文档库 最新最全的文档下载
当前位置:文档库 › 基于ProCAST的卧式离心铸造轧辊的充型模拟

基于ProCAST的卧式离心铸造轧辊的充型模拟

基于ProCAST的卧式离心铸造轧辊的充型模拟
基于ProCAST的卧式离心铸造轧辊的充型模拟

基于ProCAST的卧式离心铸造轧辊的充型模拟

摘要:本文建立了复合轧辊卧式离心铸造在充型过程中金属液流动的三维模型,采用专业的铸造软件ProCAST求解得到重力和离心力作用下的流场分布,并讨论了金属液自由液面呈偏心分布的原因,分析结果对离心铸造过程中流场的认识和工艺优化设计具有参考意义。

关键词:ProCAST 卧式离心铸造充型模拟

1 前言

ProCAST是一款基于强大的有限元分析的铸造过程模拟软件,它能够预测严重畸变和残余应力,并能用于半固态成形,离心铸造,消失模铸造、连续铸造等特殊工艺。利用ProCAST对离心铸造过程进行模拟,它能够针对离心铸造过程进行流动、传热、应力耦合作出分析。

ProCAST几乎可以模拟分析任何铸造生产过程中可能出现的问题,为铸造工程师提供新的途径来研究铸造过程,使有机会看到型腔内所发生的一切,从而产生新的设计方案。

2 模型建立及运算

金属液在重力作用下浇入旋转着的铸型后,由于金属液与铸型之间的摩擦力及金属液内部的粘滞力和高速旋转产生的离心力使金属液在铸型内形成中空轧辊。

(1)利用ProE三维软件作为前处理软件创建模型,创建装配模型,输出ProCAST可接受的模型或网格格式的文件,通过标准格式文件,如IGES、STL 等可以和ProCAST实现数据交换。

(2)MeshCAST对输入的IGES文件进行修复,然后生成面网格,最终产生四面体网格,生成xx.mesh文件,文件中包含节点数量、单元数量、材料数量等信息。

建立的用于模拟轧辊的卧式离心铸造的模型如图1所示,图中不同颜色反应了模型是由两部分构成:铸型和铸件。同时显示有两种材料、110940个节点、580647个单元以及模型的长宽高等信息。此模型中,铸型外径200mm,铸件外径180mm、高度250mm。

图 1 物理网格模型

(3)PreCAST为四面体网格文件分配材料、设定界面条件、边界条件、初始条件以及模拟参数。

铸型和铸件材料分别在材料数据库中选取,先试验性的以AlSi12CuNi为铸件材料,H13为铸型材料计算,从结果可以看出ProCAST对卧式离心铸造成型的模拟是否完好,再变换成实际中生产轧辊使用的材料进行模拟,这样能节省处理材料数据的时间。在边界条件中,主要设置包括:铸型转速为900r/min,铸型的外轮廓设为自然空冷,施加浇注速度为0.15m/s,浇注温度为900K。初始温度为室温。

(4)DataCAST检查模型以及PreCAST中对模型的定义是否有错误,若有错误则输出错误信息,若无错误则将所有模型的信息转化为二进制。

(5)ProCAST对铸造过程模拟分析计算。

(6)ViewCAST显示铸造过程模拟分析结果。图2是在整个模型在中心纵截面处的金属液自由液面分布图。由图可以看出,铸件在入口处最厚,沿着铸件

procast在铸造中的应用

对于我们学铸造专业的学生来说,掌握几款铸造方面的软件是很有必要的,有了一定的软件基础在以后的铸造设计、模拟中都是很有用的。下面介绍下ProCAST软件在铸造中应用。 一、概述 ?ProCAST是为评价和优化铸造产品与铸造工艺而开发的专业CAE系统,借助于ProCAST系统,铸造工程师在完成铸造工艺编制之前,就能够对铸件在形成过程中的流场、温度场和应力场进行仿真分析并预测铸件的质量、优化铸造设备参数和工艺方案。 ?ProCAST可以模拟金属铸造过程中的流动过程,精确显示充填不足、冷隔、裹气和热节的位置以及残余应力与变形,准确地预测缩孔、缩松和铸造过程中微观组织的变化。 ?作为ESI集团热物理综合解决方案的旗舰产品,ProCAST是所有铸造模拟软件中现代CAD/CAE集成化程度最高的。它率先在商用化软件中使用了最先进的有限元技术并配备了功能强大的数据接口和自动网格划分工具。 ?全部模块化设计适合任何铸造过程的模拟; ?采用有限元技术,是目前唯一能对铸造凝固过程进行热-流动-应力完全耦合的铸造模拟软件; ?高度集成。 二、发展历程 ?Procast自1985年开始一直由位于美国马里兰州首府Annapolis的UES Software进行开发,并得到了美国政府和诸多研究机构的大力资助。为了保证模拟的精度,Procast一开始就采用有限元方法作为模拟的技术核心。 ?1990年后,位于瑞士洛桑的Calcom SA和瑞士联邦科技研究院也加入了Procast部分模块的开发工作,基于其强大的材料物理背景,Calcom在Procast 的晶粒计算模块和反求模块开发上贡献良多。 ?2002年,Procast和Calcom SA先后加入ESI集团,并重新组建为Procast Inc. (美国马里兰州)和Calcom ESI (瑞士洛桑)。ESI也重新整合了其原有的热物理模拟队伍如PAM-CAST和SYSWELD,这样Procast(有限元铸造仿真),PAM-CAST(有限差分元铸造仿真), Calcosoft(连续铸造仿真)和SYSWELD (热处理与焊接模拟)一起组成ESI完整的热物理综合解决方案。 三、适用范围 ?砂型铸造、消失模铸造; ?高压、低压铸造; ?重力铸造、倾斜浇铸; ?熔模铸造、壳型铸造; ?挤压铸造; ?触变铸造、触变成型、流变铸造。 由于采用了标准化的、通用的用户界面,任何一种铸造过程都可以用同一软件包ProCASTTM进行分析和优化。它可以用来研究设计结果,例如浇注系统、通气孔和溢流孔的位置,冒口的位置和大小等。实践证明ProCASTTM可以准确地模拟型腔的浇注过程,精确地描述凝固过程。可以精确地计算冷却或加热通道的位置以及加热冒口的使用。 四、材料数据

