算所得位移 做实验测得?t t =时刻的恢复力()t R ;否则

?05t ε?X X X ≥后再做试验并测回恢复力(?)t i t =R 。

设t 时刻等效剪切刚度矩阵为S =K K 剪,它可由:

(()(0))(()(0))S t t ?=?K X X R R (13)

也即:

11121212232334

23342111??????????????????????n n n n n n n n S R x x x k R x x x x k R x x x x k k x x x x R x x ??????

????????????+???????????????+==??

????????????

?????+??????????????+?

?????R #%%##求得。根据上述刚度修正策略,如果不发生刚度改变,则仍按原系数矩阵计算;否则,如果发生刚度改变,则重新组装刚度矩阵,重新计算高阶单步法的系数矩阵:

11122122??????P P P P , 121222

22??

????Q R Q R 。

如果初始步就进入非线性(一般很少出现此情

工 程 力 学 17

况),则直接按计算所得位移做实验测得?t t =时刻的恢复力()t R 并求得等效剪切刚度矩阵为S K ,接下来的判别和处理如上所述进行。

如果重新计算了系数矩阵,则由下式解运动方程(已省略地震激励时为零的项): 111221

22t t t t t t ??????????=+????????????X X P P X X P P 1

121212222()()t t t t t t ????????

?+?????????+???

?M F P Q R Q R M F P (14) 式中,t t t S t t t t ??????=?P K X R (t t

S ??K 表示仅刚度改

变层进行修改),可以称为塑性力项。如果位移差不满足试验的位移精度条件,继续用式(14)进行计算。如果位移差(或累积位移差)满足试验的位移精度条件,则按计算所得位移做实验并测回恢复力()t R ,然后由式(13)(?()?()S t t =K X R ,?()t X 是位移差或累积位移差)求得等效剪切刚度矩阵,根据上述刚度修正策略判别是否要重新计算高阶单步法的系数矩阵,如此循环直至试验结束。上述算法描述可用图2

所示控制程序框图来表示。

图2 控制流程图 Fig.2 Control flow graph

3 算例验证

根据上述高阶单步算法流程,本文进行了双线性单自由和两个自由度结构的拟动力数值模拟试验分析。本文采用为Elcentro 地震动记录(S-N),输入峰值加速度为220gal ,时间步长为0.02s ,作为对比的弹塑性地震反应是通过编写弹塑性分析程序计算所得。

算例1、算例2各层恢复力模型均采用如图3的双线性模型,k 1=104 kN/mm ,k 2=0.3k 1,k 3=k 1,层屈服位移均为3mm ,各层质量m =42100kg ,结构的阻尼矩阵C = 0.02K 0(K 0为结构初始刚度矩阵)。

图3 双线型恢复力模型

Fig.3 The bilinear restoring force model

算例 1. 单自由度体系,弹塑性时程分析与拟动力数值模拟结果如图 4 所示(图中给出了前 4s 的结果),从图4中可以看出拟动力数值模拟结果和弹塑性分析结果非常接近。

图4 单自由度结构拟动力数值模拟

Fig.4 The SDOF pseudo-dynamic numerical simulation

算例 2. 两自由度体系,弹塑性时程分析与拟动力数值模拟结果如图 5 所示(图中给出了前 6s 的结果),从图5中可以看出拟动力数值模拟结果和弹塑性分析结果非常接近。

算例 3. 单自由度体系,恢复力模型均采用如图 3的双线性模型,k 1=6×104 kN/mm ,k 2=0.3k 1,k 3=k 1,层屈服位移均为3mm ,各层质量m

= 42000 kg ,结

时间/s

位移/m

18 工 程 力 学

(a) 一层

(b) 二层

图5 两自由度结构拟动力数值模拟

Fig.5 The pseudo-dynamic numerical simulation of

2 DOF structure

(a) 0.005s t ?=

(b) 0.02s t ?=

图6 单自由度体系不同积分步长位移时程曲线

Fig.6 The different integral step displacement history curve of

the SDOF system

构的阻尼矩阵 C = 0。采用不同的积分步长,比较中心差分法与高阶单步的计算结果如图 6(图6中给出了前7s 的结果),从图中看出随着积分步长的增

加,中心差分法的计算结果失真,而高阶单步法的结果几乎不随积分步长的变化而变化。

4 试验实例

4.1 试验结构概况以及计算参数

本试验是在哈尔滨工业大学土木工程学院力学与结构试验中心进行的,试件为三层框支配筋砌块短肢砌体剪力墙足尺模型结构,其底部为一层框架,上部为二层配筋砌块短肢砌体剪力墙,试验模

型以及加载装置如图7所示,水平加载装置为固定在反力墙上的作动器,三层和二层分别采用一个63t 作动器,一层采用一个25t 作动器。

图7 试验模型及加载装置

Fig.7 Testing model and loading device

本次试验采用为Elcentro 地震动记录(S-N),输入峰值加速度为50gal(为了避免进入非线性),时间步长为0.02s ,结构有关计算参数如表1所示。

表1 结构试验计算参数

Table1 The calculation parameters of structure testing

楼层 1 2 3 质量/kg 42100 35200 20400 初始刚度/(kN/mm)

100 302 336

时间/s

位移/m

时间/s

位移/m

位移/m

时间/s

位移/m

时间/s

工 程 力 学 19

4.2 试验结果分析

图8给出了结构各层弹塑性理论计算位移时程和试验位移时程的比较,其中弹塑性理论计算所用层恢复力模型均采用如图3双线性恢复力模型,k 1采用试验的初始刚度,k 2=0.3k 1,k 3=k 1,层屈服位移均为层高的千分之一,各层的质量也采用试验值。从图8中可以看出,理论计算结果和试验结果比较接近。

(a) 一层

(b) 二层

(c) 三层

图8 弹塑性理论计算结果与试验结果的比较曲线 Fig.8 Comparison curve of elastic-plastic theoretical results

and testing results

5 结论

算例的对比分析以及试验表明:

(1) 高阶单步法这种无条件稳定、具有优良算

法阻尼特性、无超越现象的高精度算法,将其应用于拟动力试验的对策:逐段线性化的等效剪切刚度是合理的、可行的。考虑刚度修正策略,能起到预期的抑制误差作用。

(2) 由于是逐段线性化处理,每一计算步内算法谱半径均小于或等于1,因此方法是无条件稳定的。加上试验方案的位移精度控制策略,对提高试验的精度是有益的。

(3) 单自由度和两自由度数值模拟算例分析以及3层足尺拟动力试验结果表明,该算法是可行的、优越的。

综上所述,高阶单步拟动力试验算法是一种无条件稳定、高精度的新算法。 参考文献:

[1] Hakuno M, Shidowara M, Hara T. Dynamic destructive

test of a cantilever beam, controlled by an analog- computer [J]. Transactions of the Japan Society of Civil Engineering, 1969, 171: 1―9.

