文档库 最新最全的文档下载
当前位置:文档库 › WCDMA中3.84M码片速率的由来

WCDMA中3.84M码片速率的由来

WCDMA中3.84M码片速率的由来
WCDMA中3.84M码片速率的由来

wcdma 频率规划根据工信部规定,中国联通可用的频段是

1940MHz-1955MHz(上行)

2130MHz -2145MHz(下行)

上下行各15MHz。

WCDMA的频点称为UARFCN(UTRA Absolute Radio Frequency Channel Number,UTRA绝对频点号)。

2.1GHz频段上行频点号为9612~9888,下行频点号为10562~10838,

频点号除以5 就可以得到频点中心对应的频率值(以MHz为单位)。

每个频点间隔为200kHz,与GSM系统兼容。

当然每个频点的带宽远超过200kHz,这与CDMA的频点编号方式类似。

目前联通WCDMA系统下行第一频点号为10713(中心频率2142.6MHz),第二频点号

为10688,第三频点号为10663。

上行频点号分别为9763(中心频率1952.6MHz)、9738以及9713。

WCDMA 码片速率= 3.84MHz 扩频因子= 4 则符号速率= 960Kbps

码片速率 = 1秒钟传送的比特数 3.84M个

3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。因此1帧包含的比特数=2560*15=38400bit

因为1帧=10ms

所以码速率

=2560*15/10ms=2560*15/0.01s=2560*15*100=3840000=3.84*1000*1000

=3.84Mbit/S

因此

空口速率3.84Mb/S是由wcdma的帧结构所决定的。

3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个

码片。

如此算来,2560*15/10ms即3840/ms换算成标准速率格式即3.84Mb/s。

我们知道wcdma是无线频带传输,即数字基带信号要经过调制变频到合适的频点上、在一

定的频带范围内来传输的。

在理想情况下

[传输一定基带带宽信号用和信号带宽相同的频带带宽] 就可以了。

实际上,由于形成频带带宽的带通滤波器不可能是理想的矩形,而是常用的钟型,就使得频带带宽要大于基带信号的带宽。

在WCDMA中采用升余弦滚降系数滤波器,滚降系数为0.22,

那么传速率为3.84Mb/s信号的所需带宽为B=3.84(1+0.22)=4.684Mb/s,考虑到频点间要留有一定的保护间隔200K,两头的两个一共是400K,

在wcdma系统中每 [频点带宽] 选5MHz是合适的。

在CDMA系统中,已知系统使用的频点后,根据频点计算公式得到对应的具体频率,该频率就是系统使用的 [频带的中心频率] ,然后在该中心频率上下 [加减0.625MHz] ,就是该频点对应使用的频带。

同理WCDMA上下各加 [2.5MHz] ,正好是5M的信道带宽。

WCDMA的频点间隔为200kHz,也就是说两个WCDMA的频点间隔为200kHz。WCDMA——载频带宽为5×2MHz???(DL +UL)?,每频点有128个12.2k话音信

道,128个用户的自干扰是主要干扰;这导致WCDMA一个5×2MHz频点实际可用的信道只有60(64)个。

TD-SCDMA——载频带宽为1.6MHz,每个频点有7个时隙,每个时隙可以提供8个12.2k话音信道,由于TD-SCDMA单时隙最多只能支持8个12.2k的话音用户,用户数量少使用户的自干扰比较少。

WCDMA——载频带宽为5×2MHz,每频点有128个12.2k话音信道,128个用户的自干扰是主要干扰;这导致WCDMA一个5×2MHz频点实际可用的信道只有60个。

CDMA2000——载频带宽为1.25×2MHz,每频点有30个信道,30个用户的自干扰是主要干扰,自干扰因素比较高。

}WCDMA系统10M带宽(上下行各5M)最大可以利用的信道容量为64个12.2k话音信道,虽然极限信道容量为128个12.2k话音信道,由于用户自干扰只能按照50%轻载设计和工作。

对于话音业务,10MHz带宽按0.02Erl,WCDMA可以支持64个(由于呼吸效应采用50%轻载)12.2k话音信道,覆盖3200用户。

用户数的增加使覆盖半径收缩的现象称之为呼吸效应,每种业务用户数的变化都会导致所有业务的覆盖半径发生变化。其主要原因是CDMA是一个自干扰系统,当用户数显著增加时,用户产生的自干扰呈指数增加,因此呼吸效应是一般CDMA系统的一个天生缺陷。cdma2000

和WCDMA的无线接入除了扩频带宽差别外,所用技术近似,WCDMA的每个载波占用

5×2MHz带宽,最大可以支持128个12.2k话音信道,自干扰随用户数呈指数增加,主要

靠功率控制技术来降低自干扰,并没有从根本上消除自干扰,所以呼吸效应现象明显,实际只可支持64个话音信道。

WCDMA各业务的扩频因子不同,各业务的覆盖半径差距较大,覆盖采用不同半径的同心圆

来进行,即“同心覆盖”,这给它的网络规划带来了很大的麻烦,如果保证语音业务的连续覆盖,就不能保证高速数据业务的连续覆盖,如果保证高速数据业务的连续覆盖,语音业务的覆盖就有很大的重叠,相互之间会存在严重的干扰。

从3G网络规划的角度看,根据链路预算研究表明,WCDMA各种业务的扩频因子不同,各

种业务的覆盖半径差距较大,无法解决高速业务连续覆盖和低速业务干扰严重的弊病。覆盖采用不同半径的同心圆来进行,即“同心覆盖”,这给网络规划带来了麻烦,如果保证语音业务的