铸造仿真软件项目建议书

铸造仿真软件项目建议 书 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

目录 1背景 长期以来,对于铸造工艺的改进主要依靠经验和试验,一直缺乏一套专业的、有效的方法和手段。模拟是控制设计、制造过程并预测产品早期服役可能出现问题的最好解决方法。当前,有限元理论已十分成熟,相应的模拟商业软件也逐步趋于成熟,并在各行各业逐步发挥其巨大的作用。 现代制造工艺越来越复杂,性能、精度要求也越来越高,依赖试验的设计手段设计费用越来越高,周期越来越长,也越来越不容易保证可靠性。而从一些发达国家的经验来看,仿真技术的应用可以大大减少试验的比重,减少了设计的盲目性,节省巨额的设计费用,设计周期也大大缩短。从我院专业发展的角度看,急需在数值仿真这一方面提高一个层次,实现我院研发能力的跨越式发展。 铸造仿真软件的开发是一项技术含量很高、专业性很强的工作,作为一个设计单位,自行开发不切实际。国内一些专业单位开发的同类产品在实用性、规范性和易用性等方面都有不足。ESI集团的ProCAST是业界领先的铸造过程模拟软件,基于强大有限元求解器和高级选项,提供高效和准确的求解来满足铸造业的需求。与传统的尝试-出错-修改方法相比,ProCAST是减少制造成本,缩短开发时间,以及改善铸造过程质量的重要的、完美的解决方案。

2铸造模拟仿真对我院的作用 引进ProCAST软件,从短期来看会提高设计和工艺制造水平,在当前在研项目中立即产生效益;而从长远来看,制造工艺计算和仿真手段的大量应用必将彻底改变我院原有的制造工艺方式,最终提高我院铸造工艺的整体水平。 2.1铸造仿真对xx室的作用 xx室目前有很多钛合金铸件的铸造过程需要模拟来解决,其主要原因是:一、采用传统的试错法,费用昂贵、周期太长;二新产品大多没有经验可以借鉴,院以工艺摸索时间比较长,尤其是一些钛合金材料。 2.2铸造仿真对铸钢厂的作用 铸钢厂目前某些件的铸造出品率不是很高,引进铸造模拟仿真软件将大大节省提高铸钢厂的铸造工艺出品率和工艺水平,大大缩短生产周期,有效的提高劳动生产率。 另外铸造模拟仿真对于我院技术的传承也很有帮助,通过仿真我们可以将铸造技术和经验进行科学的直观的描述和记录,使得过去的一些抽象的经验变为简单明了的纸面文档进行记载和保存,有利于铸造技术的延续和资源共享。 3铸造仿真软件的调研与考核 经过上述分析,铸造仿真软件的引入是十分必要的,它对我院的虚拟制造技术和铸造技术的发展将起到极大的推动作用。因此我们对市面上的铸造仿真软件进行了调研和考核。

铸造过程模拟仿真

铸造过程模拟仿真 1、概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件[1]。 为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。作为铸造工艺过程计算机数值模拟的基础,温度场模拟技术的发展历程最长,技术也最成熟。温度场模拟是建立在不稳定导热偏微分方程的基础上进行的。考虑了传热过程的热传导、对流、辐射、结晶潜热等热行为。所采用的计算方法主要有:有限差分法、有限元法、边界元法等;所采用的边界条件处理方法有N方程法、温度函数法、点热流法、综合热阻法和动态边界条件法;潜热处理方法有:温度回升法、热函法和固相率法。 自丹麦Forsound于1962年第一次采用电子计算机模拟铸件凝固过程以来,为铸造工作者科学地掌握与分析铸造工艺过程提出了新的方法与思路,在全世界范围内产生了积极的影响,许多国家的专家与学者陆续开展此项研究工作。在铸造工艺过程中,铸件凝固过程温度场的数值模拟计算相对简单,因此,各国的专家与学者们均以铸件凝固过程的温度场数值模拟为研究起点。继丹麦人之后,美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算研究,且模拟计算的结果与实测温度场吻合良好;进入70年代后,更多的国家加入了铸件凝固过程数值模拟的研究行列中,相继开展了有关研究与应用,理论研究与实际应用各具特色。其中有代表性的研究人员有美国芝加哥大学的R.D.Pehlke教授、佐治亚工学院的J.Berry教授、日本日立研究所的新山英辅教授、大阪大学的大中逸雄教授、德国亚探工业大学的P.Sham教授和丹麦科技大学的P.N.Hansen教授等。我国的铸件凝固过程温度场数值模拟研究始于70年代末期,沈阳铸造研究所的张毅高级工程师与大连工学院的金俊泽教授在我国率先开展了铸造工艺过程的计算机数值模拟研究工作,虽然起步较晚,但研究工作注重与生产实践密切结合,取得了较好的应用效果,形成了我国在这一研究领域的研究特色[2]。 1988年5月,在美国佛罗里达州召开的第四届铸造和焊接计算机数值模拟会议上,共有来自10个研究单位的从事铸造凝固过程计算机数值模拟技术研究的专家和学者参加了会议组织的模拟斧锤型铸件凝固过程的现场比赛。由于该铸件在几何形状上属复杂类型,模拟计算有一定的难度。从比赛结果看,绝大部分的模拟结果与实际测温结果相吻合。此次比赛得出如下结论[8]: l)铸件凝固过程的计算机模拟达到了相当的水平,如三维自动刻分、三维模拟计算、三维温度场显示等,并产生了一些软件包,如日立公司的HICASS、丹麦的Geomesh、大阪大学的SOLAM及亚琛的CASTS等。 2)模拟计算的结果都接近实测,这说明有限差分、有限元和边界元这三种计算方法对温度场计算都能满足精度要求,同时也说明了铸件凝固过程温度场计算机模拟计算技术已趋成熟。