[2] 邱法维, 钱镓茹, 陈志鹏. 结构抗震实验方法[M]. 北

京: 北京科学出版社, 2000.

Qiu Fawei, Qian Jiaru, Chen Zhipeng. Seismic test methodology for structures [M]. Beijing: Beijing Science Press, 2000. (in Chinese)

[3] 邱法维. 拟动力实验中的数值积分方法[J]. 哈尔滨建

筑工程学院学报, 1994, 27(3): 120―127.

Qiu Fawei. Numerical integration algorithm in pseudo- dynamic testing [J]. Journal of Harbin Architecture and Civil Engineering Institude, 1994, 27(3): 120―127. (in Chinese)

[4] 邱法维. 隐式时间积分方法的拟动力实验[J]. 世界地

震工程, 1995(3): 44―48.

Qiu Fawei. Implicit time integration scheme for pseudo-dynamic testing [J]. World Earthquake Engineering, 1995(3): 44―48. (in Chinese)

[5] 邱法维. 无条件稳定数值积分方法在拟动力实验中的

应用研究[J]. 实验力学, 1997, 12(4): 579―586.

Qiu Fawei. Application of an unconditionally stable numeral integration algorithm in pseudo-dynamic testing [J]. Journal of Experimental Mechanics, 1997, 12(4): 579―586. (in Chinese)

[6] 王焕定, 张永山, 王伟. 非线性结构时程分析的高阶单

步法[J]. 地震工程与工程振动, 1996, 16(3): 48―54. Wang Huanding, Zhang Yongshan, Wang Wei. The high order single step method for seismic response analysis of non-linear structures [J]. Earthquake Engineering and Engineering Vibration, 1996, 16(3): 48―54. (in Chinese)

(参考文献[7]―[12]转第26页)

时间/s

位移/m

试验结果

理论分析结果

时间/s

位移/m

试验结果

理论分析结果

时间/s

位移/m

试验结果

理论分析结果

26 工程力学

Technology Press, 2003. (in Chinese)

[9] Lee J O, Yang Y S, Ruy W S. A comparative study on

reliability-index and target-performance-based probabili-

stic structural design optimization [J]. Computers and Structures, 2002, 80(3): 257―269.

[10] 吴狄, 关鼎. 一种结构可靠性指标的搜索方法[J]. 计

算力学学报, 2005, 22(6): 788―791.

Wu Di, Guan Ding. A search algorithm for structural reliability index [J]. Chinese Journal of Computational

Mechanics, 2005, 22(6): 788―791. (in Chinese)

[11] Cornell C A. A probability-based structural code [J]. ACI

Journal Proceedings, 1969, 66(12): 974―985.

[12] Hasofer A M, Lind N C. Exact and invariant second-

moment code format [J]. Journal of the Engineering

Mechanics Division, 1974, 100(1): 111―121.

[13] Rackwitz R, Fiessler B. Structural reliability under

combined random load sequences [J]. Computers and

Structures, 1978, 9(5): 489―494.

(上接第19页)

[7] 王伟, 张永山, 王焕定. 结构主动控制的一种瞬时最优

算法[J]. 哈尔滨建筑大学学报, 2000, 33(3): 11―13.

Wang Wei, Zhang Yongshan, Wang Huanding. An instantaneous optimal algorithm for structural active control [J]. Journal of Harbin University of Civil Engineering and Architecture, 2000, 33(3): 11―13. (in

Chinese)

[8] 耿淑伟, 王焕定, 王伟. 主动控制中的高阶单步时滞修

正算法[J]. 地震工程与工程振动, 1998, 18(1): 271―

273.

Geng Shuwei, Wang Huanding, Wang Wei. The high order single step time delay compensation algorithm of

the structural active control [J]. Earthquake Engineering

and Engineering Vibration, 1998, 18(1): 271―273. (in

Chinese)

[9] 王伟, 王焕定, 耿淑伟. 高阶单步时滞修正算法主动控

制实验研究[J]. 地震工程与工程震动, 1999, 19(3): 106―108.

Wang Wei, Wang Huanding, Geng Shuwei. High order

single step time-delay compensation method in active control experiment [J]. Earthquake Engineering and Engineering Vibration, 1999, 19(3): 106―108. (in

Chinese)

[10] 李进, 王焕定, 张永山. 高阶单步实时动力子结构试验

技术研究[J]. 地震工程与工程振动, 2005, 25(1): 97―

101.

Li Jin, Wang Huanding, Zhang Yongshan. The research of

a high order single step method for real-time

sub-structure testing [J]. Earthquake Engineering and

Engineering Vibration, 2005, 25(1): 97―101. (in Chinese)

[11] 崔雪娜, 王焕定. 刚度解析表达时高阶单步法的研究

[J]. 地震工程与工程振动, 2006, 26(4): 63―67.

Cui Xuena, Wang Huanding. Research on a high order

single step method for analytic expression of stiffness [J].

Earthquake Engineering and Engineering Vibration, 2006,

26(4): 63―67. (in Chinese)

[12] 李暄, 刘季, 田石柱. 结构拟动力试验力控制实现技术

[J]. 地震工程与工程振动, 1997, 17(1): 49―53.

Li Xuan, Liu Ji, Tian Shizhu. Structural pseudo-dynamic

testing technology by force control [J]. Earthquake Engineering and Engineering Vibration, 1997, 17(1):

49―53. (in Chinese)

岩土工程勘察原位测试标准贯入试验、静力触探试验、动力触探试验操作规程及试验要点.doc

岩土工程勘察原位测试 标准贯入试验、静力触探试验、动力触探试验 现场操作规程 一、标准贯入试验 1. 先用钻具钻至试验土层标高以上0.15m处,清除残土。清孔时应避免试验土层受到扰动。当在地下水位以下的土层进行试验时,应使孔内水位高于地下水位,以免出现涌砂和坍孔。必要时应下套管或用泥浆护臂。 2. 贯入应拧紧钻杆接头,将贯入器放入孔内,避免冲击孔底,注意保持贯入器、钻杆、导向杆联接后的垂直度。孔口宜加导向器,以保证穿心锤中心施力。 注:贯入器放入孔内,测定其深度,要求残土厚度不大于0.1m。 3.采用自动落锤法,将贯入器以每分钟15~30击打入土中0.15m后,开始记录每打入0.10m的锤击数,累计0.30m的锤击数为标准贯入击数N,并记录贯入深度与试验情况。若遇密实土层,贯入0.3吗锤击数超过50击时,不应强行打入,记录50击的贯入深度。 4.旋转钻杆,然后提出贯入器,取贯入器中的土样进行鉴别、描述、记录,并量测其长度。将需要保存的土样仔细包装、编号,以备试验之用。 5.重复以上步骤,进行下一深度的贯入试验,直到所需深度。 二、静力触探试验 1.平整实验场地,设置反力装置。将触探主机对准孔位,调平机座(用分度值为1mm的水准尺校准),并紧固在反力装置上。 2.将已穿入探杆内的传感器引线按要求接到量测仪器上,打开电源开关,预热并调试到正常工作状态。 3.贯入前应试压探头,检查顶柱、锥头、摩擦筒等部件工作是否正常。当测孔隙压力时,应使孔压传感器透水面饱和。正常后将连接探头的探杆插入导向器内,调整垂直并紧固导向装置,必须保证探头垂直贯入土中。启动动力设备并调整到正常工作状态。 4.采用自动记录仪时,应安装深度转换装置,并检查卷纸机构运转是否正常;

