文档库 最新最全的文档下载
当前位置:文档库 › 奥氏体不锈钢管道焊接热裂纹缺陷模拟方法

奥氏体不锈钢管道焊接热裂纹缺陷模拟方法

奥氏体不锈钢管道焊接热裂纹缺陷模拟方法
奥氏体不锈钢管道焊接热裂纹缺陷模拟方法

奥氏体不锈钢的焊接工艺

奥氏体不锈钢的焊接工艺 奥氏体不锈钢的焊接工艺 一、焊接方法 由于奥氏体不锈钢具有优良的焊接性,几乎所有的熔焊方法和部分压焊方法都可以焊接。但从经济、实用和技术性能方面考虑,最好采用焊条电弧焊、惰性气体保护焊、埋弧焊和等离子焊等。 1. 焊条电弧焊 厚度在2mm以上的不锈钢板仍以焊条电弧焊为主,因为焊条电弧焊热量比较集中,热影响区小,焊接变形小;能适应各种焊接位置与不同板厚工艺要求;所用[wiki]设备[/wiki]简单。但是,焊条电弧焊对清渣要求高,易产生气孔、夹渣等缺陷。合金元素过度系数较小,与氧亲和力强的元素,如钛、硼、铝等易烧损。 2. 氩弧焊 有钨极弧焊和熔化极氩弧焊两种,是焊接奥氏体不锈钢较为理想的焊接方法。因氩气保护效果好,合金元素过度系数高,焊缝成分易于控制;由于热源较集中,又有氩气冷却作用,其焊接热影响区较窄,晶粒长大倾向小,焊后不需要清渣,可以全位置焊接和[wiki]机械[/wiki]化焊接。缺点是设备较复杂,一般须使用直流弧焊电源,成本较高。 TIG有手工和自动两种,前者较后者熔敷率低些。TIG最适于3mm以下薄板不锈钢焊接,在奥氏体不锈钢[wiki]压力容器[/wiki]和管道的对接和封底焊等广为应用。对于厚度小于0.5mm的超薄板,要求用10~15A电流焊接,此时电弧不稳,宜用脉冲TIG焊。厚度大于3mm有时须开坡口和采用多层多道焊,通常厚度大于13mm,考虑制造成本,不宜再用TIG焊。 3. 等离子弧焊 是焊接厚度在10~12mm以下的奥氏体不锈钢的理想方法。对于0.5mm以下的薄板,采用微束等离子弧焊尤为合适。因为等离子弧热量集中,利用小孔效应技术可以不开坡口,不加填充金属单面焊一次成形,很适合于不锈钢管的纵缝焊接。 焊接工艺参数的选择 焊接时,为保证焊接质量,必须选择合理的工艺参数,所选定的焊接工艺参数总称为焊接工艺规范。例如,手工电弧焊的焊接工艺规范包括:焊接电流、焊条直径、焊接速度、电弧长

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施,这条必须收藏了 焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。1.热裂纹是在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si骗高)和单相奥氏体钢、镍基合金以及某些铝合金焊逢中。这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短脆性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。(2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成

物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。这一种裂纹的防治措施与结晶裂纹基本上是一致的。特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。(3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。2.再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。再热裂纹产生在焊接热影响区的过热粗晶部位,其走向是沿熔合线的奥氏体粗晶晶界扩展。防治再热裂纹从选材方面,可以选用细晶粒钢。在工艺方面,选用较小的线能量,选用较高的预热温度并配合以后热措施,选用低匹配的焊接材料,避免应力集中。3.冷裂纹主要发生在高、中碳钢、低、中合金钢的焊接热影响区,但有些金属,如某些超高强钢、钛及钛合金等有时冷裂纹也发生在焊缝中。一般情况下,钢种的淬硬倾向、焊接接头含氢量及分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。焊后形成的马氏体组织在氢元素的作用下,配合以拉应力,便形成了冷裂纹。他的形成一般是穿晶或沿晶的。冷裂纹一般分

奥氏体不锈钢管道焊接工艺规程

奥氏体不锈钢管道焊接工艺规程 浙江华业电力工程股份有限公司企业标准 E n t er p ri s e S ta nd a rd f or zh e ji an g H u ay e Po w er En gi n ee r in g Co.,l t d HYDBP401-2004 奥氏体不锈钢管道焊接工艺规程 2004—04—01 发布 2004—04—01实施 浙江华业电力工程股份有限公司发布

前言 本标准主要起草人:仲春生 本标准审核人:朱文杰、周丰平、刘浩、王新宇 本标准批准人:沈银根 本标准自2004年04月01日发布,04月01日起在全公司范围内试行。本标准由公司工程部负责解释。