基于ProCAST的卧式离心铸造轧辊的充型模拟

基于ProCAST的卧式离心铸造轧辊的充型模拟 摘要:本文建立了复合轧辊卧式离心铸造在充型过程中金属液流动的三维模型,采用专业的铸造软件ProCAST求解得到重力和离心力作用下的流场分布,并讨论了金属液自由液面呈偏心分布的原因,分析结果对离心铸造过程中流场的认识和工艺优化设计具有参考意义。 关键词:ProCAST 卧式离心铸造充型模拟 1 前言 ProCAST是一款基于强大的有限元分析的铸造过程模拟软件,它能够预测严重畸变和残余应力,并能用于半固态成形,离心铸造,消失模铸造、连续铸造等特殊工艺。利用ProCAST对离心铸造过程进行模拟,它能够针对离心铸造过程进行流动、传热、应力耦合作出分析。 ProCAST几乎可以模拟分析任何铸造生产过程中可能出现的问题,为铸造工程师提供新的途径来研究铸造过程,使有机会看到型腔内所发生的一切,从而产生新的设计方案。 2 模型建立及运算 金属液在重力作用下浇入旋转着的铸型后,由于金属液与铸型之间的摩擦力及金属液内部的粘滞力和高速旋转产生的离心力使金属液在铸型内形成中空轧辊。 (1)利用ProE三维软件作为前处理软件创建模型,创建装配模型,输出ProCAST可接受的模型或网格格式的文件,通过标准格式文件,如IGES、STL 等可以和ProCAST实现数据交换。 (2)MeshCAST对输入的IGES文件进行修复,然后生成面网格,最终产生四面体网格,生成xx.mesh文件,文件中包含节点数量、单元数量、材料数量等信息。 建立的用于模拟轧辊的卧式离心铸造的模型如图1所示,图中不同颜色反应了模型是由两部分构成:铸型和铸件。同时显示有两种材料、110940个节点、580647个单元以及模型的长宽高等信息。此模型中,铸型外径200mm,铸件外径180mm、高度250mm。 图 1 物理网格模型 (3)PreCAST为四面体网格文件分配材料、设定界面条件、边界条件、初始条件以及模拟参数。 铸型和铸件材料分别在材料数据库中选取,先试验性的以AlSi12CuNi为铸件材料,H13为铸型材料计算,从结果可以看出ProCAST对卧式离心铸造成型的模拟是否完好,再变换成实际中生产轧辊使用的材料进行模拟,这样能节省处理材料数据的时间。在边界条件中,主要设置包括:铸型转速为900r/min,铸型的外轮廓设为自然空冷,施加浇注速度为0.15m/s,浇注温度为900K。初始温度为室温。 (4)DataCAST检查模型以及PreCAST中对模型的定义是否有错误,若有错误则输出错误信息,若无错误则将所有模型的信息转化为二进制。 (5)ProCAST对铸造过程模拟分析计算。 (6)ViewCAST显示铸造过程模拟分析结果。图2是在整个模型在中心纵截面处的金属液自由液面分布图。由图可以看出,铸件在入口处最厚,沿着铸件

铸造模拟软件MAGMA操作教程

CAD Model Preprocessor Meshing Parameters Postprocessor Analysis Decision 一、基本操作流程 图(1_1) 建构正确的实体模型是进行分析工作的关键。把实体分为不同的组,转换为.stl 档,为MAGMA 分析做好准备。如图(1_1)所示:黑色字体是使用MAGMA 的操作步骤;红色字体是分析的前期工作和后期对策。 二、MAGMA的操作 1、创建专案 建构实体模型 模流前处理 实体切网格 参数设定 模流后处理 结 果 分 析 相 应 对 策

图(2_1) 图(2_2) 图(2_3) 图(2_4) 图(2_5) 说明: 图(2_1)打开桌面图标 project 菜单 create project 出现新对话框 图(2_2)选择Iron casting 铸铁模组 选择结果存放路径(MAGMAsoft 下) 取解析方案名称 回车键 OK 出现新对话框 图(2_3)默认系统选择直接按红框所标的键,直到图(2_4),按OK 键结束创建 专案操作。如图(2_5)的路径,把建立好的.stl 档存在CMD 文件夹下。 2、前处理 2-1 、材质群组介绍 专案名称 .stl 档