连续覆盖,就不能保证高速数据业务,如果保证高速数据业务的连续覆盖,语音业务的覆盖就有很大重叠,相互之间会存在严重的干扰。

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的 相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间内能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率范围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T 为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为: Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最

通信概论常见名词英文缩写释义

ITU-T国际电信联盟电信标准化部门CATV有线电视 HFC光纤同轴混合网 PSTN公用交换电话网 OTN光传输网 SONET同步光纤网 ASON自动交换光网络 PCM脉码调制 OAM 操作管理和维护/网管功能MSTP多业务传输平台 TM终端复用器 ADM分插服用器 REG再生中继器 SDXC/DXC数字交叉连接设备STP 屏蔽双绞线 UTP非屏蔽双绞线 ADSL非对称数字用户线 PDH准同步数字体系 SDH同步数字体系 STM-N第N级同步传递模块 ATM异步传递方式 POH通道开销SOH段开销 RSOH再生段开销 MSOH复用段开销 DDN 公用数字数据网FDM 频分复用 TDM 时分复用FDMA 频分多址TDMA 时分多址SDMA 空分复用WDM 波分复用 CDM码分复用 CDMA 码分多址WCDMA 宽带码分多址STDM/ATDM统计时分复用DWDM 密集波分复用PSTN 公用电话交换网WAN 广域网 MAN 城域网 LAN 局域网 PAN 个域网 VPN 虚拟专用网ATM 异步传输模式

MPLS 多协议标签交换 OSI 开放系统互联 PDU 协议数据单元 TCP 传输控制协议 UDP 用户数据协议 HTTP 超文本协议 FTP 文件传送协议 IP 国际互连协议 IPX 互连交换协议 PPP 点对点传输协议HDLC 链路访问协议 CSMA 载波侦听多路访问协议 ISO 国际标准化组织 IETF 国际互联网工程任务组MTU:最大传输单元 虚电路VC(Vitual Circuit) 交换式虚电路SVC(Switching VC)永久虚电路PVC(Permanent VC)DLCI数据链路链接标识符FrameRelay 帧中继网 MPLS多协议标签交换 PLP分组级协议QOS 服务质量 NGN 下一代网络 GSM 全球移动通信系统WCDMA 宽带码分多址 FDD 频分双工 TDD 时分双工 BSS 基站子系统NSS 网络子系统 MS 移动台 BS 基站 BTS 基站收发台 BSC 基站控制器 MSC 移动交换中心GMSC 网关 HLR 归属位置寄存器VLR 访问位置寄存器 AUC 鉴权认证中心

各种声音的频率范围

各种声音的频率范围,制定你喜欢的EQ 下表是各种声音的频率范围,可据此调节各频段的表现度,制定你喜欢的EQ。音乐本来就该是丰富多彩的,也会因人而异,所以不会有一个放之四海而皆准的EQ存在的。 乐器频率表 小提琴200Hz~400Hz影响音色的丰满度;1~2KHz是拨弦声频带;6~10KHz是音色明亮度。 中提琴150Hz~300Hz影响音色的力度;3~6KHz影响音色表现力。 大提琴100Hz~250Hz影响音色的丰满度;3KHz是影响音色音色明亮度。 贝斯提琴50Hz~150Hz影响音色的丰满度;1~2KHz影响音色的明亮度。 长笛250Hz~1KHz影响音色的丰满度;5~6KHz影响的音色明亮度。 黑管150Hz~600Hz影响音色的丰满度;3KHz影响音色的明亮度。 双簧管300Hz~1KHz影响音色的丰满度;5~6KHz影响音色的明亮度;1~5KHz提升使音色明亮华丽。 大管100Hz~200Hz音色丰满、深沉感强;2~5KHz影响音色的明亮度。 小号150Hz~250Hz影响音色的丰满度;5~7.5KHz是明亮清脆感频带。 圆号60Hz~600Hz提升会使音色和谐自然;强吹音色光辉,1~2KHz明显增强。 长号100Hz~240Hz提升音色的丰满度;500Hz~2KHz提升使音色变辉煌。 大号30Hz~200Hz影响音色的丰满度;100Hz~500Hz提升使音色深沉、厚实。 钢琴27.5~4.86KHz是音域频段。音色随频率增加而变的单薄;20Hz~50Hz是共振峰频率。 竖琴32.7Hz~3.136KHz是音域频率。小力度拨弹音色柔和;大力度拨弹音色丰满。 萨克斯管600Hz~2KHz影响明亮度;提升此频率可使音色华彩清透。 萨克斯管bB 100Hz~300Hz是影响音色的淳厚感,提升此频段可使音色的始振特性更加细腻,增强音色的表现力。 吉它100Hz~300Hz提升增加音色的丰满度;2~5KHz提升增强音色的表现力。 低音吉它60Hz~100Hz低音丰满;60Hz~1KHz影响音色的力度;2.5KHz是拨弦声频。 电吉它240Hz是丰满度频率;2.5KHz是明亮度频率3~4KHz拨弹乐器的性格表现的更充分。