奥氏体不锈钢管道焊接工艺规程 1 范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB50235—97 《工业金属管道工程施工及验收规范》 GB/T 983—95 《不锈钢焊条》 DL/T869-2004 《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004《压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004《压力管道安装工程焊接材料管理程序》 HYDBP013-2004《压力管道安装工程材料设备储存管理程序》 HYDBP012-2004《压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004《压力管道安装工程计量管理手册》 HYDBP007-2004《压力管道安装工程检验和试验控制程序》 HYDBP010-2004《压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3 先决条件

不锈钢裂纹

?钢。奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 ?奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: ? 1.1 晶间腐蚀 ?奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 ?为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。 ? 1.2 焊接热裂纹 ?热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: ?(1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; ?(2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 ? 1.3 应力腐蚀开裂 ?应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 ?应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 ? 1.4 焊缝金属的低温脆化 ?对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般可以通过选用纯奥氏体焊材和调整焊接工艺获得单一的奥氏体焊缝的方法来防止焊缝金属的低温催化。 ? 1.5 焊接接头的σ相脆化 ?焊件在经受一定时间的高温加热后会在焊缝中析出一种脆性的σ相,导致整个接头脆化,塑性和韧性显著下降。σ相的析出温度范围650-850℃。在高温加热过程中,σ相主要由铁素体转变而成。加热时间越长,σ相析出越多。 ?防止措施: ?(1)限制焊缝金属中的铁素体含量(小于15%),采用超合金化焊接材料,即高镍焊材; ?(2)采用小规范,以减小焊缝金属在高温下的停留时间; ?(3)对已析出的σ相在条件允许时进行固溶处理,使σ相溶入奥氏体。 二、奥氏体不锈钢的焊条选用原则

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但 大致可分为2 种观点。 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样 导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越 稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理 其中在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断 裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶 液中才容易发生应力腐蚀。 ③一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。 压力容器的应力来源: ①外载荷引起的容器外表面的拉应力。 ②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。 2. 2 应力腐蚀失效的防护措施 控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况 千变万化,可按实际情况具体使用。 (1)选用耐应力腐蚀材料 近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素

304不锈钢焊接热裂的原因及解决方法

一、304不锈钢是奥氏体不锈钢,相当于1Cr19Ni9. SUS304不锈钢是0Gr18Ni9的材质,产生热裂纹的可能性比较大,奥氏体不锈钢有一个特点:他在900多度以上时是奥氏体,900多度以下至600多度时是马氏体,温度继续下降,就又转变为奥氏体。焊接时接口开裂就是在马氏体阶段开裂的。 解决的方法:减小一下焊接时的热输入量,加大焊后水冷却的工艺,使其在马氏体阶段的时间缩短,避免焊件在敏感的温度区间停留,接口就不会裂了。 二、不锈钢的焊接 1、奥氏体不锈钢的焊接 不锈钢是不锈钢和耐酸钢的总称,钢中所加合金元素在10%(质量分数)以上,属于高合金钢。它包括奥氏体型、马氏体型、铁素体型、奥氏体-马氏体型和沉淀硬化型五类。 焊接奥氏体不锈钢(0Cr18Ni9、00Cr18Ni9、0Cr18Ni12Mo2、0 0Cr18Ni12Mo2、0Cr18Ni9Ti、1Cr18Ni9Ti、1Cr18Ni12Mo3Ti 等)主要问题是热裂纹――焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区所产生的焊接热裂纹、脆化、晶间腐蚀――沿金属晶粒边界发生的腐蚀破坏现象。和应力腐蚀开裂――金属材料(包括焊接接头)在一定温度下受腐蚀介质和拉应力的共同作用而产生的裂纹。此外,因导热性差,线膨胀系数大,焊接变形也大。