动力触探试验方案

梧州环城公路土建3-2工区 动力触探试验方案 编制: 审核: 审批: 检测内容:软基处理段的地基均匀性、密实性及其承载力检测 中国十七冶集团有限公司 2015年10月15日 目录 一、动力触探试验范围 (2) 二、编制依据 (2) 三、检测人员、仪器设备 (2) 四、检测环境 (3) 五、地基承载力要求 (3) 六、检测工作流程 (3) 七、检测中应注意的安全事项 (4) 八、在检测过程中发生异常现象及意外情况时的处理 (5) 九、检验后的检查 (5) 十、原始记录 (5) 十一、数据的分析处理 (6) 十二、检测报告 (6)

十三、附表 (6) 一、试验范围 本标段软基大部分为水田路段,由于长期受到水的浸泡,冲击层粘土呈现软塑饱与状态,形成软土地基,路基填筑后极易形成沉降或不均匀沉降过大,导致路基剪切、滑动破坏等现象,必须对其进行处理后方能填筑路基。本标段软基处理办法有:换填法、水泥搅拌桩法等二种处理手段。 根据设计要求,软基处理正式施工前必须进行现场动力触探试验,以确定水泥搅拌桩桩距与软基换填深度,指导现场施工。动力触探试验适用于进行力学分层,评定土的均匀性与物理性质(状态、密实度)、土的强度、地基承载力、单桩承载力、软硬土层界面、检测地基处理效果。 本工程动力触探试验范围见附表。 二、编制依据 (1)《建筑地基基础设计规范》GBJ7-89 (2)《圆锥动力触探试验规程》YS 5219-2000 三、检测人员、仪器设备 3、1、检测人员:总包试验人员、监理试验人员,我工区试验人员。 3、2、仪器设备:轻便圆锥动力触探仪(探头、触探杆、穿心锤)。 3、2.1仪器设备符合有关标准、规范、与规程要求。

药物代谢动力学完整版

药物代谢动力学完整版 第二章药物体内转运 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代谢酶等在Caco-2细胞中大都也有相同的表达,因此更接近药物在人体内吸收的实际环境,可用于测定药物在细胞内的代谢和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。

标准贯入试验规程(第二稿).

水电水利工程动力触探与标准贯入试验规程 (讨论稿) 二○一○年十一月

1 范围 本标准规定了水电水利工程地质勘察中的动力触探试验、标准贯入试验的工作内容、试验方法和技术要求。 本标准适用于水电水利工程地质勘探中钻内测定覆盖层工程性质的动力触探试验、标准贯入试验,以及对基础处理施工质量的控制和检验。其它行业的同类工作可参照执行。

2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本适用于本标准。 GB12746-2007 工试验仪器贯入仪 GB/T15406—94 土工仪器的基本参数及通用技术条件第二篇:原位测试仪器 DL/T5013 水电水利工程钻探规程 DL/T5125 水电水利岩土工程施工及岩体测试造孔规程 DL/T5355—2006 水电水利工程土工试验规程

3 总则 3.0.1 为规范水电水利工程动力触探试验、标准贯入试验方法,提高试验成果质量,正确反映水电水利工程场地岩土的工程地质特性参数,制定本标准。 3.0.2 动力触探试验、标准贯入试验应与钻探配合进行。 3.0.3 配合试验用的钻孔,除应符合试验的专门要求外,还应符合DL/T5013 、DL/T5125的要求。 3.0.4 钻孔动力触探试验、标准贯入试验对象应具有代表性。试验内容、试验布置、试验条件应符合水电水利工程勘测、设计、施工以及质量控制、检验的基本要求和特性。 3.0.5 试验成果分析时,应注意仪器设备、试验方法、试验条件、土层分布等对试验的影响。当需要估算土的工程特性参数和对工程问题作出评价时,应与室内和现场土工试验成果对比,并结合地层条件和地区经验综合考虑。 3.0.6 动力触探试验、标准贯入试验除应执行本规程外,尚应符合国家和本行业现行的有关标准、规范的规定。

中国药科大学药物代谢动力学实验考查知识点整理

中国药科大学药物代谢动力学实验考查知 识点整理 药物代谢动力学实验考查知识点整理 第一部分:HPLC使用注意事项 1、HPLC组成:泵、进样器、色谱柱、检测器、数据系统/积分仪 2、反相色谱: 分离机理:“反相色谱”固定相极性小于流动相极性常用流动相:乙腈、甲醇,水 3、色谱柱的分类: 按填料:球形、无定形按含碳量:C18、C8 按应用:分析柱、制备柱、预处理柱按粒径:150mm*,5μm等按填料类型:正相柱、反相柱、手性柱 4、键合相色谱柱的优缺点: 优点:稳定不易流失; 应用广泛,可使用多种溶剂;消除硅羟基的不良影响; 缺点:pH得在3~8范围内 5、C18柱的活化:90% 10% 90%的甲醇溶液1ml/min依次冲洗30min 6、流动相: 使用之前需超声脱气目的:色谱泵输液准确提高检测性能 保护色谱柱

流动相脱气的方法:加热,抽真空,超声,通惰性气体流动相组成:流动相配置: 缓冲溶液现用现配,不要储存时间过长,避免pH值发生变 化和成分分解,影响色谱分离的效果; 有机溶液和缓冲液使用前均需经μm微孔滤膜过滤;流动相使用前脱气。 7、常用定量方法:外标法内标法内标物的要求: 化学结构与待测品相似;样品中不存在; 不与样品组分发生化学反应;保留值与待测值接近;浓度相当;与其他色谱峰分离好 8、样品的预处理: 目的:除杂质;浓缩微量成分;改善分离;保护色谱柱;提 高检测灵敏度 方法:高速离心,过滤,选择性沉淀,衍生反应;液固萃取、 液液萃取 沉淀蛋白的溶剂: 有机溶剂:乙腈、甲醇强酸:三氯乙酸、过氯酸盐:50%硫酸铵、10%TCA 分析测定用试剂为色谱纯及以上,水为超纯水第二部分:实验设计