MHz与Mbps之间的关系

MHz与Mbps之间的关系 概念分析 随着网络的普及、综合布线的应用日趋广泛,传输等级也愈来愈高,从3类到4类再到5类,到目前已有6类布线产品投放市场。描述语定义这些等级的主要参数就是传输带宽(MHZ)。 与此同时,网络应用也层出不穷。传输介质从10Base5(粗缆)、10Base2(细缆)、 10BaseT(双绞线)、10BaseFL(光纤) 到100BaseTX(STP/UTP)、100BaseT4(4/5类UTP)、100BaseFX(光纤),到目前千兆快速网业已出现。用来描述这些应用得主要参数则是速率(Mbps)。 事实上,申农公式早已概括出带宽B和速率C 之间的关系: C=B*Log(1+SNR) 式中B为信道带宽,所谓带宽是指能够以适当保真度传输信号的频率范围,其单位似Hz,它是信道本身国有的,与所载信号无关。SNR为信噪比,它由系统的发收设备以及传输系统所处的电磁环境共同决定。而速率C是一个计算结果,它由B和SNR共同决定,其单位为bps,在概念上表征为每秒传输的二进制位数。 可见,给定信道,则带宽B也随之给定,改变信噪比SNR可得到不同的传输速率C 。MHz与Mbps有着一对多的关系,即同样带宽可以传输不同的位流速率。同时,Mbps是依赖于应用的;而MHz则与应用无关。 技术探讨 如果要给与打一个形象的比喻,那么汽车时速与引擎转速恰到好处。当给定旋转速度,在齿轮已知的情况下可以计算出汽车的速度。在这个类比当中,齿轮起了一个桥梁的作用。事实上,齿轮之于汽车和引擎就如编码系统之于速率和带宽。 编码是为计算机进行信息传输而被采用的。通过对信息进行编码,许多技术上的问题,比如同步、带宽受限等都可以得到解决。编码对于信息的可靠传输是至关重要的。 目前有两种基本的编码系列。第一种是每N位添加一个同步位,以使同步成为可能(如当N=1时,为Manchester编码;当N=4时,为4B5B编码),但这需要一个比原来更大的带宽。而且同步位越多,带宽需要越大。为了减小带宽,采用每7位添加一个同步位(即 7B8B 编码)的编码系统是可能的,但随之而来的是,当传输较长一串相同类型的位流时,同步就变得非常困难了。

WCDMA TEST

文件名称 WCDMA硬件测试规范 文件编号 QP/LCT-SQ01 版本 V1.0 正气 进取 专业 发布日期 2006-09-19 主控部门 测试部 意见 签名/日期 拟制:测试部 同意 王 勇 2006.09.18 审核:质量保证部 同意 姚凤贤 2006.09.18 审核:软件部 同意 冯永清 2006.09.18 审核:硬件部 同意 王 勇 2006.09.18 审核:质量策划部 同意 董怡时 2006.09.19 批准:研发总监 同意 汪 洋 2006.09.18 文件说明(部门在此文件中的主要职责) 测试部根据此规范进行WCDMA 硬件测试。 版本号 修改时间 修改人 修改原因 修改主要内容 V1.0 2006-9-9杨卓(RF部分) 林贵军(BB部分)创建

目录 1、目的 (3) 2、适用范围 (3) 3、定义 (3) 4、职责 (3) 5、测试规范 (3) 5.1测试环境与条件 (3) 5.2 测试内容与结果 (3) 5.2.1 常温下射频指标的测试 (3) 5.2.2 基带的性能测试 (18) 6、相关/支持性文件 (24) 7、质量记录 (24)

1、目的 为了提升研发的设计水平、提高产品的研发质量,以本系统测试规范为标准,对产品进行严格的测试,检测系统的各个测试项目指标,来评定本版手机是不是符合要求; 2、适用范围 测试对象是研发阶段比较成熟的主板样机、手机样机,综合考察样机的硬件指标。相应的测试方法和测试规范见参考标准; 3、定义 英文缩写注释 UL: Uplink 上行链路; DL: Downlink 下行链路; UE: User Equipment 用户终端, Node B: 同GSM系统中的基站,但在WCDMA系统中称为Node B; Fuplink: 上行链路的载波的中心频率; Fdownlink: 下行链路的载波的中心频率; RACH: Random Access Channel 随机接入信道; PRACH: Physical Random Access Channel 物理随机接入信道; DCH: Dedicated Channel 专用信道 DPCH: Dedicated Physical Channel 专用物理信道; DPCCH: Dedicated Physical Control Channel 专用物理控制信道; DPDCH: Dedicated Physical Data Channel 专用物理书记信道; 4、职责 4.1 三旗测试部负责主导和维护硬件测试规范的修改; 4.2 其它研发部门严格按照此测试规范执行; 5、测试规范 5.1测试环境与条件 由于外围环境的电磁干扰,射频参数测试在屏蔽室进行。系统测试所需要的仪器和设备以及相关的测试环境见相关的测试要求,测试所需的软件由工程部提供; 5.2 测试内容与结果 本规范对射频指标和基带指标进行测试。检验手机是不是满足《3GPP TS 34.121 V6.1.0》,并将测试结果反馈给各个相应对部门,协助其做出相应的改进和调试; 5.2.1 常温下射频指标的测试 5.2.1.1 测试环境 RF部分的测试仪器包括综合测试仪CMU200、RF Cable、平板天线、高精度电源、三角塔耦合天线。测试需在屏蔽室进行。另外所有传导下的射频指标都是在进行过校准的仪器仪表上完成的。 RF测试的位置(主要是耦合下测试)以射频工程师给出的位置作为参考,另外我们在补偿的时候,由于仪器误差比较大,以目前的补偿值进行参考;