1)热裂纹与结构钢相比,它的热裂纹倾向较大,在焊缝及热影响区均可能出现热裂纹。最常见的是焊缝结晶裂纹--在焊缝凝固过程的后期所形成的焊接裂纹,时在热影响区和多层焊层间还会出现液化裂纹。含镍量越高,产生热烈倾向越大,而且越不容易控制。 ;防止措施:a.严格限制硫、磷等杂质的含量。b.调整焊缝金属组织,以奥氏体为主的γ+δ双相组织具有良好抗裂性。c.调整焊缝金属合金成分,在单相稳定奥氏钢中适当增加锰、碳、氮的含量。d.采用小线能量及小截面焊道 2)接头脆化奥氏体钢焊接接头的低温脆化和高温脆化是值得注意的问题 防止措施:a.严格控制焊缝中铁素体含量(体积分数)2~7%,因为475℃脆化和δ相脆化易出现在铁素体中。b.多层焊时采用较小线能量,以减少熔池体积,提高冷却速度,缩短高温滞留时间。 3)晶间腐蚀有三种形式:焊缝的晶间腐蚀;热影响区的“敏化区腐蚀”--敏化区腐蚀――在焊接热循环作用下,奥氏体不锈钢焊接热影响区中,被加热到易引起晶间腐蚀的敏化温度(理论上为450-85 0℃)的部位,称为敏化区。在敏化区发生的晶间腐蚀现象;刀蚀――发生在焊接接头近缝区一个狭带(小于1mm)上的晶间腐蚀。这种腐蚀的破坏形式像刀的切口,故称为刀蚀。

奥氏体不锈钢在Cl~-介质中应力腐蚀研究

奥氏体不锈钢在Cl-介质中应力腐蚀研究 郦建立Ξ(抚顺石油学院) 王宽福 (浙江大学) 摘 要 评述了奥氏体不锈钢在氯化物介质中应力腐蚀开裂。从环境、冶金和力学等方面论述了SCC的主要因素,综合论述了控制奥氏体不锈钢SCC的工程参量和安全评定的方法。提出了预防奥氏体不锈钢应力腐蚀的一些措施。 关键词 奥氏体不锈钢 应力腐蚀 工程参量 奥氏体不锈钢(304,316)以其优异的耐蚀性和较好的加工性,在化工、石油、动力工业和核工业等部门得到广泛的应用,然而其SCC(Stress Corrosion Cracking)破坏的几率也随之增大。化工设备失效中SCC的失效占1/4,其中奥氏体不锈钢设备SCC失效要占其1/2[1],而且大部分由含Cl-介质环境引起。因此对奥氏体不锈钢氯化物开裂进行了大量的研究[2~9]。 本文综述了奥氏体不锈钢SCC的主要影响因素、工程参量及安全评定的方法,并提出了一些预防措施。 1 奥氏体不锈钢Cl2环境开裂影响因素 1.1 环境因素 1.1.1 介质和浓度 引起奥氏体不锈钢SCC破裂的介质,认为一般限于Cl-、F-、Br-、H2S x O6、H2S和NaOH等几种。介质浓度越高,奥氏体不锈钢发生SCC的敏感性增加。工程实际表明开裂常发生在温度高的部位,特别是热传递速度大、易发生干湿交替的部位[10,11]。曾发现隔热层中浸出微量的Cl-引起SCC。Staehle[12]发现汽相部位产生破裂的Cl-浓度较低,而液相则需要较高的Cl-浓度。在实际工况中,设备的许多局部部位Cl-的浓度因设备结构和其所处环境条件的变化而提高,使较低Cl-浓度的介质也发生奥氏体钢的SCC,这给确定Cl-SCC的敏感性的浓度上限带来困难。 若在Cl-溶液中加入一些氧化剂(Fe3+, Cu2+,O2),将缩短破裂时间[13]。有研究表明,Cl-溶液若能完全除去氧,SCC将不会发生。卤化物中除Cl-外,F-和Br-同样具有SCC敏感性,但认为I-对Cl-溶液的SCC有缓蚀作用[14]。阳离子的种类对SCC也有影响,Thomas[15]认为MgCl2溶液促进SCC的作用比NaCl强。 1.1.2 温度 奥氏体不锈钢含Cl-溶液发生SCC破裂敏感性随温度升高而增大。SCC开裂温度也是一个重要参数。Truman[16]认为,奥氏体不锈钢在室温下一般不发生氯化物开裂。Money[17]也证实只有严重敏化的奥氏体不锈钢才发生IGSCC(Intergranular Stress Corrosion Cracking)。传统的工程观点认为,温度高于50℃时,在腐蚀环境中经长期暴露的材料有可能发生氯化物开裂。氯化物开裂与温度的下限有一定的依赖关系,但 601 化 工 机 械 1998年Ξ郦建立,男,1967年11月生,博士生。辽宁省抚顺市,113001。

奥氏体不锈钢焊接

奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: 晶间腐蚀 奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。 焊接热裂纹 热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: (1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; (2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 应力腐蚀开裂 应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 焊缝金属的低温脆化 对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般可以通过选用纯奥氏体焊材和调整焊接工艺获得单一的奥氏体焊缝的方法来防止焊缝金属的低温催化。

