文档库 最新最全的文档下载
当前位置:文档库 › Linux2_6内核下同步串行通信驱动的开发与应用

Linux2_6内核下同步串行通信驱动的开发与应用

Linux2_6内核下同步串行通信驱动的开发与应用
Linux2_6内核下同步串行通信驱动的开发与应用

UART串口通信设计实例

2.5 UART串口通信设计实例(1) 接下来用刚才采用的方法设计一个典型实例。在一般的嵌入式开发和FPGA设计中,串口UART是使用非常频繁的一种调试手段。下面我们将使用Verilog RTL编程设计一个串口收发模块。这个实例虽然简单,但是在后续的调试开发中,串口使用的次数比较多,这里阐明它的设计方案,不仅仅是为了讲解RTL编程,而且为了后续使用兼容ARM9内核实现嵌入式开发。 串口在一般的台式机上都会有。随着笔记本电脑的使用,一般会采用USB转串口的方案虚拟一个串口供笔记本使用。图2-7为UART串口的结构图。串口具有9个引脚,但是真正连接入FPGA开发板的一般只有两个引脚。这两个引脚是:发送引脚TxD和接收引脚RxD。由于是串行发送数据,因此如果开发板发送数据的话,则要通过TxD线1 bit接着1 bit 发送。在接收时,同样通过RxD引脚1 bit接着1 bit接收。 再看看串口发送/接收的数据格式(见图2-8)。在TxD或RxD这样的单线上,是从一个周期的低电平开始,以一个周期的高电平结束的。它中间包含8个周期的数据位和一个周期针对8位数据的奇偶校验位。每次传送一字节数据,它包含的8位是由低位开始传送,最后一位传送的是第7位。

这个设计有两个目的:一是从串口中接收数据,发送到输出端口。接收的时候是串行的,也就是一个接一个的;但是发送到输出端口时,我们希望是8位放在一起,成为并行状态(见图2-10)。我们知道,串口中出现信号,是没有先兆的。如果出现了串行数据,则如何通知到输出端口呢?我们引入“接收有效”端口。“接收有效”端口在一般情况下都是低电平,一旦有数据到来时,它就变成高电平。下一个模块在得知“接收有效”信号为高电平时,它就明白:新到了一个字节的数据,放在“接收字节”端口里面。

Linux内核驱动加载顺序

Linux内核驱动加载顺序 【问题】 背光驱动初始化先于LCD驱动初始化,导致LCD驱动初始化时出现闪屏的现象。 【解决过程】 1 mach-xxx.c中platform devices列表如下 /* platform devices */ static struct platform_device *athena_evt_platform_devices[] __initdata = { //&xxx_led_device, &xxx_rtc_device, &xxx_uart0_device, &xxx_uart1_device, &xxx_uart2_device, &xxx_uart3_device, &xxx_nand_device, &xxx_i2c_device, &xxx_lcd_device, &xxxpwm_backlight_device, ... }; LCD(xxx_lcd_device)设备先于PWM(xxxpwm_backlight_device)设备。 可见驱动的初始化顺序并不是和这个表定义的顺序始终保持一致的。(记得PM操作 - resume/suspend 的顺序 是和这个表的顺序保持一致的) 2 怀疑和编译顺序有关 Z:\kernel\drivers\video\Makefile:背光驱动(backlight/)的编译限于LCD驱动(xxxfb.o)的编译 obj-$(CONFIG_VT) += console/ obj-$(CONFIG_LOGO) += logo/ obj-y += backlight/ display/ ... obj-$(CONFIG_FB_xxx) += xxxfb.o ak_logo.o obj-$(CONFIG_FB_AK88) += ak88-fb/ 这样编译生成的System.map中的顺序为: 906 c001f540 t __initcall_pwm_backlight_init6 907 c001f544 t __initcall_display_class_init6 908 c001f548 t __initcall_xxxfb_init6 Makefile更改为: obj-$(CONFIG_VT) += console/ obj-$(CONFIG_LOGO) += logo/ obj-y += display/