乐器及人声重要频率范围表及处理方法

乐器及人声重要频率范围表 小提琴200Hz~400Hz影响音色的丰满度;1~2KHz是拨弦声频带;6~10KHz是音色明亮度。 大提琴100Hz~250Hz影响音色的丰满度;3KHz是影响音色音色明亮度。 贝斯提琴50Hz~150Hz影响音色的丰满度;1~2KHz影响音色的明亮度。 长笛250Hz~1KHz影响音色的丰满度;5~6KHz影响的音色明亮度。 黑管150Hz~600Hz影响音色的丰满度;3KHz影响音色的明亮度。双簧管300Hz~1KHz影响音色的丰满度;5~6KHz影响音色的明亮度;1~5KHz提升使音色明亮华丽。大管100Hz~200Hz音色丰满、深沉感强;2~5KHz影响音色的明亮度。 小号150Hz~250Hz影响音色的丰满度;5~7.5KHz是明亮清脆感频带。 圆号60Hz~600Hz提升会使音色和谐自然;强吹音色光辉,1~2KHz 明显增强。 长号100Hz~240Hz提升音色的丰满度;500Hz~2KHz提升使音色变辉煌。 大号30Hz~200Hz影响音色的丰满度;100Hz~500Hz提升使音色深沉、厚实。 钢琴27.5~4.86KHz是音域频段。音色随频率增加而变的单薄;

20Hz~50Hz是共振峰频率。 竖琴32.7Hz~3.136KHz是音域频率。小力度拨弹音色柔和;大力度拨弹音色丰满。 萨克斯管600Hz~2KHz影响明亮度;提升此频率可使音色华彩清透。 萨克斯管bB 100Hz~300Hz是影响音色的淳厚感,提升此频段可使音色的始振特性更加细腻,增强音色的表现力。 吉它100Hz~300Hz提升增加音色的丰满度;2~5KHz提升增强音色的表现力。 低音吉它60Hz~100Hz低音丰满;60Hz~1KHz影响音色的力度; 2.5KHz是拨弦声频。 电吉它240Hz是丰满度频率;2.5KHz是明亮度频率3~4KHz拨弹乐器的性格表现的更充分。 电贝司80Hz~240Hz是丰满度频率;600Hz~1KHz影响音色的力度;2.5KHz是拨弦声频。 手鼓200Hz~240Hz共鸣声频;5KHz影响临场感。 小军鼓(响弦鼓)240Hz影响饱满度;2KHz影响力度(响度);5KHz 是响弦音频(泛音区) 通通鼓360Hz影响丰满度;8KHz为硬度频率;泛音可达10~15KHz 低音鼓60Hz~100Hz为低音力度频率;2.5KHz是敲击声频率;8KHz是鼓皮泛音声频。 地鼓(大鼓)60Hz~150Hz是力度音频,影响音色的丰满度;5~6KHz

WCDMA中3.84M码片速率的由来

wcdma 频率规划根据工信部规定,中国联通可用的频段是 1940MHz-1955MHz(上行) 2130MHz -2145MHz(下行) 上下行各15MHz。 WCDMA的频点称为UARFCN(UTRA Absolute Radio Frequency Channel Number,UTRA绝对频点号)。 2.1GHz频段上行频点号为9612~9888,下行频点号为10562~10838, 频点号除以5 就可以得到频点中心对应的频率值(以MHz为单位)。 每个频点间隔为200kHz,与GSM系统兼容。 当然每个频点的带宽远超过200kHz,这与CDMA的频点编号方式类似。 目前联通WCDMA系统下行第一频点号为10713(中心频率2142.6MHz),第二频点号 为10688,第三频点号为10663。 上行频点号分别为9763(中心频率1952.6MHz)、9738以及9713。 WCDMA 码片速率= 3.84MHz 扩频因子= 4 则符号速率= 960Kbps 码片速率 = 1秒钟传送的比特数 3.84M个 3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。因此1帧包含的比特数=2560*15=38400bit 因为1帧=10ms 所以码速率 =2560*15/10ms=2560*15/0.01s=2560*15*100=3840000=3.84*1000*1000 =3.84Mbit/S 因此 空口速率3.84Mb/S是由wcdma的帧结构所决定的。 3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个 码片。 如此算来,2560*15/10ms即3840/ms换算成标准速率格式即3.84Mb/s。 我们知道wcdma是无线频带传输,即数字基带信号要经过调制变频到合适的频点上、在一 定的频带范围内来传输的。

网络带宽与下载速度之间的关系

网速与下载速度之间的关系 1. “位(bit)”和“字节(B)”之间的关系 位(bit):位是计算机中存储数据的最小单位,指二进制数中的一个位数,其值为“0”或“1”。 字节(byte):字节是计算机存储容量的基本单位,一个字节由8位二进制数组成。在计算机内部,一个字节可以表示一个数据,也可以表示一个英文字母,两个字节可以表示一个汉字。 1024个字节称为1K字节(1KB),1024K个字节称为1兆字节(1MB),1024M 个字节称为1吉字节(1GB)。 所以,字节和位之间的换算是8进制,即1B=8bit。 2.“网速”与“下载速度”之间的关系 网速:在计算机网络或者是网络运营商中,一般,宽带速率的单位用bps(或b/s)表示;bps表示比特每秒即表示每秒钟传输多少位信息,是bit per second的缩写。在实际所说的1M带宽的意思是1Mbps(是兆比特每秒Mbps不是兆字节每秒MBps)。 下载速度:下载速度指的是Byte/s。下载软件时常常看到诸如下载速度显示为128KBps(KB/s),103KB/s等宽带速率大小字样,这指的是(字节/秒),即Bps。 实际书写规范中B应表示Byte(字节),b应表示bit(比特),但在平时的实际生活中有的把bit和Byte都混写为b ,如把Mb/s和MB/s都混写为Mb/s,导致人们在实际计算中因单位的混淆而出错。 3. 计算光纤传输的真实速度 使用光纤连接网络具有传输速度快、衰减少等特点。以10M光纤为例计算一下它的下载速度是多少?一般情况下?“10M”指的是10240kbit/s(10.240Mb/s