奥氏体不锈钢焊接要求

奥氏体不锈钢组对及焊接要求 概述: 科莱恩17000T化工助剂项目中有304L和316奥氏体型不锈钢管道,奥氏体型不锈钢是现代化工行业中采用的比较多的材质,奥氏体不锈钢具有良好的可焊性,但是焊接材料或焊接工艺不正确时,会出现晶间腐蚀,热裂纹,应力腐蚀开裂,焊缝成形不良。 为保证焊接质量中核中原项目部所有管工以及焊工必须按照以下的《奥氏体不锈钢焊接工艺作业指导书》进行不锈钢的组对以及焊接工作。 不锈钢焊接工艺作业指导书 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:母材为304L材质和母材为316L时均采用ER316L焊丝 焊丝直径:φ1.6,φ2.0、φ2.5 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.99%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流高频电焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:焊渣锤、扁铲、锉刀、不锈钢钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数

铝合金焊接接头产生裂纹特征及产生机理分析

虽然已经应用铝及其合金焊成许多重要产品,但实际焊接生产中并不是没有困难,主要的问题有:焊缝中的气孔、焊接热裂纹、接头“等强性”等。由于铝及其合金的化学活泼性很强,表面极易形成氧化膜,且多具有难熔性质(如Al 2 O3的熔点为2050℃,MgO熔点为2500℃),加之铝及其合金导热性强,焊接时容易造成不熔合现象。由于氧化膜密度同铝的密度极其接近,所以也容易成为焊缝金属中夹杂物。同时,氧化膜(特别是有MgO存在的,不很致密的氧化膜)可以吸收较多水分而常常成为焊缝气孔的重要原因之一。此外,铝及其合金的线胀系数大,导热性又强,焊接时容易产生翘曲变形。这些也都是焊接生产中颇感困难的问题。下面,对在试验过程中产生比较严重的裂纹进行深入的分析。 1铝合金焊接接头中的裂纹及其特征 在铝合金焊接过程中,由于材料的种类、性质和焊接结构的不同,焊接接头中可以出现各种裂纹,裂纹的形态和分布特征都很复杂,根据其产生的部位可分为以下两种裂纹形式:(1)焊缝金属中的裂纹:纵向裂纹、横向裂纹、弧坑裂纹、发状或弧状裂纹、焊根裂纹和显微裂纹(尤其在多层焊时)。 (2)热影响区的裂纹:焊趾裂纹、层状裂纹和熔合线附近的显微热裂纹。按裂纹产生的温度区间分为热裂纹和冷裂纹,热裂纹是在焊接时高温下产生的,它主要是由晶界上的合金元素偏析或低熔点物质的存在所引起的。根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也各有不同,热裂纹又可分为结晶裂纹、液化裂纹和多边化裂纹3类。热裂纹中主要产生结晶裂纹,它是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足不能及时填充,在凝固收缩应力或外力的作用下发生沿晶开裂,这种裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝和某些铝合金;液化裂纹是在热影响区中被加热到高温的晶界凝固时的收缩应力作用下产生的。 在试验过程中发现,当填充材料表面清理不够充分时,焊接后焊缝中仍存在较多的夹杂和少量的气孔。在三组号试验中,由于焊接填充材料为铸造组织,其中夹杂为高熔点物质,焊接后在焊缝中仍将存在;又,铸造组织比较稀疏,孔洞较多,易于吸附含结晶水的成分和油质,它们将成为焊接过程中产生气孔的因素。当焊缝在拉伸应力作用下时,这些夹杂和气孔往往成为诱发微裂纹的关键部位。通过显微镜进一步观察发现,这些夹杂和气孔诱发的微观裂纹之间有明显的相互交汇的趋势。然而,对于夹杂物在此的有害作用究竟是主要表现为应力集中源从而诱发裂纹,还是主要表现为脆性相从而诱发裂纹,尚难以判断。此外,一般认为,铝镁合金焊缝中的气孔不会对焊缝金属的拉伸强度产生重大影响,而本研究试验中却发现焊缝拉伸试样中同时存在着由夹杂和气孔诱发微裂纹的现象。气孔诱发微裂纹的现象是否只是一种居次要地位的伴生现象,还是引起焊缝拉伸强度大幅度下降的主要因素之一,亦还有待进一步的研究。 2热裂纹产生的过程 目前关于焊接热裂纹理论,国内外认为较完善的是普洛霍洛夫理论。概括地讲,该理论认为结晶裂纹的产生与否主要取决于以下3方面:脆性温度区间的大小;在此温度区间内合金所具有的延性以及在脆性温度区间金属的变形率大小。 通常人们将脆性温度区间的大小及在此温度区间内具有的延性值称为产生焊接热裂纹的冶金因素,而把脆性温度区内金属的变形率大小称为力学因素。焊接过程是一系列不平衡的工艺过程的综合,这种特征从本质上与焊接接头金属断裂的冶金因素和力学因素发生重要的联系,如焊接工艺过程与冶金过程的产物即物理的、化学的与组织上的不均匀性、熔渣与夹杂物、气体元素与处于过饱和浓度的空位等。所有这些,都是与裂纹的萌生与发展有密切联系的冶金因素。从力学因素方面看,焊接热循环特定的温度梯度与冷却速度,在一定的拘束条件下,将使焊接接头处于复杂的应力-应变状态,从而为裂纹的萌生与发展提供必要的条件。 在焊接过程中,冶金因素和力学因素的综合作用将归结为两个方面,即是强化金属联系还是弱化金属联系。如果在冷却时,焊接接头金属中正在建立强度联系,在一定刚性拘束条件下能够顺从地应变,焊缝与近缝区金属能够承受外加拘束应力与内在残余应力的作用时,裂纹就不容易产生,焊接接头的金属裂纹敏感性低,反之,当承受不住应力作用时,金属中强度联 铝合金焊接接头产生裂纹特征及产生机理分析 谢辉 (广东省第二农机厂,广东广州512219) 摘要:近40年来,由于焊接技术的进步,高效率和高性能的焊接方法得到了推广,铝及铝合金在车辆、船舶、建筑、桥梁、化工机械、低温工程和宇航工业等各种结构方面的应用在不断扩大,但国产化的铝合金和铝合金焊接材料均还存在着一定的差距。对铝合金焊接接头产生裂纹的特征及产生机理进行了分析,提出了几点防范措施。 关键词:铝合金;焊接接头;裂纹;机理 —116—