图(2_6) 在载入时一定要确保重力方向向上,如图(2_6)所示。一般在实体建模时便给出正确的重力方向。如果方向错误也可在MAGMA 内修改。(见后面说明) 砂模可以在建构实体时绘出,也可以在MAGMA 内绘制出。后面有进一步说明。 2-2、OVERLAY 原理 图(2_7) 图(2_8) 在建构实体时有一些区域重合。如图(2_7),ingate 连接cast 和gating ,其和两者都有交接的部分。我们希望各部分独立不干涉,保证分析的精确。利用overlay 原理切割重合区域。如图(2_8)排在前面的ingate 被排在后面的gating 和cast 切割。在载入.stl 档后需利用此原理进行排序。 2-3、载入.stl 档 接上动把.stl 档存在CMD 文件夹下后,在创建专案的界面(图(2_1))按下preprocess 键, CA VITY INSERT CAST INGATE GATING 1. CAST 2. INGATE 3. GATING 1、 砂模(sandm ) 2、 灌口(inlet ) 3、 浇道(gating ) 4、 浇道(gating ) 5、 冒口(feeder ) 6、 冒口(feeder ) 7、 入水口(ingate ) 8、 入水口(ingate ) 9、 砂芯(core ) 10、 冷铁(chill ) 11、 铸件(cast ) Inlet Gating Gating Feeder Core chill Ingate Z 轴正向 CA VITY INSERT CAST INGATE GATING 1. INGATE 2. GATING 3. CAST 排序

什么是离心铸造

什么是离心铸造 离心铸造是将液体金属注入高速旋转的铸型内,使金属液在离心力的作用下充满铸型和形成铸件的技术和方法。离心力使液体金属在径向能很好地充满铸型并形成铸件的自由表面;不用型芯能获得圆柱形的内孔;有助于液体金属中气体和夹杂物的排除;影响金属的结晶过程,从而改善铸件的机械性能和物理性能。 根据铸型旋转轴线的空间位置,常见的离心铸造可分为卧式离心铸造和立式离心铸造。铸型的旋转轴线处于水平状态或与水平线夹角很小(4°)时的离心铸造称为卧式离心铸造。铸型的旋转轴线处于垂直状态时的离心铸造称为立式离心铸造。铸型旋转轴线与水平线和垂直线都有较大夹角的离心铸造称为倾斜轴离心铸造,但应用很少。

离心铸造最早用于生产铸管,随后这种工艺得到快速发展。国内外在冶金、矿山、交通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、内燃机缸套和轴套等铸件的生产最为普遍。对一些成形刀具和齿轮类铸件,也可以对熔模型壳采用离心力浇注,既能提高铸件的精度,又能提高铸件的机械性能。 离心铸造的优点: 1)几乎不存在浇注系统和冒口系统的金属消耗,提高工艺出品率; 2)生产中空铸件时可不用型芯,故在生产长管形铸件时可大幅度地改善金属充型能力,降低铸件壁厚对长度或直径的比值,简化套筒和管类铸件的生产过程; 3)铸件致密度高,气孔、夹渣等缺陷少,力学性能高; 4)便于制造筒、套类复合金属铸件,如钢背铜套、双金属轧辊等;成形铸件时,可借离心力提高金属的充型能力,故可生产薄壁铸件。 离心铸造的缺点: 1)用于生产异形铸件时有一定的局限性。 2)铸件内孔直径不准确,内孔表面比较粗糙,质量较差,加工余量大; 3)铸件易产生比重偏析,因此不适合于合金易产生比重偏析的铸件(如铅青铜),尤其不适合于铸造杂质比重大于金属液的合金。 离心铸造工艺过程:

ProCAST软件的特点及其在铸件成形过程中的应用_胡红军

ProCAST软件的特点及其在铸件成形过程中的应用Function of FEM Software ProCAST and Application in Casting 胡红军 (重庆工学院材料科学与工程学院,重庆400050) 摘 要:介绍了商品化有限元软件P ro CA ST的组成模块、功能以及在铸件成形、缺陷预测方面的应用。 关键词:有限元模拟;Pr oCA ST;凝固模拟;缺陷预测 中图分类号:T G244 文献标识码:B 文章编号:1001-3814(2005)01-0070-02  Pr oCAST软件从1985年开始将最先进的有限元技术用在铸造模拟中,有效地提高了铸造工艺的正确性。借助于ProCAST系统,铸造工程师在完成铸造工艺编制之前,就能够对铸件在形成过程中的流场、温度场和应力场进行仿真分析并预测铸件的质量、优化铸造设备参数和工艺方案,通过对金属流动过程的模拟,可以精确显示浇不足、冷隔、裹气和热节的位置及残余应力和变形的大小,准确地预测缩孔缩松和微观组织。 1 ProCAST软件的组成模块 Pro CA ST是针对铸造过程进行流动-传热-应力耦合作出分析的系统,共有8个模块,用户可以比较灵活地租用或购买这些模块。对于普通用户,一般应有传热分析及前后处理、流动分析、应力分析和网格划分等基本模块。对于铸造模拟有更高要求的用户则需要有更多功能的其它模块,例如热辐射分析,显微组织分析,电磁感应分析,反向求解,应力分析等模块。这些模块既可以一起使用,也可以根据用户需要有选择地使用。 2 ProCAST软件的特点 2.1 可重复性 即使一个工艺过程已经平稳运行几个月,意外情况也有可能发生。由于铸造工艺参数繁多而又相互影响,因而在实际操作中长时间连续监控所有的参数是不可能的。任何看起来微不足道的某个参数的变化都有可能影响到整个系统,但又不可能在车间进行全部针对各种参数变化的试验。ProCAST可以让铸造工程师快速检查每个参数的影响,从而得到可重复的、连续平稳生产的参数范围。 2.2 可虚拟试验 在新产品市场定位之后,就应开始进行生产线的开发和优化。ProCAST可以虚拟试验各种革新设计而取之最优。因此大大减少工艺开发时间,同时又把成本降到最低。 2.3 灵活性大 ProCAST采用基于有限元法(FEM)的数值计算方法,与有限差分法相比,具有较大的灵活性,特别适用于模拟复杂铸件成型过程中的各种物理现象。 2.4 模拟功能强大 ProCAST作为针对铸造过程进行流动、传热、应力求解的软件包,能够模拟铸造过程中绝大多数问题和许多物理现象。在铸造过程分析方面,ProCAST提供了能够考虑气体、过滤、高压、旋转等对铸件充型的影响,能够模拟出气化模铸造、低压铸造、压力铸造、离心铸造等几乎所有铸造工艺的充型过程,并且对注塑、压制腊模、压制粉末等的充型过程进行模拟;在传热分析方面,ProCAST能够对热传导、对流和辐射等三种传热方式进行求解,尤其是引入最新“灰体净辐射法”模型,使ProCAST擅长于解决精铸及单晶铸造问题;在应力分析方面,通过采用弹塑性和粘塑性及独有的处理铸件/铸型热和机械接触界面的方法,使其具有分析铸件应力、变形的能力;在电磁分析方面,Pro CA ST 可以分析铸造过程所涉及的感应加热和电磁搅拌等。以上的分析可以获得铸造过程的各种现象、铸造缺陷形成及分布、铸件最终质量的模拟和预测。 2.5 界面人性化 ProCAST的前后处理完全基于Window s的用户界面,通过提供交互菜单、数据库和多种对话框完成用户信息的输入。ProCAST具有全面的在线帮助,具有良好的用户界面;通过提供和通用机械CAD系统的接口,可直接获取铸件实体模型的IGES文件或通用CAE系统的有限元网格文件;可以将模拟结果直接输出到CAD系统接口,尤其可以通过I-DEAS直接读取 70 APPLICATION Hot W orking Technology 2005No.1 收稿日期:2004-10-27 作者简介:胡红军(1976-),男,湖北人,讲师,硕士,现从事材料成型 CAD/CAE软件研究和开发。