设备驱动加到Linux内核中

7.2.3 设备驱动加到Linux内核中 设备驱动程序编写完后将该驱动程序加到内核中。这需要修改Linux 的源代码,然后重新编译内核。 ①将设备驱动程序文件(比如mydriver.c)复制到/Linux/drivers/char目录下。该目录保存了Linux下字符设备的设备驱动程序。修改该目录下mem.c 文件,在int chr_dev_init()函数中增加如下代码: #ifdef CONFIG_MYDRIVER device_init(); #endif 其中CONFIG_MYDRIVER是在配置Linux内核时赋值。 ②在/linux/drivers/char目录下Makefile中增加如下代码: ifeq ($(CONFIG_MYDRIVER),y) L_OBJ + = mydriver.o endif 如果在配置Linux内核时选择了支持新定义的设备,则在编译内核时会编译mydriver.c生成mydriver.o文件。 ③修改/linux/drivers/char目录下config.in文件,在 comment Character devices 语句下面加上 bool suppot for mydriver CONFIG_MYDRIVER 这样,若编译内核,运行make config,make menuconfig或make xconfig,那么在配置字符设备时就会有选项: Support for mydriver 当选中这个设备时,设备驱动就加到了内核中了。 重新编译内核,在shell中将当前目录cd 到Linux目录下,然后执行以下代码: # make menuconfig # make dep # make 在配置选项时要注意选择支持用户添加的设备。这样得到的内核就包含用户的设备驱动程序。 Linux通过设备文件来提供应用程序和设备驱动的接口,应用程序通过标准的文件操作函数来打开、关闭、读取和控制设备。查看Linux文件系统下的/proc/devices,可以看到当前的设备信息。如果设备驱动程序已被成功加进,这里应该由该设备对应的项。/proc/interrupts纪录了当时中断情况,可以用来查看中断申请是否正常;对于DMA和I/O口的使用,在/proc下都有相应的文件进行记录;还可以在设备驱动程序中申请在/proc 文件系统下创建一个文件,该文件用来存放设备相关信息。这样通过查看该文件就可以了解设备的使用情况。总之,/proc文件系统为用户提供了查

串行同步通信

串行接口同步通信协议 [摘要]:接口在微型计算机系统的设计和应用中占有极为重要的地位。在微型计算机系统中,CPU要与存储器和输入/输出设备之间交换信息,这些信息的交换要借助接口来实现。接口是沟通微处理机和外部设备之间的桥梁,它减轻了CPU的负担,使CPU能够充分的发挥任务管理和逻辑判断作用,使CPU和外部设备能更加协调的完成输入/输出工作,从而提高整机的工作效率和系统功能。串行接口是使用串行方式进行数据传输的输入/输出接口,根据在串行通信中数据的定时的不同,串行通信可分为同步通信和异步通信。同步通信中为保证通信的正确,发送装置和接收装置事先必须有一个双方共同遵守的协议,这就是串行接口同步通信协议。 [关键词]:输入/输出接口,串行接口,同步通信,协议,SDLC/HDLC 规程 一、串行接口 在计算机领域内,有两种数据传送方式:串行传送和并行传送。并行数据传送中,数据在多条并行1比特宽的传输线上同时由源传送到目的,这种传送方式也称为比特并行或字节串行。串行数据传送中,数据在单条1比特宽的传输线上,1比特1比特

的按顺序分时传送。 串行通信一般使用在计算机与计算机之间、计算机和远程终端之间、终端与终端之间的通信中,传输距离通常从几米到数千公里。与典型设备相关的串行接口,数据传输的速率每秒在0~2百万比特的范围内。串行传输的速率和距离成反比,数据传输速率和距离的关系如图所示。 串行通信接口的信号电平常采用RS-232-C信号电平或20mA 电流环路操作方法。 串行数据的发送由发送时钟控制。数据发送过程:把并行的数据序列送入移位寄存器,然后通过移位寄存器由发送时钟触发进行移位输出,数据位的时间间隔可由发送时钟周期来划分。发送时钟、待发送的二进制数据和出现在传输线上的信号波形三者的关系如图所示。