不锈钢焊接缺陷

不锈钢焊接管缺陷的危害、产生原因及防止措施 不锈钢焊接管的焊接缺陷会导致应力集中,降低承载能力,缩短使用寿命,甚至造成脆断。一般技术规程规定,裂纹、未焊透、未熔合和表面夹渣等是不允许有的;咬边、内部夹渣和气孔等缺陷不能超过一定的允许值,对于超标缺陷必须进行彻底去除和焊补。常见不锈钢焊接管的焊接缺陷产生原因、危害及防止措施简述如下。 一、焊缝尺寸不符合要求 焊缝尺寸不符合要求主要指焊缝余高及余高差、焊缝宽度及宽度差、错边量、焊后变形量等不符合标准规定的尺寸,焊缝高低不平,宽窄不齐,变形较大等。焊缝宽度不一致,除了造成焊缝成形不美观外,还影响焊缝与母材的结合强度;焊缝余高过大,造成应力集中,而焊缝低于母材,则得不到足够的接头强度;错边和变形过大,则会使传力扭曲及产生应力集中,造成强度下降。 产生的原因:不锈钢焊接管坡口角度不当或钝边及装配间隙不均匀;焊接工艺参数选择不合理;焊工的操作技能水平较低等。 预防措施:选择适当的坡口角度和装配间隙;提高装配质量;选择合适的焊接工艺参数;提高焊工的操作技术水平等。 二、咬边

由于焊接工艺参数选择不正确或操作工艺不正确,在沿着焊趾的母材部位烧熔形成的沟槽或凹陷称为咬边。咬边不仅减弱了焊管焊接接头强度,而且因应力集中容易引发裂纹。 产生的原因:主要是电流过大、电弧过长、焊条角度不正确、运条方法不当等。 防止措施:焊条电弧焊焊接时要选择合适的焊接电流和焊接速度,电弧不能拉得太长,焊条角度要适当,运条方法要正确。 三、未焊透 未焊透是指不锈钢焊接管焊接时焊接接头根部未完全熔透的现象。未焊透处会造成应力集中,并容易引起裂纹。重要的焊接接头不允许有未焊透。 产生的原因:坡口角度或间隙过小,钝边过大,装配不良;焊接工艺参数选用不当,焊接电流太小,焊接速度太快;焊工操作技术不良等。预防措施:正确选用和加工坡口尺寸,合理装配,保证间隙,选择合适的焊接电流和焊接速度,提高焊工的操作技术水平等。 四、未熔合