圆锥动力触探试验实施细则

圆锥动力触探试验实施细则 1、依据标准 GB50007-2011 《建筑地基基础设计规范》 GB50021-2001 《岩土工程勘察规范》 JGJ340-2015 《建筑地基检测技术规范》 2、检测目的 2.1轻型动力触探试验适用于评价黏性土、粉土、粉砂、细砂地基及其人工地基的地基土性状、地基处理效果和判定地基承载力。 2.2 重型动力触探试验适用于评价黏性土、粉土、砂土、中密以下的碎石土及其人工地基以及极软岩的地基土性状、地基处理效果和判定地基承载力;也可用于检验砂石桩和初凝状态的水泥搅拌桩、旋喷桩、灰土桩、夯实水泥土桩、注浆加固地基的成桩质量、处理效果以及评价强夯置换效果及置换墩着底情况。 2.3超重型动力触探试验适用于适用于评价密实碎石土、极软岩和软岩等地基土性状和判定地基承载力,也可用于评价强夯置换效果及置换墩着底情况。 3.检测设备及其安装 3.1圆锥动力触探试验的设备应符合表1的规定。 表1 圆锥动力触探试验设备规格

3.2重型及超重型圆锥动力触探的落锤应采用自动脱钩装置。 3.3触探杆应顺直,每节触探杆相对弯曲宜小于0.5%,丝扣完好无裂纹。当探头直径磨损大于2mm或锥尖高度磨损大于5mm时应及时更换探头。 4.现场检测 4.1圆锥动力触探试验应采用自由落锤,地面上触探杆高度不宜超 过1.5m,并应防止锤击偏心、探杆倾斜和侧向晃动。 4.2锤击贯入应连续进行,锤击速率宜为(15~30)击/min。 4.3每贯入1m,应将探杆转动一圈半;当贯入深度超过10m,每贯入 20cm宜转动探杆一次。 4.4应及时记录试验段深度和锤击数。轻型动力触探记录每贯入30cm 的锤击数,重型及超重型动力触探记录每贯入10cm的锤击数。 4.5对轻型动力触探,当贯入30cm锤击数大于100击或贯入15cm 的锤击数超过50击时,可停止试验。 4.6对重型动力触探,当连续三次锤击数大于50击时,可停止试验或 改用钻探、超重型动力触探;当遇有硬夹层时,宜穿过硬夹层后继续试验。 5.检测数据分析与判定 5.1重型及超重型动力触探锤击数应按JGJ340-2015《建筑地基检测 技术规范》附录C的规定进行修正。 5.2单孔连续圆锥动力触探试验应绘制锤击数与贯入深度关系曲线。 5.3计算单孔分层贯入指标平均值时,应剔除临界深度以内的数值 以及超前和滞后影响范围内的异常值。 5.4应根据各孔分层的贯入指标平均值,用厚度加权平均法计算场 地分层贯入指标平均值和变异系数。

动力触探最新规范

公路工程地基承载力测试方法使用规范的说明 2009年4月1日实施的中华人民共和国国家标准GB/T 50480-2008《冶金工业岩土勘察原位测试规范》总则1.0.2规定:本规范适用于冶金工业建设项目岩土工程勘察中的原位测试,其他行业同类工作可按本规范执行。目前该规范是我国最新提到使用动力触探试验来测试地基承载力的国家标准,交通部对于桥涵地基承载力—动力触探试验方法还未有标准作详尽说明,为遵循“国标-行标-地标”原则,在无行标、地标的情况下,公路工程地基承载力亦可按此规范试验方法执行。 一、现将《冶金工业岩土勘察原位测试规范》动力触探试验规程摘录如下: 7 动力触探试验 7.1 一般规定 7.1.1 动力触探试验适用于判定一般黏性土、砂类土、碎石类土、极软岩层的物理力学特性。 7.1.2 轻型动力触探可用于评价一般黏性土、砂类土和素填土的地基承载力;重型和超重型动力触探可用于评价砂类土、碎石类土、极软岩的地基承载力及测定砾石土、卵(碎)石土的变形模量。 7.1.3 动力触探试验孔数应结合场地大小和场地地基的均匀程度确定,同一场地主要岩土单元的有效测试数据不应小于3孔位。 7.2 试验设备

7.1.2 动力触探试验设备应包括落锤、座垫及导杆、触探杆和探头等机件。各类型动力触探试验机件的规格和加工要求应符合本规范附录D图D.0.2、表D.0.2的规定。 7.2.2 探头应采用高强度钢材制作,表面淬火后硬度应满足HRC=45~50。 7.2.3 落锤应采用圆柱形,其中心通孔直径应比导杆外径大3~4mm,重型和超重型动力触探试验设备须配备自动落锤装置。 7.2.4 重型和超重型动力触探的座垫直径应不小于100cm,且不大于落锤底面直径的一半;导杆长度应符合试验锤击标准落距的要求,座垫和导杆的总质量不应超过25Kg。 7.2.5 探杆接头与探杆应有相同的外径,接头连接容许偏心度为0.5%。 7.2.6 探头直径磨损不得大于2mm,锥尖高度磨损不得大于5mm。 7.3 试验方法 7.3.1 轻型动力触探试验应符合下列规定: 1 试验标准贯入量为30cm,落锤应按标准落距自由下落,记录每贯入10cm的锤击数;累计记录贯入30cm的锤击数N10。 2 试验应先用钻探设备钻至试验土层的顶面以上0.3m 处,然后进行连续贯入试验。 3 当贯入30cm的击数超过100击或贯入15cm的击数超过50击时,可终止试验。 7.3.2 重型、超重型动力触探试验应符合下列规定:

动力触探试验

动力触探试验 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第四节动力触探试验 一、概述 动力触探(DynamicPenetrationTest简称DPT)是利用一定的落锤能量,将一定尺寸、一定形状的探头打入土中,根据打入的难易程度(可用贯入度、锤击数或单位面积动贯入阻力来表示)判定土层性质的一种原位测试方法。可分为圆锥动力触探和标准贯入试验两种。 圆锥动力触探(DPT)是利用一定的锤击能量,将一定的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。通常以打入土中一定距离所需的锤击数来表示土的阻抗,也有以动贯入阻力来表示土的阻抗。圆锥动力触探的优点是设备简单、操作方便、工效较高、适应性强,并具有连续贯入的特性。对难以取样的砂土、粉土、碎石类土等,对静力触探难以贯入的土层,圆锥动力触探是十分有效的勘探测试手段。圆锥动力触探的缺点是不能采样对土进行直接鉴别描述,试验误差较大,再现性差。 如将探头换为标准贯入器,则称标准贯入试验(StandardPenetrationTest简称SPT)。利用动力触探试验可以解决如下问题: 1)划分不同性质的土层。当土层的力学性质有显着差异,而在触探指标上有显着反映时,可利用动力触探进行分层和定性地评价土的均匀性,检查填土质量,探查滑动带、土洞和确定基岩面或碎石土层的埋藏深度等。 2)确定土的物理力学性质。确定砂土的密实度和黏性土的状态,评价地基土和桩基承载力,估算土的强度和变形参数等。 二、适用范围 动力触探和标准贯入试验的适用范围见表7-10 三、圆锥动力触探 (一)动力触探类型及规格 根据《岩土工程勘察规范》(GB50021-2001)的规定,圆锥动力触探试验的类型可分为轻型、重型和超重型三种。其规格和适用土类应符合表7-11的规定。 (二)技术要求 根据《岩土工程勘察规范》的规定,圆锥动力触探试验技术要 求应符合下列规定:

非那西丁药代动力学研究实验报告分析

非那西丁的药代动力学研究实验报告 一.概述: 非那西丁(Phenacetin)为一种解热镇痛药,因为潜在副作用在临床已基本不使用。但由于其是CYP1A2酶的特异性底物,被广泛选择作为底物用于酶活性测定实验以及影响酶活性作用药物的研究。本学期临床药代动学实验课以非那西丁在大鼠体内的代谢实验、大鼠肝微粒体温孵实验两部分为例,通过实验设计,实验操作,结果评价等一系列过程,系统地学习了药代动力学中药物体内外的简单研究方法、实验数据的处理、以及相关药动学参数的计算与评价。 二.正文 1.非那西丁在大鼠体内的药代动力学研究 1.1实验目的 研究非那西丁在大鼠体内代谢的药代动力学,学习大鼠眼底静脉丛取血等操作。 1.2实验材料与方法 仪器:HPLC-UV色谱仪,高速冷冻离心机,涡旋振荡器; HPLC色谱条件:检测波长:254nm 色谱柱:inertsil-ODS-SP,5um,4.6*150mm 流速:1.0ml/min 柱温:40℃ 流动相:40(乙腈):60(50mM磷酸盐缓冲液)(注:50mM磷酸盐缓冲液配制:6.8g磷酸二氢钾,加入150ml氢 氧化钠溶液(0.1M),配制成1L的磷酸盐缓冲液) 试剂:非那西丁注射剂,对乙酰氨基酚标准品,肝素钠,10%高氯酸; 实验动物:雄性大鼠,180g—220g 1.3实验步骤 1.3.1标准曲线的制备:取空白血浆,加入对乙酰氨基酚标准品,使其 浓度分别为0.156,0.313,0.625,1.25,2.50,5.00,10.00ug/ml。在给定的色谱条件下进行HPLC分析,以样品的峰面积对样品浓度进行线性回归。 1.3.2给药及血浆采集处理:取大鼠一只,尾静脉注射非那西丁 (10mg/kg)后,分别于0,5,10,15,30,45,60,90,120min于尾静脉取血

药物代谢动力学实验讲义

实验一药酶诱导剂及抑制剂对 戊巴比妥钠催眠作用得影响 【目得】 以戊巴比妥钠催眠时间作为肝药酶体内活性指标,观察苯巴比妥及氯霉素对戊巴比妥钠催眠作用得影响,从而了解它们对肝药酶得诱导及抑制作用。 【原理】 苯巴比妥为肝药酶诱导剂,可诱导肝药酶活性,使戊巴比妥钠在肝微粒体得氧化代谢加速,药物浓度降低,表现为戊巴比妥钠药理作用减弱,即催眠潜伏期延长,睡眠持续时间缩短。而氯霉素则为肝药酶抑制剂,能抑制肝药酶活性,导致戊巴比妥钠药理作用增强,即催眠潜伏期缩短,睡眠持续时间延长。 【动物】 小白鼠8只,18~22g 【药品】 生理盐水、0、75%苯巴比妥钠溶液、0、5%氯霉素溶液、0、5%戊巴比妥钠溶液【器材】 天平、鼠笼、秒表、注射器1 ml×4、5号针头×4 【方法与步骤】 一、药酶诱导剂对药物作用得影响 1、取小鼠4只,随机分为甲、乙两组。甲组小鼠腹腔注射0、75%苯巴比妥钠溶液0、1 ml/10g,乙组小鼠腹腔注射生理盐水0、1 ml/10g,每天1次,共2天。 2、于第三天,给各小鼠腹腔注射0、5%戊巴比妥钠溶液0、1 ml/10g,观察给药后小鼠得反应。记录给药时间、翻正反射消失与恢复得时间,计算戊巴比妥钠催眠潜伏期及睡眠持续时间。 二、药酶抑制剂对药物作用得影响 1、取小鼠4只,随机分为甲、乙两组。甲组小鼠腹腔注射0、5%氯霉素溶液0、1 ml/10g;乙组小鼠腹腔注射生理盐水0、1 ml/10g。 2、30分钟后,给各小鼠腹腔注射0、5%戊巴比妥钠溶液0、1 ml/10g,观察给药后小鼠得反应。记录给药时间、翻正反射消失与恢复得时间,计算戊巴比妥钠催眠潜伏期及睡眠持续时间。 【统计与处理】 以全班结果(睡眠持续时间,分)作分组t检验,检验用药组与对照组有无显著性差异。(参见“数理统计在药理学实验中得应用”) 【注意事项】 1、催眠潜伏期为开始给药到动物翻正反射消失得间隔时间,睡眠持续时间为翻正反射消失至恢复得间隔时间。 2、本实验过程中,室温不宜低于20 C,否则戊巴比妥钠代谢减慢,使动物不易苏醒。 3、氯霉素溶液有结晶析出时可在水浴中加热溶解。 4、吸取氯霉素溶液得注射器应预先干燥,否则易结晶堵塞针头。

动力触探试验实施方案

动力触探试验方案

————————————————————————————————作者:————————————————————————————————日期:

梧州环城公路土建3-2工区 动力触探试验方案 编制: 审核: 审批: 检测内容:软基处理段的地基均匀性、密实性及其承载力检测 中国十七冶集团有限公司 2015年10月15日

目录 一、动力触探试验范围 (5) 二、编制依据 (5) 三、检测人员、仪器设备 (5) 四、检测环境 (6) 五、地基承载力要求 (6) 六、检测工作流程 (6) 七、检测中应注意的安全事项 (7) 八、在检测过程中发生异常现象及意外情况时的处理 (8) 九、检验后的检查 (8) 十、原始记录 (8) 十一、数据的分析处理 (9) 十二、检测报告 (9) 十三、附表 (10)