串口通讯设计之Verilog实现

串口通讯设计之 V e r i l o g实现 Revised as of 23 November 2020

串口通讯设计之V e r i l o g实现 FPGA串口模块是将由RS-485发送过来的数据进行处理,提取出8位有效数据,并按异步串口通讯的格式要求输出到MAX3223的12脚。FPGA选用Xilinx公司的SpartanII系列xc2s50。此部分为该设计的主体。如上所述,输入数据的传输速率为700k波特率。为了使FPGA能够正确地对输入数据进行采样,提高分辨率能力和抗干扰能力,采样时钟必须选用比波特率更高的时钟,理论上至少是波特率时钟的2倍。 1 串口通信基本特点随着多微机系统的应用和微机网络的发展,通信功能越来越显得重要。串行通信是在一根传输线上一位一位地传送信息.这根线既作数据线又作联络线。串行通信作为一种主要的通信方式,由于所用的传输线少,并且可以借助现存的电话网进行信息传送,因此特别适合于远距离传送。在串行传输中,通信双方都按通信协议进行,所谓通信协议是指通信双方的一种约定。约定对数据格式、同步方式、传送速度、传送步骤、纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。异步起止式的祯信息格式为:每祯信息由四部分组成: 位起始位。 ~8位数据位。传送顺序是低位在前,高位在后.依次传送。c.一位校验位,也可以没有。d.最后是1位或是2位停止位。 FPGA(Field Pmgrammable Gate Array)现场可编程门阵列在数字电路的设计中已经被广泛使用。这种设计方式可以将以前需要多块集成芯片的电路设计到一块大模块可编程逻辑器件中,大大减少了电路板的尺寸,增强了系统的可靠性和设计的灵活性。本文详细介绍了已在实际项目中应用的基于FPGA的串口通讯设计。 本设计分为硬件电路设计和软件设计两部分,最后用仿真验证了程序设计的正确性。 2 系统的硬件设计 本方案的异步串行通信的硬件接口电路图如图1所示,主要由四部分组成:RS-485数据发送模块、FPGA 串口模块、MAX3223和DB9。各部分功能简述如下: RS-485数据发送模块是将前续电路的数据发送到FPGA,供本电路处理,亦即本电路的输入。RS485是符合RS-485和RS-4225串口标准的低功耗半双工收发器件,有和5V两种,在本设计中选用了的器件SP3485。 在本设计中。485的7脚和8脚与前端信号相连接,用于接收输入的数据。数据格式是这样的:一帧数据有25位,报头是16个高电平和1个低电平,接下来是 8位有效的数据。传输速率为700k波特率。2脚是使能端,与FPGA的I/O口相连,由FPGA提供逻辑控制信号。1脚和4脚也与FPGA相连,由 FPGA对输入数据进行处理。 FPGA串口模块是将由RS-485发送过来的数据进行处理,提取出8位有效数据,并按异步串口通讯的格式要求输出到MAX3223的12脚。FPGA选用Xilinx公司的Spartan II系列xc2s50。此部分为该设计的主体。如上所述,输入数据的传输速率为700k波特率。为了使FPGA能够正确地对输入数据进行采样,提高分辨率能力和抗干扰能力,采样时钟必须选用比波特率更高的时钟,理论上至少是波特率时钟的2倍。在本设计中选用4倍于波特率的时钟,利用这种4倍于波特率的接收时钟对串行数据流进行检测和定位采样,接收器能在一个位周期内采样4次。如果没有这种倍频关系,定位采样频率和传送波特率相同,则在一个位周期中,只能采样一次,分辨率会差。比如,为了检测起始位下降沿的出现,在起始位的前夕采样一次之后,下次采样要到起始位结束前夕才进行。而假若在