即10M)。 换算成下载速度:10.240Mb/s=(10.240/8)MB/s=1.28 MB/s 在实际的情况中。理论值最高为1.28 MB/s。排除网络损耗以及线路衰减等原因因此真正的下载速度可能还不到1.28 MB/s 不过只要是1MB/s左右都算正常(实际网络损耗约为12%)。 4. 计算内网的传输速度 经常有人抱怨内网的传输的数度慢,那么真实情况下的10/100M网卡的速度应该有多快?网卡的100Mbps同样是以bit/s来定义的。 所以100Mb/S=102400Kbit/s=(102400/8)KByte/s=12800KByte/s 在理论上1秒钟可以传输12.8MB的速据考虑到干扰的因素每秒传输只要超过10MB就是正常了。现在出现了1000Mbps的网卡那么速度就是128MB/S 。 5.宽带上行与下行 上行速率:从你的电脑上传的速度,也就是别人从你的电脑进行通讯的速率。下行速率:你从网络主机下载的速度。

WCDMA考试试题复习资料

4月份WCDMA考试试题 一、填空题(30分) 1.无线环境中的衰落主要包括___阴影衰落___、___快衰落_ _、___空间衰落_ 。 阴影衰落:由障碍物阻挡造成,服从对数正态分布,慢衰落。 快衰落:移动台附近的散射体(地形,地物和移动体等)引起的多径传播信号在接收点相叠加,造成接收信号快速起伏的现象。 2. 假设机站天线的发射功率为43dBm,则对应____20_____W。公式要记住!! 3. 小区搜索分三步,第一步是利用PSCH信道的_PSC _获得时隙同步;第二步是利用SSCH 信道的_SSC _获得帧同步和主扰码组组号;第三步是利用_CPICH _信道获得该小区所使用的主扰码。 SCH:同步信道 PSCH:物理同步信道;SSCH:辅同步信道;CPICH:公共导频信道。 4. 对下行扰码而言,使用长扰码,范围从0到2^24-1,但为了加速小区搜索的过程,仅有8192 个码可以使用,分为512 个组,总共有 512 个主扰码。 手机扰码是每部手机唯一拥有的号码。 5. WCDMA系统带宽是 5MHZ ,码片速率为 3.84Mchips 。 一帧的时长为10ms,一帧有15个时隙,一个时隙有2560个码片,所以算出来是3.84Mchip/s . 6. 常见的覆盖问题有覆盖空洞、覆盖盲区、越区覆盖、导频污染、上下行不平衡等。 ★覆盖盲区:由于相邻两个基站站址相距较远(受障碍物的影响),导致其信号覆盖区不交叠,出现信号覆盖盲区。这种问题容易通过DT(路测)、CQT(呼叫质量测试)或用户投诉反映出来。 ★越区覆盖:如果基站的覆盖区域超过了规划预期的范围,就会在其他基站的覆盖区域内形成不连续的主导区域,形成越区覆盖。 ★导频污染:即在某一点存在过多的强导频却没有一个足够强的主导频的时候,即定义为导频污染。 ★上下行不平衡:指目标覆盖区域内,上下行对称业务出现下行覆盖良好而上行覆盖受限(如UE的发射功率达到最大仍不能满足上行BLER要求),或上行覆盖良好而下行覆盖受限(表现为下行专用信道码发射功率达到最大仍不能满足下行BLER要求)的情况。上下行覆盖不平衡的问题容易导致掉话。 7.多址技术有时分多址、频分多址和码分多址;双工技术有时分双工 和频分双工。 8、 WCDMA系统中,语音采用卷积编码,数据采用 Turbo 编码,信令采用的是卷积编码 9、 WCDMA容量是一个“软容量”,上行链路极限容量一般是受限于干扰,下行容量受限于功率。 10、WCDMA系统中,核心网CN与无线接入网UTRAN之间的接口定义为Iu接口。 Iu接口负责核心网(CN)和RNC(无线网络控制器)之间的信令交互。Iub是RNC和NODE-B之间的接口,

乐器及人声重要频率范围表

乐器及人声重要频率范围表 听力程度分类听觉是人们的主观感觉,听到的声音实际是物体振动后引起的声波。不同的物体振动产生的声波不同,其重要原因之一是振动频率不同。频率是指物体每秒钟振动的次数。其单位用赫兹(Hz)来表示。例如:鼓声主频约在250-500 Hz(即每秒振动250-500次),属于低频;双音响筒声主频约在1000-2000 Hz,属于中频;哨子声主频约在3000-4000 Hz,属于高频。 人们唱歌时运用肌肉拉动声带,发出诸多泛音成分,频率高达8-10KHz,通过鼻腔的作用,对某些频率(包括基音和泛音成分)产生共鸣,使声音更明亮,他们的基音频率范围是:童声高音频率范围为260-880Hz,低音频率范围为196-700Hz,女声高音频率范围为220-1.1KHz,低音频率范围为200-700KHz,男声高音频率范围为160-523KHz 低音频率范围为80-358Hz。 乐器及人声重要频率范围表 小提琴 200Hz~400Hz影响音色的丰满度;1~2KHz是拨弦声频带;6~10KHz是音色明亮度。大提琴 100Hz~250Hz影响音色的丰满度;3KHz是影响音色音色明亮度。 贝斯提琴 50Hz~150Hz影响音色的丰满度;1~2KHz影响音色的明亮度。 长笛 250Hz~1KHz影响音色的丰满度;5~6KHz影响的音色明亮度。 黑管 150Hz~600Hz影响音色的丰满度;3KHz影响音色的明亮度。 双簧管 300Hz~1KHz影响音色的丰满度;5~6KHz影响音色的明亮度;1~5KHz提升使音色明亮华丽。大管 100Hz~200Hz音色丰满、深沉感强;2~5KHz影响音色的明亮度。 小号 150Hz~250Hz影响音色的丰满度;5~7.5KHz是明亮清脆感频带。 圆号 60Hz~600Hz提升会使音色和谐自然;强吹音色光辉,1~2KHz明显增强。 长号 100Hz~240Hz提升音色的丰满度;500Hz~2KHz提升使音色变辉煌。 大号 30Hz~200Hz影响音色的丰满度;100Hz~500Hz提升使音色深沉、厚实。 钢琴 27.5~4.86KHz是音域频段。音色随频率增加而变的单薄;20Hz~50Hz是共振峰频率。 竖琴 32.7Hz~3.136KHz是音域频率。小力度拨弹音色柔和;大力度拨弹音色丰满。 萨克斯管 600Hz~2KHz影响明亮度;提升此频率可使音色华彩清透。 萨克斯管bB 100Hz~300Hz是影响音色的淳厚感,提升此频段可使音色的始振特性更加