焊接工艺对奥氏体不锈钢应力腐蚀行为的影响

焊接工艺对奥氏体不锈钢应力腐蚀行为的影响 赵尔冰1 ,张亦良2 ,陈鴒志1 ( 1. 北京市朝阳区特种设备检测所,北京 100122; 2. 北京工业大学 机械工程与应用电子技术学院,北京 100124) 摘 要: 针对氯离子环境中奥氏体不锈钢焊缝较高的焊接残余应力极易引发应力腐蚀开裂的普遍性工程难题, 对国产 304、316 L 、德国 304 钢 3 种材料的不同焊接工艺进行了系列应力腐蚀实验研究. 焊接工艺包括手工焊条 电弧焊及 CO 2 保护药芯电弧焊、焊后空冷及浇水速冷,取样位置包括母材、焊缝起弧及收弧. 通过 100 多个试样 的应力腐蚀对比实验,研究了各种工艺之间的优劣,拟合了 2 种材料在沸腾氯化镁环境中应力 - 寿命的数学关 系. 结果表明,对应力腐蚀寿命而言,316 L 是 304 钢的 15 倍以上、焊接起弧点高于收弧点、对接焊缝高于角焊 缝; 焊后速冷工艺可提高焊接接头抗应力腐蚀能力. 关键词: 奥氏体不锈钢; 起弧; 收弧; 水冷处理; 氯离子应力腐蚀 中图分类号: O 346. 2 + 2; T G174. 3 + 6; R187 + 5 文献标志码: A 文章编号: 0254 - 0037( 2011) 11 - 1601 - 06 为了满足卫生要求,医疗、卫生和食品行业使用的灭菌器一般采用奥氏体不锈钢制造. 进口灭菌器寿 命一般为 10 a 以上[1-2] ,而国产灭菌器短时间内开裂报废的现象十分普遍,已经成为行业一大难题,在造 成医疗成本居高不下的同时,对医疗卫生安全产生极大隐患. 作者曾对开裂的灭菌器进行失效分析,结果 表明开裂原因为典型的氯离子应力腐蚀 [3-4] ,开裂灭菌器及金相、断口形貌见图 1、 2. 图 1 灭菌器内腔开裂 F i g . 1 I nn e r surface of the s t e r i l i z e r 图 2 典型的应力腐蚀特征 F i g . 2 T y p i c a l feature of s t r e ss c o rr os i o n 虽然采用铁素体、马氏体或双相不锈钢可以解决应力腐蚀问题,但考虑到制造工艺和制造成本,国内 外设备制造单位仍然选用奥氏体不锈钢. 该材料的最大问题是氯离子应力腐蚀,主要影响因素为拉应力 水平和氯离子浓度[5-6] ,其中残余应力是最主要的影响因素,目前对有效降低焊接残余应力虽然已经做了 一些工作 [7-11 ] ,但研究成果的实用性仍较为欠缺. 针对灭菌器裂纹主要出现在焊缝及热影响区的特征[3] ,鉴于目前氯离子应力腐蚀数据较少、尤其缺 乏不同焊接工艺的影响、不同材料与实际工况对比实验的现状,本文立足于通过对 3 种不同材料、不同焊 接工艺、不同焊后处理工艺等系列应力腐蚀实验,得到相应的应力腐蚀断裂寿命,比较不同材料及不同工 艺的应力腐蚀特征,找出焊后的薄弱环节,提出防止应力腐蚀的有效措施,为工艺改造提供基础实验依据. 收稿日期: 2009-07-13. 基金项目: 北京市朝阳区社会发展项目( SF0702) . 作者简介: 赵尔冰( 1963—) ,男,河北平山人,高级工程师.

304不锈钢焊接热裂的原因及解决方法

一、304不锈钢就是奥氏体不锈钢,相当于1Cr19Ni9、 SUS304不锈钢就是0Gr18Ni9的材质,产生热裂纹的可能性比较大,奥氏体不锈钢有一个特点:她在900多度以上时就是奥氏体,900多度以下至600多度时就是马氏体,温度继续下降,就又转变为奥氏体。焊接时接口开裂就就是在马氏体阶段开裂的。 解决的方法:减小一下焊接时的热输入量,加大焊后水冷却的工艺,使其在马氏体阶段的时间缩短,避免焊件在敏感的温度区间停留,接口就不会裂了。 二、不锈钢的焊接 1、奥氏体不锈钢的焊接 不锈钢就是不锈钢与耐酸钢的总称,钢中所加合金元素在10%(质量分数)以上,属于高合金钢。它包括奥氏体型、马氏体型、铁素体型、奥氏体-马氏体型与沉淀硬化型五类。 焊接奥氏体不锈钢(0Cr18Ni9、00Cr18Ni9、0Cr18Ni12Mo2、0 0Cr18Ni12Mo2、0Cr18Ni9Ti、1Cr18Ni9Ti、1Cr18Ni12Mo3Ti 等)主要问题就是热裂纹――焊接过程中,焊缝与热影响区金属冷却到固相线附近的高温区所产生的焊接热裂纹、脆化、晶间腐蚀――沿金属晶粒边界发生的腐蚀破坏现象。与应力腐蚀开裂――金属材料(包括焊接接头)在一定温度下受腐蚀介质与拉应力的共同作用而产生的裂纹。此外,因导热性差,线膨胀系数大,焊接变形也大。