Magma铸造CAE模拟

Magma操作 STL导入 点击“preprocessor”进入“MAGMApre”界面,依次导入相应的构件,保存。

Mesh划分网格 如上图所示,Magma共提供以上四种划分网格方法:自动划分、标准划分、高级、高级2。其中,自动划分是指用户自己制定划分的总的网格数,Magma自动进行适当的调整划分实体,标准划分是指铸型等不需要很高精度的部分进行的一种比较粗略的划分,如果需要对某一部分进行更细的划分,那么用户可以在“高级”中进行制定网格大小,甚至可以在“高级2”中对更进一步的某些部分进行更细的网格划分。 自动划分是用户可以制定计算部分的大约网格数、是否生成壳、是否核心划分、是否针对解法5进行划分。 Solver5是一种针对复杂结构铸件的网格划分方法。 1.2.4 网格划分 1.根据网格总量划分 1)打开选择功能表enmeshment,则mesh generation的视窗就出现; 2)选择automatic ,输入网格总数量; 3)选择generate 划分。

按照网格总数划分 2.根据单元网格三维尺寸划分 标准高级更高级 1)操作步骤: (1)选择功能表enmeshment,则mesh generation的视窗即出现;

(2)选择standard模式定义标准的网格化参数(如图 1.2.4-2); (3)若standard模式不符划分需求,选择advanced和advanced2模式 ,来局部区域细分; 依据个人需求,改变预设的参数,参数说明后面3)中叙述。 (4)选择calculate,测试产生网格数; (5)假如接受测试结果,选择generate正式产生网格。 网格数量 2)划分准则 1、Wall thichness— 网格划分最小结构厚度。 2、Accuracy— 精度 3、Element size— 网格大小 4、Option。 其中Wall thichness和Element size一般设成一样大小。 3)参数说明 (1)wall thickness(壁厚) ─粗分网格; 几何中只要有壁厚小于设定值的地方就不会有网格产生,单位是mm 。

离心浇注工艺讲义

离心铸造工艺讲义 一.概述 1.离心铸造实质 离心铸造的实质是将合金液浇注到正在旋转的铸型中,在离心力的作用下合金液在铸型转动的过程中充填铸型,最后凝固成型,简单地说就是铸件是在离心力场下充填和凝固的。 2.离心铸造分类 离心铸造按旋转轴位置分为卧式和立式两类。 3.工艺过程 铸型装配——开机——预热铸型——上涂料——合金定量——浇注——开水冷却——铸件出型——清理铸型 4.离心铸造特点 (1)铸件组织致密 由于合金液是在离心力场下充填凝固的,因此很少有气孔、夹杂、缩孔存在,其密度可提高2%左右,强度和硬度也有 显著提高。 (2)充填能力强 对一些流动性差的合金和薄壁铸件都可采用,最小壁厚可达1毫米。 (3)简化工艺过程,提高生产效率 由于合金液是在离心力作用下充填成形的,因此能形成中空的圆柱形表面,而不必象普通铸造方法那样使用泥芯。

二.离心铸造工艺 1.铸型转速 (转/分钟) G——重力倍数,一般在家50~80范围内 R——缸套内半径(厘米) 2.铸型温度 铸型的温度首先应保证涂料涂层均匀且能充分干燥,另外,也应减缓对合金液的激冷,防止白口产生,一般控制在200~300度。 3.合金定量 (1)定重量法:特点是定量准确,但操作麻烦 (2)定容积法:操作简便,但倾注合金时液面控制难以准确。 4.浇注温度 浇注温度控制在1260~1380度,缸套越薄,重量越小,温度应越高。 5.浇注速度 开始浇注时应快,而后进行匀速浇注,不得断流,浇注速度一般在1~2公斤/秒。 6.出模温度 缸套出模温度以缸套内表面暗红色为准,一般在700~900