码片速率 解释

.符号速率 符号速率*扩频因子=码片速率,符号速率=码片速率/扩频因子 如: WCDMA, 码片速率= 3.84 MHz ,扩频因子=4 ,则符号速率=960kbps. CDMA 1X, 码片速率=1.2288MHz,扩频因子=64,则符号速率=19.2kbps. 符号速率=(业务速率+校验码)*信道编码*打孔率 如: WCDMA ,业务速率=384kbps,信道编码=1/3Turbo码,符号速率=960kbps CDMA 1X ,业务速率=9.6kbps,信道编码=1/3卷积码,符号速率=19.2kbps 2.码片(码元),码片速率,处理增益 系统通过扩频把比特转换成码片。 一个数据信号(如逻辑1或0)通常要用多个编码信号来进行编码,那么其中的一个编码信号就称为一个码片。 如果每个数据信号用10个码片传输,则码片速率是数据速率的10倍,处理增益等于10。 码片相当于模拟调制中的载波作用,是数字信号的载体。 常用的扩普形势是用一个伪随机噪声序列(PN序列)与窄带PSK信号相乘。PN序列通常用符号C来表示,一个PN序列是一个有序的由1和0构成的二元码流,其中的1和0由于不承载信息,因此不称为bit而称为chip(码片)。 要理解“码片”一词,先需要对扩频通信有所了解,我们的信息码,每一个数字都是携带了信息的,具有一定带宽。扩频通信就是用一串有规则的比信息码流频率高很多的码流来调制信息码,也就是说原来的“1”或“0”被一串码所代替。 由于这一串码才能表示一位信息,因此不能说成bit(bit是信息基本单位),所以找了个名词叫chip,这一串码的每一位码字就是一个chip,比如cdma的码片速率就是1.2288Mchip/s。(这个解释最易懂) 码片数率是指扩频调制之后的数据数率,用cps表示(chip per-second) 数据*信道码=chip,chip是最终在空口的物理信道上发送的数据速率单位 WCDMA的码片速率是3.84Mcps, c:chip,即码元。3.84Mcps:每秒3.84M个码元 码片速率是指经过扩频之后的速率,从MAC-d传过来的有效fp bit经过channel coding,帧均衡,速率匹配,复用到CCTrCH后,分成IQ两路,分别进行扩频和加扰的操作。扩频就是将有效bit与扩频码相乘,扩频操作会增加带宽的,扩频后的速率称为码片速率。因为10ms的TTI包含15个slot,每个slot有2560个chips,一算就可得出3.84Mchipps的码片速率 3.业务速率

带宽与信道容量与数据传输速率的关系

带宽与信道容量与数据传输速率的关系 2008-04-22 10:16:58| 分类:默认分类|举报|字号订阅 数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为: S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=10^3 bps 1Mbps=10^6 bps 1Gbps=10^9 bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则

与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为: Rmax=(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax 与信道带宽B、信噪比S/N的关系为: Rmax=(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。

WCDMA英文缩写

CN 核心网 UTRAN 无线接入网 RAN 无线接入部分 UE 终端 Node B 基站 MAI 用户间干扰 ISI 符号间干扰 RSSI 基站接受信号功率 Rx 手机接受功率 Tx 手机发射功率 RRC 无线资源控制 RAB 无线接入承载 MAC 媒体接入控制协议 RLC 无线链路控制协议 BMC 广播/多播控制协议 PDPC 分组数据会聚协议 RNSAP 无线网络子系统应用部分信令流程 TDD 时分双工 FDD 频分双工 FDMA 频分多址 TDMA 时分多址 CDMA 码分多址 SDMA 空分多址 FH 调频 TH 跳时 DS-CDMA 直扩序列码分多址技术 FH-CDMA 跳频码分多址 TH-CDMA 跳时码分多址 OVSF码,Orthogonal Variable Spreading Factor 正交可变扩频因子QPSK 下行调制方式 MUD 多用户检测 SIR Signal to Interference Ratio 信号干扰比(信噪比) BLER 误块率 active set 激活集 monitor set 监测集 detected set 检测集 Spread Spectrum 扩展频谱通信(扩频通信) TCP 发射码功率 TPC 传输功率控制 SS 同步位移偏移 TFCI 传输格式组合指示 LAC:Location Area Code 位置区码(用于寻呼) Ec/Io 导频覆盖质量