1)热裂纹与结构钢相比,它的热裂纹倾向较大,在焊缝及热影响区均可能出现热裂纹。最常见的就是焊缝结晶裂纹--在焊缝凝固过程的后期所形成的焊接裂纹,时在热影响区与多层焊层间还会出现液化裂纹。含镍量越高,产生热烈倾向越大,而且越不容易控制。 ;防止措施:a、严格限制硫、磷等杂质的含量。b、调整焊缝金属组织,以奥氏体为主的γ+δ双相组织具有良好抗裂性。c、调整焊缝金属合金成分,在单相稳定奥氏钢中适当增加锰、碳、氮的含量。d、采用小线能量及小截面焊道 2)接头脆化奥氏体钢焊接接头的低温脆化与高温脆化就是值得注意的问题 防止措施:a、严格控制焊缝中铁素体含量(体积分数)2~7%,因为4 75℃脆化与δ相脆化易出现在铁素体中。b、多层焊时采用较小线能量,以减少熔池体积,提高冷却速度,缩短高温滞留时间。 3)晶间腐蚀有三种形式:焊缝的晶间腐蚀;热影响区的“敏化区腐蚀”--敏化区腐蚀――在焊接热循环作用下,奥氏体不锈钢焊接热影响区中,被加热到易引起晶间腐蚀的敏化温度(理论上为450-850℃)的部位,称为敏化区。在敏化区发生的晶间腐蚀现象; 刀蚀――发生在焊接接头近缝区一个狭带(小于1mm)上的晶间腐蚀。这种腐蚀的破坏形式像刀的切口,故称为刀蚀。

不锈钢裂纹文献综述详解

不锈钢焊缝裂纹相关文献摘要 在中国知网、万方数据库和百度等平台搜索“不锈钢”、“焊接”、“裂纹”、“返修”、“补焊”、“带裂纹运行”、“热裂纹”、“铁素体”等关键字,查找相关文献,找到了介绍不锈钢焊缝裂纹产生原因的文献,没有查到TP347HFG不锈钢管+12Cr18Ni9不锈扁钢的焊缝裂纹返修实例,也没有查到应用于锅炉受热面的不锈钢管+不锈钢扁钢的焊缝裂纹返修实例。 一、不锈钢焊缝裂纹产生原因 从裂纹产生的原因及奥氏体不锈钢焊接特点分析,裂纹是在液态金属凝固时产生的结晶裂纹。主要原因是焊缝金属中铁素体含量低,焊缝熔敷金属中P、Si 含量高及不锈钢厚壁管焊接过程中拘束应力大等要素共同作用的结果。 1.焊缝熔敷金属中δ铁素体含量偏低 Z2CN1810(相当于304L)、Z2CN1812(相当于316L)两种材料焊缝组织均为双相组织,奥氏体基体上含有少量的δ铁素体,δ铁素体一般在5%~12%之间。这些少量的铁素体在不锈钢焊缝中发挥着及其重要的作用,一方面可以打乱单一奥氏体柱状晶的方向性,细化晶粒,从而避免贫铬层贯穿于晶界构成腐蚀介质的集中通道,防止晶间腐蚀和结晶裂纹的产生。另一方面焊缝中少量的δ铁素体可以破坏焊缝结晶时低熔共晶体液态薄膜的连续性,提高焊缝的抗结晶能力。 2.奥氏体不锈钢焊接应力大 奥氏体不锈钢导热系数小,线膨胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中形成非常大的拉应力,这一点在厚壁焊缝中尤为明显。单纯的铁素体含量低、杂质含量高并不能形成结晶裂纹,只有在较大的拉伸应力之下才能形成结晶裂纹,这也是结晶裂纹产生的必要条件。 ——《奥氏体不锈钢管道焊缝裂纹产生原因分析》 铁素体对奥氏体不锈钢焊接的影响主要从以下两个方面考虑:焊缝热裂纹,焊缝的脆化。 奥氏体不锈钢焊接热裂纹主要是由于焊缝及熔合区的P、S夹杂及低熔点相的偏聚,碳化铬的大量析出造成的。同时奥氏体钢的导热系数小、线膨胀系数大,焊缝金属凝固过程中存在较大拉应力也是产生热裂纹的重要原因。