一、试验范围 本标段软基大部分为水田路段,由于长期受到水的浸泡,冲击层粘土呈现软塑饱和状态,形成软土地基,路基填筑后极易形成沉降或不均匀沉降过大,导致路基剪切、滑动破坏等现象,必须对其进行处理后方能填筑路基。本标段软基处理办法有:换填法、水泥搅拌桩法等二种处理手段。 根据设计要求,软基处理正式施工前必须进行现场动力触探试验,以确定水泥搅拌桩桩距和软基换填深度,指导现场施工。动力触探试验适用于进行力学分层,评定土的均匀性和物理性质(状态、密实度)、土的强度、地基承载力、单桩承载力、软硬土层界面、检测地基处理效果。 本工程动力触探试验范围见附表。 二、编制依据 (1)《建筑地基基础设计规范》GBJ7-89 (2)《圆锥动力触探试验规程》YS 5219-2000 三、检测人员、仪器设备 3.1、检测人员:总包试验人员、监理试验人员,我工区试验 人员。 3.2、仪器设备:轻便圆锥动力触探仪(探头、触探杆、穿心锤)。

动力触探仪检测地基承载力试验方法

动力触探仪检测地基承载力试验方法 1、静力触探试验: 指通过一定的机械装置,将某种规格的金属触探头用静力压、静力触探试验入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。(多为设计单位采用) 。 2、动力触探试验: 指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土。 动力触探仪分为: 轻型触探仪、重型触探仪及超重型触探仪三类。目前承建单位一般选用轻型和重型。 ①轻型触探仪适用于: 砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石) ,轻型触探仪设备轻便,操作简单,省人省力,记录每打入30cm 的锤击次数,代用公式为: R=(0.8×N-2)×9.8 (1) R-地基容许承载力 Kpa ,N-轻型触探锤击数。 ②重型触探仪适用于: 各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为 63.5kg 的穿心锤,以 76cm 的落距,将触探头打入土中,记录打入 10cm 的锤击数,代用公式为: y=35.96x+23.8 (2) y-地基容许承载力 Kpa , x-重型触探锤击数。 3、标准贯入试验:

标准贯入仪试验是动力触探类型之一,其利用质量为 63.5kg 的标准贯入试验:穿心锤,以 76cm 的恒定高度上自由落下,将一定规格的触探头打入土中 15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中 30 cm,用此 30cm 的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。锤击数(N) 的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法 轻型动力触探 轻型圆锥动力触探是利用一定的锤击能量(锤重10kg),将一定规格的圆锥探头打入土中,根据贯入锤击数判别土层的类别,确定土的工程性质,对地基土做出综合评价。 目录 1 前言 2 工程概况 3 轻型动力触探检测方法 4 资料整理及成果应用 5 结语 1 前言 2 工程概况 3 轻型动力触探检测方法 4 资料整理及成果应用 5 结语 1 前言 由于轻型圆锥动力触探设备简单,使用方便,可用于以下几方面的工作:

重型动力触探试验方式

3.2.6.4动力触探试验 圆锥动力触探适用于强风化、全风化的硬质岩石,各种软质岩石及各类土。根据锤击能量可按表3-33分为轻型、重型和超重型三种。 表3-33 圆锥动力触探类型 类型轻型重型超重型 锤的质量(kg) 10±0.2 63.5±0.5 120±1 落距(cm) 50±2 76±2 100±2 直径(mm) 40 74 74 锥角(°) 60 60 60 探杆直径(mm) 25 42 50~60 深度(cm) 30 10 10 锤数 N10 N63.5 N120 (1)轻型动力触探(N10)试验: 适用于深度小于4m的一般粘性土、粘性素填土和砂土层。 A.试验设备: 轻型动力触探设备主要由圆锥探头、触探杆、穿心落锤三部分组成(图3-6 ),落锤升降由人工操纵。 图3-6 轻型动力触探试验设备示意图 1.穿心杆 2.穿心锤 3.锤垫 4.触探杆 5.探头

B.试验步骤: (a)探头贯入土层之前,先在触探杆上标出从锥尖起向上每30cm的位置。 (b)一人将触探杆垂直扶正,另一人将10Kg穿心锤从锤垫顶面以上50cm处自由落体放下, 锤击速度以每分钟15-30击为宜。 (c)记录每贯入土层30cm的锤击数N10′(击/30cm)。 (d)为避免因土对触探杆的侧壁摩檫而消耗部分锤击能量,应采用分段触探的办法,即贯入一段距离后,将锥尖向上拔,使探孔壁扩径,再将锥尖打入原位置,继续试验。或每贯入10cm,转动探杆一圈。(e)当N10′>100或贯入15cm锤击数超过50时,可停止试验。C.资料整理: (a)轻型动力触探由于贯入深度浅,可不作杆长修正,即N10′= N10。(b)绘制轻型动力触探击数N10与深度h的关系曲线(图3-7)。 图3-7 轻型动力触探击数N10与深度h的关系曲线 D.试验成果的应用: 确定地基承载力特征值fa, 见表3-34、3-35及3-36。 表3-34 一般粘性土承载力特征值fa与N10的关系 N10(击/30cm) 15 20 25 30 fa(Kpa) 105 145 190 230

山东大学期末考试药物代谢动力学模拟卷答案

药物代谢动力学模拟卷 1 、名词解释 1. 生物等效性:生物等效性评价是指同一种药物的不同制剂在相同实验条件下,给予相同的剂量,判断其吸收 速度和程度有无显着差异的过程。 2. 生物半衰期:简称血浆半衰期,系指药物自体内消除半量所需的时间,以符号以符号 T1/2表示。 3. 达坪分数:是指n 次给药后的血药浓度 Cn 于坪浓度Css 相比,相当于坪浓度 Css 的分数,以fss 表示fss=Cn/Css? 4. 单室模型:各种药动学公式都是将机体视为一个整体空间,假设药物在其中转运迅速,瞬时达到分布平衡的 条件下推导而得的。 5?临床最佳给药方案:掌握影响抗生素疗效的各种因素。如果剂量太小,给药时间间隔过长,疗程太短,给药 途径不当,均可造成抗生素治疗的失败。为了确保抗生素的疗效,不仅应该给予足够的药物总量, 而且要掌握适? 当地给药时间间隔和选用适当的给药途径。 二、解释下列公式的药物动力学意义 1. C -^^(1 V c k io 二室模型静脉滴注给药,滴注开始后血药浓度与时间 t 的关系。 k 2. lg (X u X u ) ——t IgX u 2.303 单室模型静脉注射给药,以尚待排泄的原形药物量(即亏量)的对数与时间 药物以非线性过程消除,且在体内呈单室模型特征时,静脉注射后,其血药浓度曲线下面积与剂量 X0的关系。 单室模型血管外给药负荷剂量与给药周期的关系。 三、回答下列问题 1. 缓控释制剂释放度测定至少需几个时间点?各时间点测定有何基本要求?有何意义? C ss X 。 kt V(1 e k ) t 的关系。? 多剂量给药时,按一定剂量、一定给药时间间隔、多剂量重复给药,当 n 充分大时,稳态血药浓度(或坪浓度) 与时间t 的关系。 4. AUC X o V m V (k m X o 2V k 10 e X 。 k k X 0 (1 e k )(1 e a )