度。 三.铸型涂料 1.涂料的作用 (1)调整铸件的冷却速度 采用导热性较低和较厚的涂料,可使铸件较缓慢地凝固,防止白口产生。 (2)保护模套 浇注时铁水对模套有激烈的热作用,涂料可以防止和减缓铁水对模套的直接冲蚀和热击,延长模套使用寿命。 2.涂料的组成 涂料通常由耐火材料、粘结剂、悬浮剂、载体、附加物等组成。 耐火材料:石英砂、滑石粉、石墨 粘结剂:膨润土(陶土) 悬浮剂:膨润土(陶土) 附加物:洗洁清 载体:水 3.涂料的制备 先将石英砂、滑石粉、陶土按配好的量加入搅拌机中,同时加入少量的水,压辗成膏状后再加入适量的水,湿混1~2小时成均匀的糊状,测定其比重后进行调整,然后加入洗洁精,再混5分钟左右出料。 4.上涂料的方法

铸造工艺的数值模拟优化

! 收稿日期:2006-01-16;修回日期:2006-07-19 作者简介:胡红军(1976-),男,重庆工学院讲师,主要研究铸造CAD/CAE软件研究和开发。E-mail:hhj@cqit.edu.cn。 铸造工艺的数值模拟优化 胡红军,杨明波,龚喜兵,李国瑞 (重庆工学院材料科学与工程学院,重庆400050) 摘 要:为了研究和预测铸造工艺对铸件质量的影响,设置合理的军用汽车转向臂的铸造浇冒口系统和工艺参数。应用铸 造模拟软件对转向臂的三种不同工艺方案进行凝固模拟,根据凝固模拟结果显示的缺陷及内部缩松情况,提出改进工艺方案并对其进行凝固模拟,选择最佳方案应用于生产。研究表明,3#是最合理的浇冒口布置方式,最优的浇注温度825℃,浇注时间15s,采用水平分型。应用表明,铸造模拟软件能够准确地预测充型凝固过程中可能产生的缺陷,从而辅助工艺人员进行工艺优化。 关键词:凝固模拟;军用汽车转向臂;铸造工艺优化;浇冒口系统;缩孔;铸造模拟软件中图分类号:TG250.6 文献标识码:A 文章编号:1004-244X(2006)06-0051-03 Optimizationofcastingprocessesbasedoncomputernumericalsimulation HUHong-jun,YANGMing-bo,GONGXi-bing,LIGuo-rui (ChongqingInstituteofTechnology,Chongqing400050,China) Abstract:Inordertostudyandpredicttheinfluenceofcastingprocessoncastingsquality,therationalpouringsystemandprocessparametersareset.Threekindssolidificationsimulationschemehavebeenappliedwiththehelpofsimulationsoftware.Re-sultsandappearancedefectsandinnershrinkageporosityofthecastingsintrialproductionhavebeenbasedupontobringfor-warddifferenttechnologyimprovementsandselectanoptimalprojectusedinbatchproduction.Researchresultsshowthatno.3castingsstructureisreasonable,themostreasonablepouringtemperatureis825℃,pouringtimeis15s.Theapplicationshowsthatthesoftwarecanhelptechnologiststooptimizecastingprocessbyforecastingcastingdefectsduringmoldfillingandsolidi-ficationprocessesandinstructtheproductionofcasting. Keywords:solidificationsimulation;steeringarmcomponentusedinheavymilitarytruck;castingprocessoptimization;pour-ingandrisersystem;shrinkage;castingsimulationsoftware 铸造数值模拟是要通过对铸件充型凝固过程的数值计算,分析工艺参数对工艺实施结果的影响,便于技术人员对所设计的铸造工艺进行验证和优化,以及寻求工艺问题的尽快解决办法。为技术人员设计较合理的铸件结构和确定合理的工艺方案提供了有效的依据,从而避免传统的依靠经验进行结构设计和工艺制定的盲目性,节约试制成本[1-4]。 1 铸造过程充型数值模拟方法 军用汽车转向臂的几何实体造型采用UG软件建 立,在得到三维几何数据后,利用UG软件的反向出模模块,通过设定铝合金收缩率、铸件起模斜度、浇注系统的位置和分型面等,作为凝固模拟的几何模型。由于金属液充型过程数值模拟技术所涉及的控制方程多而复杂,需要根据连续性方程、动量方程及能量方程,并进 行速度场、压力场的反复迭代,计算量大而且迭代容易发散,致使其难度很大。通过不断完善数值计算方法,如有限差分法和SOLA-VOF体积函数法,开发出一些实用软件。该产品的凝固模拟就是采用MAGMA软件。作为整个模拟的核心部分,CAE的数值模拟效果最终将影响模拟的真实与否。在液态金属浇注过程中,热传导过程计算是数值模拟的主要内容。处理热传导问题采用傅里叶定律(式1),式2是根据能量守恒定律推导的方程[5-8]。 q=-λ !t !n (1)ρc!t!τ=!!x(λ!t!x)+!!y(λ!t!y)+!!z(λ!t !z)+qv (2)其中q为热流密度,λ为导热系数,t为温度(函数), n为温度传递方向上的距离,Τ 为温度,ρ为密度,c为质! 2006年11月兵器材料科学与工程 ORDNANCEMATERIALSCIENCEANDENGINEERING Vol.29No.6Nov.,2006 第29卷第6期

铸造模拟软件讲解

PROCAST ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 procast 百科名片 ProCast软件界面 ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 目录 适用范围材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 适用范围 材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 ProCast应用(10张) 编辑本段适用范围 ProCAST适用于砂型铸造、消失模铸造、高压铸造、低压铸造、重力铸造、