奥氏体不锈钢的常见腐蚀及避免措施

奥氏体不锈钢的常见腐蚀及避免措施 古晓辉 (江西东风药业股份有限公司工程维修部) 摘要:奥氏体不锈钢的常见腐蚀、腐蚀机理及采取避免措施 关键词:奥氏体不锈钢腐蚀机理措施 在不锈钢中,铬镍奥氏体不锈钢(以Cr18Ni9为基本型)得到广泛应用,其产量占不锈钢产量的70%左右,常见的品种有316(O Cr17Ni12Mo2)、316L (OO Cr17Ni14Mo2)、304(OCr18Ni9)、304L(00Cr18Ni10)及321(OCr18Ni10Ti),不同型号不锈钢合金元素的组成(见下表): 组成 316 OCr17Ni12Mo2 316L OO Cr17Ni14Mo2 304 O Cr18Ni9 304L O Cr18Ni10 321 OCr18Ni10Ti C碳[0.06%[0.03%[0.06%[0.03%[0.06% Si硅[1%[1%[1%[1%[1% Mn锰[2%[2%[2%[2%[2% P磷[0.035%[0.035%[0.035%[0.035%[0.035% S硫[0.03%[0.03%[0.03%[0.03%[0.03% Ni镍16%-18%16%-18%8%-11%8%-12%8%-12%6 Cr铬12%-14%14%-16%17%-19%17%-19%17%-19% Mo钼 1.8%- 2.5% 1.8%- 2.5% 其它Ti:@C%-0.6 它们的共同特点是具有耐腐蚀性和较好的耐热性。然而,/耐腐蚀0性是相对的,其/耐腐蚀0性是指在一定的外界条件和一定的腐蚀介质中,具有高的化学稳定性的特性。但此类不锈钢在某些介质情况下使用,会产生晶间腐蚀、点蚀和应力腐蚀等类型的腐蚀,特别是在含氯离子的介质中尤会产生腐蚀,众所周知,在二次大战中,有人曾用普通奥氏体不锈钢建造扫雷艇在海水中使用,其根据是奥氏体不锈钢也是非磁性的,而且比木材(高级),但这艘船并未投入使用,在试航期间就是由于发生应力腐蚀破裂而损坏。 通常采用超低碳或低碳不锈钢的方法来解决,但超低碳或低碳不锈钢不是解决此类腐蚀的根本方法,因此类腐蚀还与其它因素有关。笔者曾作过这样的试验,在无菌液贮罐(外带夹套,夹套内走氯化钙)的制作中,筒体材料一台选316L,而一台选321,对其在制造中考虑到其它因素(从结构、焊接工艺、制后处理等方面加以保证)。结果3161L贮罐只使用了3-4月就出现腐蚀,而另一台321贮罐使用近两年还没出现腐蚀。因此,我们在实际应用中要想合理选用奥氏体不锈钢,就得了解其腐蚀机理,从而采用相应的避免腐蚀措施。1、奥氏体不锈钢的腐蚀机理: 奥氏体不锈钢的常见腐蚀:有晶间腐蚀、点蚀和应力腐蚀等。 1.1当奥氏体不锈钢在制造和焊接时,加热温度和加热速度处在敏化温度区域时,材料中过饱和碳就会在晶粒边界首先析出,并与铬结合形成碳化铬,此时碳在奥氏体内的扩散速度比铬扩散速度大,铬来不及补充晶界由于形成碳化铬而损失的铬,结果晶界的铬的含量不断降低,形成贫铬区,使电极电位下降,当与含氯离子等腐蚀介质接触时,就会引起微电池腐蚀。虽然腐蚀仅在晶粒表面,但却迅速深入内部形成晶间腐蚀。由此,我们知道产生晶间腐蚀的原因有:只有在 220江西化工2006年第4期

奥氏体不锈钢焊接

奥氏体不锈钢焊接公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: 晶间腐蚀 奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。

焊接热裂纹 热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P 等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: (1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; (2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C 等的含量。 应力腐蚀开裂 应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 焊缝金属的低温脆化 对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般

相关文档
相关文档 最新文档