轻型动力触探试验方法

轻型动力触探试验方法文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

轻型动力触探试验方案 (一)试验目的 1)提供浅基础地基承载力; 2)检验基底是否存在下卧软层。 (二)试验依据 1、《建筑地基基础设计规范》(GB50007-200 2、DBJ15-31-2003); 2、《建筑地基基础处理技术规范》JGJ79-2002; 3、《岩土工程勘察规范》GB50021-2001; 4、《建筑地基基础工程施工质量验收规范》GB50202-2002。 (三)试验基本原理和技术要求 采用自由落锤以15~30击/min的锤击速率连续锤击贯入,每贯入1m,将探杆转动一圈半,轻型动力触探锤的落距为50cm。 轻型动力触探记录每贯入30cm的锤击数( N)。 10 对轻型动力触探,当 N>100或贯入15cm的锤击数超过50时,可终止试验。 10 (四)试验数据分析与判定 根据不同深度的动力触探锤击数,采用平均值法计算每个检测孔的动力触探锤击数代表值。 参照表1,根据轻型动力触探锤击数标准值,推定地基(土)承载力特征值。 表1N轻型动力触探试验推定地基承载力特征值f(kPa) (五)试验要点 (1)首先根据场地情况进行选点开挖,挖至勘察设计确定的持力层,然后对该持力层进行连续触探。

(2)将探头和探杆安装好,保持探杆垂直,然后连续向下贯击,穿心锤落距为 50.0±2.0cm,使其自由下落。在基底轻型触探试验表内记录打入土层中30cm所需锤击数(N10),在地层较硬、锤击数较多时,采用分段记录,以每贯入10cm记录一次相应的锤击数,整理资料时按30cm所需的击数作为指标。 (3)遇密实坚硬土层,当贯入30cm所需锤击数超过50击时或贯入10cm所需锤击数超过30击时,即停止测试。 (4)本试验方法试用宇深度小于4米的土层。

动力触探仪检测地基承载力试验方法

轻型动力触探仪检测地基承载力试验方法 1、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。 2、动力触探仪分为:轻型触探仪、重型触探仪及超重型触探仪三类。我们所选取的轻型触探仪适用于:砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石) 轻型触探仪设备轻便,操作简单,省人省力,记录每打入30cm 的锤击次数,代用公式为:R=(0.8N-2)*10 R-地基容许承载力Kpa N-轻型触探锤击数。 3 轻型动力触探检测方法及试验要点 (1)轻型触探仪要符合YS5219-2000《圆锥动力触探试验规程》要求,并报现场监理确认。 (2)首先开挖基础,挖至勘察设计确定的标高(或持力层),然后按基础样式合理布置探孔,对该持力层进行连续触探。 (3)探孔设置: 一般房屋:独立基础按基础每个基础都应布置探孔;条形基础一般按长度方向6-8m距离布置探孔,位置宜在外墙转角出、内外墙交接出、纵横墙交接处,但单栋房屋总探孔数不得少于6个。 货物仓库:每个独立基础都应布置不少于4个探孔。 具体位置可与现场监理协商。 (4)将探头和探杆安装好,保持探杆垂直,然后连续向下贯击,触探杆最大偏斜度不应超过2%,锤击贯入应连续进行;同时防止锤击偏心、探杆倾斜和侧向晃动,保持探杆垂直度。 (5)穿心锤落距为50.0±2.0cm,使其自由下落,锤击速率每分钟宜

为15~30 击,每贯入1m,宜将探杆转动一圈半。在基底轻型触探仪试验记录表内记录打入土层中30cm所需锤击数(N10),在地层较硬、锤击数较多时,采用分段记录,以每贯入10cm记录一次相应的锤击数,整理资料按30cm所需的击数作为指标计算。 (6)遇密实坚硬土层,当贯入30cm所需锤击数超过50击时或贯入10cm 所需锤击数超过30击时,即停止测试。 (7)触探深度要求 一般房屋:探孔深度不少于150cm 货物仓库:探孔深度不少于240cm 4 资料整理 (1)基坑触探时要有现场监理工程师旁站见证,锤击数要经现场监理和我方管理人员共同确认。 (2)每完成一次轻型触探后,在现场及时核对所记录的锤击数及深度是否有错漏,去掉不合理的特异值。 (3)轻型触探不考虑杆长修正,根据每贯入30 cm所需的锤击计算出相应土层的承载力。 5、注意事项 基础开挖后要及时进行触探,淋雨和暴晒将严重影响表层土的触探结果。当基槽开挖到位经触探合格,报监理单位验收确认后,应立即浇筑混凝土垫层,避免基槽积水,尤其是雨季施工,应充分做好排水措施,确保地基承载力的发挥。

药物代谢动力学完整版

药物代动力学完整版 第二章药物体转运 肾脏排泄药物及其代物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代酶等在Caco-2细胞都也有相同的表达,因此更接近药物在人体吸收的实际环境,可用于测定药物在细胞的代和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。

岩土工程勘察原位测试标准贯入试验、静力触探试验、动力触探试验操作规程及试验要点

岩土工程勘察原位测试 标准贯入试验、静力触探试验、动力触探试验 现场操作规程
一、标准贯入试验 1. 先用钻具钻至试验土层标高以上 0.15m 处,清除残土。清孔时应避免试 验土层受到扰动。 当在地下水位以下的土层进行试验时,应使孔内水位高于地下 水位,以免出现涌砂和坍孔。必要时应下套管或用泥浆护臂。 2. 贯入应拧紧钻杆接头,将贯入器放入孔内,避免冲击孔底,注意保持贯 入器、 钻杆、 导向杆联接后的垂直度。 孔口宜加导向器, 以保证穿心锤中心施力。 注:贯入器放入孔内,测定其深度,要求残土厚度不大于 0.1m。 3. 采用自动落锤法, 将贯入器以每分钟 15~30 击打入土中 0.15m 后, 开始记 录每打入 0.10m 的锤击数, 累计 0.30m 的锤击数为标准贯入击数 N, 并记录贯入 深度与试验情况。若遇密实土层,贯入 0.3 吗锤击数超过 50 击时,不应强行打 入,记录 50 击的贯入深度。 4. 旋转钻杆,然后提出贯入器,取贯入器中的土样进行鉴别、描述、记录, 并量测其长度。将需要保存的土样仔细包装、编号,以备试验之用。 5. 重复以上步骤,进行下一深度的贯入试验,直到所需深度。 二、静力触探试验 1. 平整实验场地,设置反力装置。将触探主机对准孔位,调平机座(用分度 值为 1mm 的水准尺校准) ,并紧固在反力装置上。 2. 将已穿入探杆内的传感器引线按要求接到量测仪器上, 打开电源开关, 预 热并调试到正常工作状态。 3. 贯入前应试压探头,检查顶柱、锥头、摩擦筒等部件工作是否正常。当测 孔隙压力时, 应使孔压传感器透水面饱和。正常后将连接探头的探杆插入导向器 内,调整垂直并紧固导向装置,必须保证探头垂直贯入土中。启动动力设备并调 整到正常工作状态。 4. 采用自动记录仪时, 应安装深度转换装置, 并检查卷纸机构运转是否正常;