RTT 无线传输技术 ITU 国际电信联盟ITU FPLMTS 未来公共陆地移动系统 AMPS 先进移动电话系统 TACS 全向入网通信系统 DAMPS系统先进的数字移动电话系统 JDC:Japan Digital Cellular System,日本数字蜂窝系统BPSK 上行调制方式 RAC:Route Area Code 路由区码 信道: AP-AICH 接入前缀捕获指示信道 CSICH CPCH 状态指示信道 DCH 专用信道 RACH 随机接入信道 P-SCH 主同步信道 S-SCH从同步信道 P-CPICH 主公共导频信道 P-CCPCH 主公共控制物理信道 逻辑信道: 1.控制信道: BCCH 广播控制信道 PCCH 寻呼控制信道 CCCH 公共控制信道 DCCH 专用控制信道 SHCCH 共享道控制信道 2.业务信道: DTCH 专用业务信道 CTCH 公共业务信道 传输信道: BCH 广播信道 FACH 前向接入信道 RACH随机接入信道 CPCH公共分组信道

《数据通信基础》习题解析

第二周《数据通信基础》单元测验 一、选择题 1、通信链路的传信速率为4800b/s, 采用八电平传输,则其传码速率为() A.1600波特 B.600波特 C.4800波特 D.1200波特 解析: A、根据传信速率和传码速率在数值上的关系即可求出,有的同学常犯的错误是把关系弄反了,在数值上,传信速率一般是大于等于传码速率。 2、9600bit/s的线路上,进行一小时的连续传输,测试结果为有150比特的差错,问该数据通信系统的误码率是() A.8.68*10-6 B.8.68 *10-2 C. 4.34 *10-2 D.4.34*10-6 解析: D、先计算出一小时内总共传送的比特数,然后再计算出出错的150比特占整个的比例就可以了。 3、CRC循环冗余码中,若生成多项式对应的二进制序列是10011,则该生成多项式是() 解析: B 4、对于带宽为3kHz的无噪声信道,假设信道中每个码元信号的可能状态数为16,则该信道所能支持的最大数据传输率可达() A.48Kbps B.24Kbps C.12Kbps D.96Kbps 解析:B、题目中实际上要求的是无噪声情况下的信道容量,由奈氏定理可以得到该答案。 5、CDMA系统中使用的多路复用技术是() A.码分复用 B.频分复用 C.波分复用 D.时分复用 解析:A、CDMA是码分多址的英文缩写(Code Division Multiple Access),它是在数字技术的分支--扩频通信技术上发展起来的一种崭新而成熟的无线通信技术。CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码(码片序列)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端使用完全相同的伪随机码(码片序列),与接收的带宽信号作相关处理,把宽带信号换成原来的数据。 6、波特率指的是() A.每秒传输的字节数 B.每秒钟传输信号码元的个数 C.每秒钟可能发生的信号变化的次数D每秒传输的比特 解析:B、单位是波特(Baud),在传输时通常用某种信号脉冲来表示一个0、1或几个0、1的组合。这种携带数据信息的信号脉冲称为信号码元。信号变化的次数不对,是因为连续传输多个相同的码元,信号不变。 7、下列因素中,不会影响信道数据传输速率的是() A.信噪比 B.调制速率 C.信号传播速度 D.带宽 解析:C、一方面,根据求信道容量的公式中可以判断出来;另外一方面,信号传播速度影响的是只是传播时延的大小。 8、假设一个CDMA 通信系统中,某站点被分配的码片序列为00011011,则当它发送了比特“0”的时候,实际在信道上传输的数据序列是() A. 11100100 B. 11100110 C. 11100101 D. 10000100 解析:A 因为在一个CDMA系统中,每个站点被指定一个唯一的m比特代码或码片序列(chip squence)。当发送比特1时,站点送出的是码片序列,若发送比特0时,站点送出的是该码片序列的反码。

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的 相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间内能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率范围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T 为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为: Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】

电路图常用英文缩写大全

UHF超高频段UREGISTERED未注册 SW开关 UI用户接口BSIC专用集成电路 BAND频段 BAND-SEL频段选择/切换 BUFFER缓冲放大器 BUS通信总线 DET检测 Circuit Diagram电路原理图 Blick Diagram方框图 PCB板图 LayoutPCB元件分布图 Receiver收信机 Transmitter发信机 Interface界面,电子电路基础知识2,接口Power Supply电源系统 射频电路 A模拟信号 AFC自动频率控制 AGC自动增益控制

APC/AOC自动功率控制 AGND模拟地 ANT天线 ANTSW天线切换开关 AM调幅 BPF带通滤波器 CP-TX RXVCO控制输出接收锁相电平 CP-TX TXVCO控制输出发射锁相电平 DUPLEX / DIPLEX双工器 Duplex Sapation双工间隔 DCS-CS发射机控制信号: 控制TXVCO与I/Q调制器 FILFTER滤波器 Gen Out信号发生器 GAIN增益 GSM-PINDIODE功率放大器输出匹配电路切换控制信号GSM-SEL频段切换控制信号之一 G-TX-VCO900MHZ发射VCO切换控制 IF中频 IFLO中频本振 LO本振

LOCK锁定 MODFreq调制频率 Mixed Second第二混频信号PA 功率放大器 PLL锁相环路 PADRV功率放大器驱动TXRF发射射频 TXEN发射使能 TXENT发射供电 TXIN发送I信号负 TXIP发送I信号正 TXON发送开 TXQN发送Q信号负 TXQP发送Q信号正 TXI发射基带信号 TX-DEY-OUT发射时序控制输出TXQ发射基带信号 UHFVCO超高频/射频VCO VHFVCO甚高频/中频VCO SHFVCO专用射频VCO(NOKIA) VCO 压控振荡器