软件操作界面 倾斜浇铸、熔模铸造、壳型铸造、挤压铸造、触变铸造、触变成形、流变铸造。由于采用了标准化、通用的用户界面,任何一种铸造过程都可以用同一软件包ProCAST进行分析和优化。它可以用来研究设计结果,例如浇注系统、通气孔和溢流孔的位置,冒口的位置和大小等。实践证明,ProCAST可以准确地模拟型腔的浇注过程,精确地描述凝固过程。可以精确地计算冷却或加热通道的位置以及加热冒口的使用。 编辑本段材料数据库 ProCAST可以用来模拟任何合金,从钢和铁到铝基、钴基、铜基、镁基、镍基、钛基和锌基合金,以及非传统合金和聚合体。ESI旗下的热物理仿真研究开发队伍汇集了全球顶尖的五十多位冶金、铸造、物理、数学、计算力学、流体力学和计算机等多学科的专家,专业从事ProCAST和相关热物理模拟产品的开发。得益于长期的联合研究和工业验证,使得通过工业验证的材料数据库不断地扩充和更新,同时,用户本身也可以自行更新和扩展材料数据。除了基本的材料数据库外,ProCAST还拥有基本合金系统的热力学数据库。这个独特的数据库使得用户可以直接输入化学成分,从而自动产生诸如液相线温度、固相线温度、潜热、比热和固相率的变化等热力学参数。 编辑本段模拟分析能力 ProCAST可以分析缩孔、裂纹、裹气、冲砂、冷隔、浇不足、应力、变形、模具寿命、工艺开发及可重复性。ProCAST几乎可以模拟分析任何铸造生产过程中可能出现的问题,为铸造工程师提供新的途径来研究铸造过程,使他们有机会看到型腔内所发生的一切,从而产生新的设计方案。其结果也可以在网络浏览器中显示,这样对比较复杂的铸造过程能够通过网际网络进行讨论和研究。 编辑本段分析模块 ProCAST是针对铸造过程进行流动一传热一应力耦合作出分析的系统。它主要由8个模块组成:有限元网格划分MeshCAST基本模块、传热分析及前后处理(Base License)、流动分析(Fluid flow)、应力分析(Stress)、热辐射分析(Radiation)、显微组织分析(Micromodel)、电磁感应分析(Electromagnetics)、反向求解(Inverse),这些模块既可以一起使用,也可以根据用户需要有选择地使用。对于普通用户,ProCAST应有基本模块、流动分析模块、应力分析模块和网格划分模块。 1)传热分析模块 本模块进行传热计算,并包括ProCAST的所有前后处理功能。传热包括

铸造模拟

三个基本问题 1)什么是金属材料制备工艺? 通过一定的生产流程,获得可以作为工业或工程中使用的金属材料或者构件,这个过程称之为金属材料制备与加工。 2)什么是金属材料制备工艺的计算机模拟? 根据用户要求,基于一定的判据设计的制备与加工工艺过程,建立起数学物理模型,在计算机上进行造型、运算,并将得到的成千上万的数据综合在一起逼近研究对象的全貌,表达出成分工艺组织性能的演变规律,用形象的图形或者动画形式,显示出这些过程的直观画面称之为计算机模拟。 3)为什么进行金属材料制备工艺的计算机模拟? 基本的加工工艺 1)铸造,凝固成形,液固相变。 2)焊接,凝固成形,液固相变,热影响区晶粒长大。 3)压力加工,固态成形,固态相变。 4)热处理,固态相变。 5)冷成形模拟 模拟的框架1)前处理,造型,数据输入等 2)计算,算法的优化 3)后处理,模拟结果输出,判据函数 4)数据库 模拟具有实时性,模拟的准确性取决于模型的精度。 开展工艺模拟的目的 1)优化现有工艺 2)进行模具与新工艺设计 3)缩短设计、试制和生产周期,降低成本 4)工艺的可视化,工程师和模拟工作者之间能够共同分析出达到最佳工艺的判据标准 5)机理性分析 热加工过程的结果成型和改性:使材料的成分、组织、性能最后处于最佳状态 热加工工艺设计根据所要求的组织和性能,制定合理的热加工工艺,指导材料的热加工过程热加工工艺设计存在的问题 复杂的高温、动态、瞬时过程:难以直接观察,间接测试也十分困难 建立在“经验”、“技艺”基础上 解决方法 热加工工艺模拟技术:在材料热加工理论指导下,通过数值模拟和物理模拟,在实验室动态仿真材料的热加工过程,预测实际工艺条件下的材料的最后组织、性能和质量,进而实现热加工工艺的优化设计 热加工过程模拟的意义 认识过程或工艺的本质,预测并优化过程和工艺的结果(组织和性能) 与制造过程结合,实现快速设计和制造 热加工过程模拟的部分商业软件 铸造PROCAST, SIMULOR 锻压DEFORM, AUTOFORGE, SUPERFORGE 通用MARC, ABAQUS, ADINA, ANSYS 三种传热方式:热对流,热传导,热辐射。