第十五章_Android内核驱动——杂项

第十五章Android内核驱动——杂项 15.1 日志系统 基本原理 Android的logger是一种轻量级的日志系统。在内核中实现为一种misc设备驱动,它与用户态的logcat工具配合实现了方便的调试工具,开发应用程序的时候可以利用logger查看日志,进行跟踪调试。 logger的实现 logger的源代码在drivers/staging/android/logger.c中,它用三个结构体logger_log,logger_reader和logger_entry来维护logger设备的信息。其中logger_log代表一个log设备,logger_reader代表一个读日志的reader,logger_entry代表writer写入的一条日志。 logger在模块初始化时注册三个misc设备:log_main,log_events和log_radio。其中log_main 记录主要的日志信息,log_events记录与事件有关的信息,log_radio记录与通信有关的信息,实现了以下的file operation: ●logger_open 标准的open接口,如果以读模式打开,则分配一个logger_reader,初始化其成员变量,并把这个logger_reader保存在file->private_data中。如果是write模式打开,则直接把对应logger 设备的logger_log保存在file->private_data。此后在读或者写的时候就可以通过file-> private_data找到对应的logger_reader或logger_log。 ●logger_read 首先当前进程(读log的进程)加到logger_log->wq等待队列上,判断当前日志buffer是否为空,如果空则调度别的进程运行,自己挂起(如果指定了非阻塞模式,则直接返回-EAGAIN),重复上述过程直buffer中有日志可读,此时,读出一条日志,拷贝到用户空间,返回。 ●logger_aio_write 写操作支持同步、异步以及scatter方式的写操作。写操作几乎总是成功的,当buffer满的时候,新写入的日志会覆盖最初的日志。总之,buffer是环形的,如果没有及时被读出,数据会丢失。 ●logger_ioctl 支持以下命令: ?LOGGER_GET_LOG_BUF_SIZE:得到logger device 环形缓冲区的大小

OLED同步串行通信

1. OLED只能写入,不能读出。4线串行模式:D0——串行时钟线CLK,D1——串行数据线DA TA,P/S——模式选择、高为并行、低为串行。 并行模式需要使用全部数据及控制脚,串行模式只需要CLK、DA TA、RES、DC、CS共5个控制脚(WR、RD不用了)。 2.最常用配置方式: 3.同步串行通讯:时钟线、数据线,通过时钟保持数据同步。异步串行通讯:只有一根数据线,通过波特率保证数据同步。无线通信一般均为异步串行通信(一根天线)。 4.串行总线分三类:单总线(1—Wire)、SPI总线、I2C总线。单总线:用一根线数据收发和时钟信号,可以提供电源。SPI总线3根或4根线组成,数据收发,器件选择,时钟信号。I2C总线,两根线,数据收发,时钟信号。单总线特点:一、单总线芯片通过一根信号线传递控制信号、地址信号、数据信号。二、每个单总线芯片都有全球唯一序列号,当多个单总线芯片挂在一根总线上,根据不同序列号选择访问。三、单总线芯片在总线上可以获得电源。SPI:同步串行外设接口。SPI总线一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、低电平有效的从机选择线SS。系统主机与从设备串行方式,高位在前,低位在后。SPI从设备MISO与系统主机MOSI相连,SPI从设备MOSI与系统主机MISO相连。SPI从设备用独立的片选信号控制信号使能端。片选无效时输出高阻态以不影响其他SPI设备工作。 1.OLED串行通信SPI 4—wire:CS低电平,同步时钟上升沿有效,传送8位数据。SPI 3 —wire:CS低电平,同步时钟上升沿有效,传送D/C共9位数据。 2.OLED4线串行SPI方式。一、使用的信号线有:CS(OLED片选信号)、RET(硬件复 位OLED)、DC(命令/数据标志(0:读写命令,1:读写数据))、SCLK(串行时钟线,D0信号线作为串行时钟线)、SDIN(串行数据线,D1信号线作为串行数据线)。二、模块的D2需要悬空,其他引脚可以接到GND。三、在此模式下,只能往模块写数据而不能读数据。四、在此模式下,每个数据长度均为8位,在SCLK的上升沿,数据从SDIN 移入到SSD1306,并且高位在前。DC线还是用作命令或数据的标志线。写操作时序:

Linux内核驱动模块编写概览-ioctl,class_create,device_create

如果你对内核驱动模块一无所知,请先学习内核驱动模块的基础知识。 如果你已经入门了内核驱动模块,但是仍感觉有些模糊,不能从整体来了解一个内核驱动模块的结构,请赏读一下这篇拙文。 如果你已经从事内核模块编程N年,并且道行高深,也请不吝赐教一下文中的疏漏错误。 本文中我将实现一个简单的Linux字符设备,旨在大致勾勒出linux内核模块的编写方法的轮廓。其中重点介绍ioctl的用途。 我把这个简单的Linux字符设备模块命名为hello_mod. 设备类型名为hello_cl ass 设备名为hello 该设备是一个虚拟设备,模块加载时会在/sys/class/中创建名为hello_class 的逻辑设备,在/dev/中创建hello的物理设备文件。模块名为hello_mod,可接受输入字符串数据(长度小于128),处理该输入字符串之后可向外输出字符串。并且可以接受ioctl()函数控制内部处理字符串的方式。 例如: a.通过write函数写入“Tom”,通过ioctl函数设置langtype=chinese,通过read函数读出的数据将会是“你好!Tom/n” b.通过write函数写入“Tom”,通过ioctl函数设置langtype=english,通过read函数读出的数据将会是“hello!Tom/n” c.通过write函数写入“Tom”,通过ioctl函数设置langtype=pinyin,通过read函数读出的数据将会是“ni hao!Tom/n” 一般的内核模块中不会负责设备类别和节点的创建,我们在编译完之后会得到.o或者.k o文件,然后insmod之后需要mk nod来创建相应文件,这个简单的例子 中我们让驱动模块加载时负责自动创建设备类别和设备文件。这个功能有两个步骤, 1)创建设备类别文件class_cr eate(); 2)创建设备文件dev ice_create(); 关于这两个函数的使用方法请参阅其他资料。 linux设备驱动的编写相对wi ndows编程来说更容易理解一点因为不需要处理IR P,应用层函数和内核函数的关联方式浅显易懂。 比如当应曾函数对我的设备调用了open()函数,而最终这个应用层函数会调用我的设备中的自定义open()函数,这个函数要怎么写呢, 我在我的设备中定义的函数名是hello_mod_open,注意函数名是可以随意定义,但是函数签名是要符合内核要求的,具体的定义是怎么样请看 static int hello_mod_open(struct inode *, struct file *); 这样就定义了内核中的open函数,这只是定义还需要与我们自己的模块关联起来,这就要用到一个结构 struct file_operations 这个结构里面的成员是对应于设备操作的各种函数的指针。 我在设备中用到了这些函数所以就如下定义,注意下面的写法不是标准ANSI C的语法,而是GNU扩展语法。 struct file_operations hello_mod_fops = { .owner = THIS_MODULE, .open = hello_mod_open,

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

基于单片机的串口通信模块设计

1 绪论 1.1 研究背景 通信是指不同的独立系统利用线路互相交换数据,它的主要目的是将数据从一端传送到另一端,实现数据的交换。在现代工业控制中,通常采用计算机作为上位机与下层的实时控制与监测设备进行通讯。现场数据必须通过一个数据收集器传给上位机,同样上位机向现场设备发命令也必须通过数据收集器。串行通信因其结构简单、执行速度快、抗干扰能力强等优点,已被广泛应用于数据采集和过程控制等领域。 计算机与外界的信息交换称为通信。基本的通信方式有并行通信和串行通信两种。串行通信是指一条信息额各位数据被逐位按顺序传送的通信方式。串行通信的特点是:数据位传送,按位顺序进行,最少只需要一根传输线即可完成,成本低但传送速度快,串行通信的距离可以从几米到几千米。 随着计算机技术尤其是单片微型机技术的发展,人们已越来越多地采用单片机来对一些工业控制系统中如温度、流量和压力等参数进行监测和控制。PC机具有强大的监控和管理能力,而单片机则具有快速及灵和的控制特点,通过PC 机的RS-232串行接口与外部设备进行通信,是许多测控系统中常用的一种通信解决方案。而随着USB接口技术的成熟和使用的普及,由于USB 接口有着 RS-232(DB-9)串口无法比拟的优点,RS-232(DB-9)串口正在逐步地为USB 接口所替代。而在现在的大多数笔记本电脑中,出于节省物理空间和用处不大等原因,RS-232(DB-9)串口已不再设置,这就约束了基于RS-232(DB-9)串口与PC 机联络的单片机设备的使用围。当前USB接口逐步取代RS-232(DB-9)串口已是大势所趋,单片机同计算机的USB通信在实际工作中的应用围也将越来越广。本文所介