音频不同频率对人耳的听觉的影响

音频不同频率对人耳的听觉的影响 16K~20KHz频率:这段频率范围实际上对于人耳的听觉器官来说,已经听不到了,因为人耳听觉的最高频率是15.1KHz。但是,人可以通过人体和头骨、颅骨将感受到的16~20KHz频率的声波传递给大脑的听觉脑区,因而感受到这个声波的存在。这段频率影响音色的韵味、色彩、感情味。如果音响系统的频率响应范围达不到这个频率范围,那么音色的韵味将会失落;而如果这段频率过强,则给人一种宇宙声的感觉,一种幻觉,一种神秘莫测的感觉,使人有一种不稳定的感觉。因为这些频率大多数是基音的不谐和音频率,所以会产生一种不安定的感受。这段频率在音色当中强度很小,但是很重要,是音色的表现力部分,也是常常被人们忽略的部分,甚至有些人根本感觉不到它的存在。 12K~16KHz频率:这是人耳可以听到的高频率声波,是音色最富于表现力的部分,是一些高音乐器和高音打击乐器的高频泛音频段,例如镲、铃、铃鼓、沙锤、铜刷、三角铁等打击乐器的高频泛音,可给人一种"金光四射"的感觉,强烈地表现了各种乐器的个性。如果这段频率成分不足,则音色将会会失掉色彩,失去个性;而如果这段频率成分过强,如激励器激励过强,音色会产生"毛刺"般尖噪、刺耳的高频噪声,对此频段应给予一定的适当的衰减。 10K~12KHz频率:这是高音木管乐器的高音铜管乐器的高频泛音频段,例如长笛、双簧管、小号、短笛等高音管乐器的金属声非常强烈。如果这段频率缺乏,则音色将会失去光泽,失去个性;如果这段频率过强,则会产生尖噪,刺耳的感觉。 8K~10KHz频率:这段频率s音非常明显,影响音色的清晰度和透明度。如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐。 6K~8KHz频率:这段频率影响音色的明亮度,这是人耳听觉敏感的频率,影响音色清晰度。如果这段频率成分缺少,则音色会变得暗淡;如果这段频率成分过强,则音色显得齿音严重。 5K~6KHz频率:这段频率最影响语音的清晰度、可懂度。如果这段频率成分不足,则音色显得含糊不清;如果此段频率成分过强,则音色变得锋利,易使人产生听觉上的疲劳感。 4K~5KHz频率:这段频率对乐器的表面响度有影响。如果这段频率成分幅度大了,乐器的响度就会提高;如果这段频率强度变小了,会使人听觉感到这种乐器与人耳的距离变远了;如果这段频率强度提高了,则会使人感觉乐器与人耳的距离变近了。 4KHz频率:这个频率的穿透力很强。人耳耳腔的谐振频率是1K~4KHz所以人耳对这个频率也是非常敏感的。如果空虚频率成分过少,听觉能力会变差,语音显得模糊不清了。如果这个频率成分过强了,则会产生咳声的感觉,例如当收音机接收电台频率不正时,播音员常发出的咳音声。 2K~3KHz频率:这段频率是影响声音明亮度最敏感的频段,如果这段频率成分丰富,则音色的明亮度会增强,如果这段频率幅度不足,则音色将会变得朦朦胧胧;而如果这段频率成分过强,音色就会显得呆板、发硬、不自然. 1K~2KHz频率:这段频率范围通透感明显,顺畅感强。如果这段频率缺乏,音色则松散且音色脱节;如果这段频率过强,音色则有跳跃感

WCDMA的每个信道都是5M带宽吗

WCDMA 的每个信道都是5M带宽吗 wcdma 频率规划根据工信部规定,中国联通可用的频段是1940MHz-1955MHz(上行)、2130MHz -2145MHz(下行),上下行各15MHz。 WCDMA的频点称为UARFCN(UTRA Absolute Radio Frequency Channel Number,UTRA 绝对频点号)。 2.1GHz频段上行频点号为9612~9888,下行频点号为10562~10838,频点除以5就可以得到频点中心对应的频率值(以MHz为单位)。 每个频点间隔为200kHz,与GSM系统兼容。 当然每个频点的带宽远超过200kHz,这与CDMA的频点编号方式类似。 目前联通WCDMA系统下行第一频点号为10713(中心频率2142.6MHz),第二频点号为10688,第三频点号为10663。 上行频点号分别为9763(中心频率1952.6MHz)、9738以及9713。 WCDMA 码片速率= 3.84MHz 扩频因子= 4 则符号速率= 960Kbps 码片速率= 1秒钟传送的比特数 3.84M个

3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。因此1帧包含的比特数=2560*15=38400bit 因为1帧=10ms 所以码速率= 2560*15/10ms=2560*15/0.01s=2560*15*100=3840000=3.84*1000*1000=3.84Mbit/S 因此 空口速率3。84Mb/S是由wcdma的帧结构所决定的。3gpp规定wcdma的UU 口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。如此算来,2560*15/10ms 即3840/ms换算成标准速率格式即3.84Mb/s。 我们知道wcdma是无线频带传输,即数字基带信号要经过调制变频到合适的频点上、在一定的频带范围内来传输的。 在理想情况下传输一定基带带宽信号用和信号带宽相同的频带带宽就可以了。 实际上,由于形成频带带宽的带通滤波器不可能是理想的矩形,而是常用的钟型,就使得频带带宽要大于基带信号的带宽。 在WCDMA中采用升余弦滚降系数滤波器,滚降系数为0.22, 那么传速率为3.84Mb/s信号的所需带宽为B=3.84(1+0.22)=4.684Mb/s,考虑到频点间要留有一定的保护间隔200K,两头的两个一共是400K,

相关文档
相关文档 最新文档