重型动力触探试验方式培训资料

重型动力触探试验方 式

3.2.6.4动力触探试验 圆锥动力触探适用于强风化、全风化的硬质岩石,各种软质岩石及各类土。根据锤击能量可按表3-33分为轻型、重型和超重型三种。表3-33 圆锥动力触探类型 类型轻型重型超重型 锤的质量(kg) 10±0.2 63.5±0.5 120±1 落距(cm) 50±2 76±2 100±2 直径(mm) 40 74 74 锥角(°) 60 60 60 探杆直径(mm) 25 42 50~60 深度(cm) 30 10 10 锤数 N10 N63.5 N120 (1)轻型动力触探(N10)试验: 适用于深度小于4m的一般粘性土、粘性素填土和砂土层。 A.试验设备: 轻型动力触探设备主要由圆锥探头、触探杆、穿心落锤三部分组成(图3-6 ),落锤升降由人工操纵。 图3-6 轻型动力触探试验设备示意图 1.穿心杆 2.穿心锤 3.锤垫 4.触探杆 5.探头

B.试验步骤: (a)探头贯入土层之前,先在触探杆上标出从锥尖起向上每30cm 的位置。 (b)一人将触探杆垂直扶正,另一人将10Kg穿心锤从锤垫顶面以上50cm处自由落体放下, 锤击速度以每分钟15-30击为宜。 (c)记录每贯入土层30cm的锤击数N10′(击/30cm)。 (d)为避免因土对触探杆的侧壁摩檫而消耗部分锤击能量,应采用分段触探的办法,即贯入一段距离后,将锥尖向上拔,使探孔壁扩径,再将锥尖打入原位置,继续试验。或每贯入10cm,转动探杆一圈。 (e)当N10′>100或贯入15cm锤击数超过50时,可停止试验。C.资料整理: (a)轻型动力触探由于贯入深度浅,可不作杆长修正,即N10′= N10。 (b)绘制轻型动力触探击数N10与深度h的关系曲线(图3-7)。 图3-7 轻型动力触探击数N10与深度h的关系曲线 D.试验成果的应用: 确定地基承载力特征值fa, 见表3-34、3-35及3-36。 表3-34 一般粘性土承载力特征值fa与N10的关系

动力触探试验

第四节动力触探试验 一、概述 动力触探(Dynamic Penetration Test 简称DPT)是利用一定的落锤能量,将一定尺寸、一定形状的探头打入土中,根据打入的难易程度(可用贯入度、锤击数或单位面积动贯入阻力来表示)判定土层性质的一种原位测试方法。可分为圆锥动力触探和标准贯入试验两种。 圆锥动力触探(DPT)是利用一定的锤击能量,将一定的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。通常以打入土中一定距离所需的锤击数来表示土的阻抗,也有以动贯入阻力来表示土的阻抗。圆锥动力触探的优点是设备简单、操作方便、工效较高、适应性强,并具有连续贯入的特性。对难以取样的砂土、粉土、碎石类土等,对静力触探难以贯入的土层,圆锥动力触探是十分有效的勘探测试手段。圆锥动力触探的缺点是不能采样对土进行直接鉴别描述,试验误差较大,再现性差。 如将探头换为标准贯入器,则称标准贯入试验(Standard Penetration Test简称SPT)。利用动力触探试验可以解决如下问题: 1)划分不同性质的土层。当土层的力学性质有显著差异,而在触探指标上有显著反映时,可利用动力触探进行分层和定性地评价土的均匀性,检查填土质量,探查滑动带、土洞和确定基岩面或碎石土层的埋藏深度等。 2)确定土的物理力学性质。确定砂土的密实度和黏性土的状态,评价地基土和桩基承载力,估算土的强度和变形参数等。 二、适用范围 动力触探和标准贯入试验的适用范围见表7-10

三、圆锥动力触探 (一)动力触探类型及规格 根据《岩土工程勘察规范》(GB50021-2001) 的规定,圆锥动力触探试验的类型可分为轻型、重型和超重型三种。其规格和适用土类应符合表7-11 的规定。 (二)技术要求 根据《岩土工程勘察规范》的规定,圆锥动力触探试验技术要 求应符合下列规定: 1)采用自动落锤装置。 2)触探杆最大偏斜度不应超过2%,锤击贯入应连续进行;同时防止锤击偏心、探杆倾斜和侧向晃动,保持探杆垂直度;锤击速率每

动力触探试验检测地基承载力作业指导书

动力触探试验检测地基承载力作业指导书 一目的和适用范围及标准 本试验根据锤击能量分为轻型、重型和超重型3种。轻型动力触探适用于一般粘质土及素填土;重型动力触探适用于中、粗、砂砾和碎石土;超重型适用于卵石、砾石类土。一般用于确定各类土的容许承载力;还可用于划分土的力学分层、评价土层的均匀程度和确定桩基持力层。 试验依据《岩土工程勘察规范》(GB50021—2001) 二试验设备 试验设备由落锤、探杆、探头组成,具体规格见下表 三试验原理 是用一定质量的重锤,以一定高度的自由落距,将标准规格的圆锥形探头贯入土中,根据打入土中一定的距离所需的锤击数,判定土的力学特性,具有勘探和测试双重功能。 四试验步骤

(1)采用自由落锤方法;落距须严格控制在50cm。(规范没有找到) (2)轻型触探作业,先用轻便钻具钻至试验土层标高,然后对土层连续进行触探,使穿心锤自由落下将触探杆竖直打入土层中,记录每打入土层30cm的锤击数N10。当贯入30cm 的锤击数超过90 击或当贯入15cm 锤击数超过45 击时,可停止试验,并记录45 击的实际贯入深度,按下式换算成相当于30cm 的标准试验击数。 N10=30×45/△S 式中:△S——45 击时的贯入度(cm); N10——贯入30cm 的锤击数。 (3)重型触探作业,当连续三次N63.5>50 时,可停止试验或改用特重型动力触探。 (4)重型、特重型动力触探应每贯入10cm 记录其相应击数。地层松软时,可采用测量每阵击(一般为1~5 击)的贯入度,并按下式换算成相当于同类型动力触探贯入10cm 时的击数: N 63.5;N 120 =10n/△S 式中:N 63.5;N 120——贯入10cm 的重型、特重型动力触探锤击数; n ——每阵击的击数(击); △S——每阵击时相应的贯入度(cm)。 (5)试验技术要求 a、锤击能量是最重要的因素。规定落锤方式采用控制落距的自动落锤,使锤能量比较恒定,注意保持探杆垂直,探杆的偏斜度不超

相关文档