Windows 内核技术与驱动开发笔记(完整版)

Windows 内核技术与驱动开发笔记 1.简述Driver Entry例程 动程序的某些全局初始化操作只能在第一次被装入时执行一次,而Driver Entry例程就是这个目的。 * Driver Entry是内核模式驱动程序主入口点常用的名字。 * Driver Entry的第一个参数是一个指针,指向一个刚被初始化的驱动程序对象,该对象就代表你的驱动程序。WDM驱动程序的Driver Entry例程应完成对这个对象的初始化并返回。非WDM驱动程序需要做大量额外的工作,它们必须探测自己的硬件,为硬件创建设备对象(用于代表硬件),配置并初始化硬件使其正常工作。 * Driver Entry的第二个参数是设备服务键的键名。这个串不是长期存在的(函数返回后可能消失)。如果以后想使用该串就必须先把它复制到安全的地方。 * 对于WDM驱动程序的Driver Entry例程,其主要工作是把各种函数指针填入驱动程序对象,这些指针为操作系统指明了驱动程序容器中各种例程的位置。 2.简述使用VC进行内核程序编译的步骤 编译方式是使用VC++进行编译 1.用VC新建工程。 2.将两个源文件Driver.h和Driver.cpp拷贝到工程目录中,并添加到工程中。 3.增加新的编译版本。 4.修改工程属性,选择“project | setting”将IterMediate file和Output file 都改为MyDriver_Check。 5.选择C/C++选项卡,将原有的Project Options内容全部删除替换成相关参数。 6.选择Link选项卡,将原有的Project Options内容删除替换成相关Link。 7.修改VC的lib目录和include的目录。 8.在VC中选择tools | options,在弹出的对话框中选择“Directories”选项卡,在“Show directories for”下拉菜单中选择“Include file”菜单。添加DDK的相关路径。 3.简述单机内核调试技术 答:1.下载和安装WinDbg能够调试windows内核模块的调试工具不多,其中一个选择是微软提供的WinDbg 下载WinDbg后直接双击安装包执行安装。 2.安装好虚拟机以后必须把这个虚拟机上的windows设置为调试执行。在被调试系统2000、2003或是xp的情况下打开虚拟机中的windows系统盘。 3.将boot.ini文件最后一行复制一下,并加上新的参数使之以调试的方法启动。重启系统,在启动时就可以看到菜单,可以进入正常windows xp,也可以进入Debug模式的windows xp。 4.设置VMware管道虚拟串口。调试机与被调试机用串口相连,但是有被调试机是虚拟机的情况下,就不可能用真正的串口连接了,但是可以在虚拟机上生成一个用管道虚拟机的串口,从而可以继续内核调试。 4.请画出Windows架构简图

串行通信的同步传输与异步传输

------分隔线---------------------------- 这里所讲的同步传输和异步传输不同于VC 串口编程时的同步和异步,这里只讲串口硬件层传输的两种模式,有关VC 串口编程的同步模式和异步模式我将另外写一篇文章。 这里所讲的同步和异步是从硬件层级来讲的。首先要知道什么串行传输,串行传输是指数据的二进制代码在一条物理信道上以位为单位按时间顺序逐位传输的方式。串行传输时,发送端逐位发送,接收端逐位接受,同时,还要对所接受的字符进行确认,所以收发双方要采取同步措施(即判断什么时候有数据,数据是什么,什么时候结束传输)。 同步措施有两种,一种在传输的每个(帧)数据前(数据可能是5~8位)加一个起始位,后面加一位校验位及一位或两位的停止位组成一帧数据,这各方式称为异步传输;另一种是在一次传输(可能是多个字节)前加同步字节,可能不止一个字节,最后加校验字节或代表结束标志的字节,这种方式称为同步传输方式。 异步传输 异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它

们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII 代码。键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。 异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。 异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。

linux驱动程序进入内核

ARM-uClinux下编写加载驱动程序详细过程 本文主要介绍在uClinux下,通过加载模块的方式调试IO控制蜂鸣器的驱动程序。实验过程与上篇文章所讲的过程基本相似,更多注重细节及注意事项。 本文适合学习ARM—Linux的初学者。 //================================================================== 硬件平台:MagicARM2200教学试验开发平台(LPC2290) Linux version 2.4.24,gcc version 2.95.3 电路连接:P0.7——蜂鸣器,低电平发声。 实验条件:uClinux内核已经下载到开发板上,能够正常运行;与宿主机相连的网络、串口连接正常。 //================================================================== 编写蜂鸣器的驱动程序相对来说容易实现,不需要处理中断等繁琐的过程,本文以蜂鸣器的驱动程序为例,详细说明模块化驱动程序设计的主要过程和注意事项。 一、编写驱动程序 驱动程序的编写与上文所说的编写过程基本相同,这里再详细说明一下。 //========================================== //蜂鸣器驱动程序:beep.c文件 //------------------------------------------------------------------- #include /*模块相关*/ #include /*内核相关*/ #include /*linux定义类型*/ #include /*文件系统 file_opertions 结构体定义*/ #include /*出错信息*/ /*PINSEL0 注意:低2位是UART0复用口,不要改动*/ #define PINSEL0 (*((volatile unsigned*) 0xE002C000)) /*P0口控制寄存器*/ #define IO0PIN (*((volatile unsigned*) 0xE0028000))

SPI同步串行总线原理

三、SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 SPI概述 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行. SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB 的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI 和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO 线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。 在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。 AT91RM9200的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及/SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO 是主机的输入,从机的输出。/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。在一个SPI通信系统中,必须有主机。SPI总线可以配置成单主单从,单主多从,互为主从。 SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于16个外设的选择。 [编辑本段] SPI协议举例

基于labview的串口通讯设计

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊ 摘要 虚拟仪器是现代计算机技术同仪器技术深层次结合的全新概念仪器,实质是利用计算机显示器的显示功能模拟传统仪器的控制面板,以多种形式表达输出测量结果,利用计算机强大的软件功能实现信号数据的运算、分析和处理,完成各种测试功能的一种计算机仪器系统。 本文介绍了利用LabVIEW语言来实现上、下位机之间通信的方法,并从软、硬件两个方面阐述了设计思想。从实现PC机PC机之间的串口通信出发,先实现双PC机之间的数据发送、返还和接收,进而设计了以PC机作为上位机,以飞思卡尔8位单片机作为下位机的基于labview软件的串口通信系统。经过实验调试,系统达到了预期的通信目标。 应用先进的虚拟仪器软件LABVIEW,大大降低了串口通讯复杂程度,减小了软件设计的工作量,能够大大降低投资成本。在实际应用中有巨大的使用价值。 关键词:虚拟仪器;Labview ;串口通信;单片机

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊ Design of the serial communication system Based on LabVIEW Abstract Virtual instrument is the modern computer technology combined with the instrumentation of the new concept of deep-level instruments,in real terms is the use of analog computer monitors display control panel,traditional instruments,in various forms to express the output measurements,using computer software features to achieve a strong signal Operation data, analysis and processing,to complete a variety of testing capabilities of a computer instrument system This article describes the use of LabVIEW to implement the language, the next method of communication between the crew and from the software and hardware are two aspects of the design. PC-PC, from the implementation of serial communication between the departure, the first to achieve double the data between the PC, send and return, receive, and then designed a PC, as the host computer to Freescale 8-bit microcontroller based on a lower machine LabVIEW software serial communication system. After experimental debugging, the system achieved the desired communication goals. The application of advanced virtual instrument software LabVIEW, greatly reduces the complexity of serial communication, reduce the workload of the software design can greatly reduce the investment cost. In practice, there is tremendous value in use. Keywords: virtual instrument; Labview; serial communication; microcontroller

相关文档
相关文档 最新文档