离心铸造的优势

离心铸造技术在铝硅合金结构构件生产中 的优势 G. Chirita, D. Soares, F.S. Silva* Mechanical Engineering Department, School of Engineering, Minho University, Campus de Azurem, 4800-058 Guimaraes, Portugal Received 12 June 2006; accepted 12 December 2006 Available -online- 28 December 2006 文摘 本文探讨了利用立式离心铸造工艺生产结构零件相比传统重力铸造法的力学性能优势。我们对由离心力引发的材料机械性能中最重要的性质进行了分析。也对离心铸造技术和重力铸造技术所获得的式样的机械性能进行了比较。 研究表明,离心铸造技术较重力铸造技术可以多提高材料强度35%,刚度160%。弹性模量也多增了18%。抗疲劳寿命延长了约1.5%,抗疲劳极限提高了45%。因此,就获得机械性能及抗疲劳性能而言,离心铸造技术比重力铸造技术更有效。 前期效果随浇铸情况而变化,这是依据样品从浇铸地被拿开的相对位置而言的。与旋转中心(更大的离心力或重力)相距越远,机械性能提高得越好。于是,机械性能随旋转轴的转动而改变了,材料也就具备了梯度功能。这种功效在不同部位所需不同组件的生产中可能是有用的。 引擎活塞就是一个潜在的应用示例。在本文献中,我们也将展示离心铸造技术在这些结构零件生产中是如何有优势的。 @2006 Elsevier Ltd. All rights reserved 关键词:离心浇注、铝硅合金、机械的、抗疲劳性质 1.简介 铝硅铸造合金作为结构材料的使用是基于它们的物理性质(主要受其化学组织影响)和机械性质的(受化学成分及微观结构影响)。铝合金较高的比抗拉强度受其多元组织微观结构强烈影响。特殊合金的机械性能有助于零件主要相位的物理性质,提高容积比和改善组织形态。根据[1]铸造铝合金的抗拉性能和抗断裂性能,半固态A356合金和A357合金相当依赖二次枝臂间距(二次晶壁间距)、镁合金以及尤其是共晶硅和富铁金属间化合物的大小和形状。所以,铝硅铸造合金的机械性质不仅依赖化学组织成分,而且更重要的是微观结构特征,如枝晶形态、α铝、共晶体硅粒以及其它出现在微观结构中的金属间化合物。 现有不同的方法来控制这些微观结构特征,例如通过引进特殊元素[2,3]来细化晶粒。然而,提高铝硅铸造合金机械性质最常见的措施是改善浇铸技术[4]。每种技术都有干扰微观结构和影响机械性能的地方。 传统的离心浇铸工艺主要用于得到圆柱部分。实际上有两个基本类型的离心浇铸机:卧式,绕水平轴旋转的;立式,绕垂直轴旋转的。卧式离心浇铸机一般用来做管材,管件,套管,汽缸套(衬层),以及形状简单的圆柱或管状铸件。立式离心浇铸机的应用范围相对较

(仅供参考)ProCAST-熔模铸造过程数值模拟

熔模铸造过程数值模拟 —国外精铸技术进展述评 北京航空航天大学陈冰 20世纪90年代以来,国外一大批商业化铸造过程数值模拟软件的出现,标志着此项技术已完全成熟并进入实用化阶段,有相当一部分已成功地用于熔模铸造。其中,A FSolid (3D)(美国), PASSAGF/POWERCAST(美国)、MAGMA(德国)、PAM-CAST(法国)、ProCAST(美国)等最具代表性。尤其值得一提的是由美国UES公司开发的ProCAST,和美国铸造师协会(American Foundrymen's Society)开发的 AFSolid(3D),它们代表了二种不同类型的软件系统。 一. 熔模精密铸造过程数值模拟的佼佼者——ProCAST 早在1985年,美国UES Software Co.便以工程工作站/Unix为开发平台,着手开发ProCAST[1]。为了保证模拟结果的准确性,ProCAST一开始就采用有限元方法(FEM)作为模拟的核心技术。自1987年起,开发用于熔模铸造(精铸)的专业模块。1990年后,位于瑞士洛桑的Calcom SA和瑞士联邦科技研究院也参加ProCAST部分模块的开发工作。2002年,UES Software和Calcom SA先后加盟ESI 集团(法国)。通过联合,ESI集团在虚拟制造领域的领先地位进一步增强。 现在,ProCAST也有微机/Windows或Windows NT版本。三维几何造型模块支持IGES、STEP、STL 或Parasolids等标准的CAD文件格式。Meshcast模块能自动生成有限元网格。它的凝固分析模块可以准确计算和显示合金液在凝固过程的温度场、凝固时间,以及固相率变化,同时,从孤立液相区、缩孔/缩松体积分数、缩孔/缩松Nyiama (新山英辅)判据等三方面,帮助铸造工程师分析判断缩孔/缩松产生的可能性和具体位置(见图1) [2]。针对熔模铸造热壳浇注的特点,ProCAST传热分析模块考虑到热辐射对温度场和铸件凝固过程的影响, 这对于经常需要处理热辐射问题的熔模铸造而言特别重要。例如,对不锈钢人体植入物的凝固过程进行模拟时,发现位于模组中部的铸件由于接收到的辐射热比周边铸件多,因而温度偏高,不利于铸件顺序凝固,容易产生缩孔、缩松[1]。特别值得一提的是,ProCAST特有的辐射分析模块,计及辐射线入射角和遮挡物的影响,模拟对象一旦因相互运动导致辐射线入射角改变或产生遮挡, 该软件将重新自动进行计算,特别适用于定向凝固和单晶铸造。 a) 孤立液相区 b) 缩孔/缩松体积分数 c) Nyiama (新山英辅)判据图1 ProCAST缩孔/缩松判据

离心铸造工艺

离心铸造工艺 将金属液浇入旋转的铸型中,使之在离心力作用下充填铸型并凝固成形的铸造方法,称为离心铸造。 根据铸型旋转空间位置的不同,常用的离心铸造机有立式和卧式两类。铸型绕垂直轴旋转的称为立式离心铸造,铸型绕水平轴旋转的称为卧式离心铸造。 将液态金属浇入旋转的铸型里,在离心力作用下充型并凝固成铸件的铸造方法。离心铸造用的机器称为离心铸造机。按照铸型的旋转轴方向不同,离心铸造机分为卧式立式和倾斜式3种。卧式离心铸造机主要用于浇注各种管状铸件,如灰铸铁球墨铸铁的水管和煤气管,管径最小75毫米,最大可达3000毫米此外可浇注造纸机用大口径铜辊筒,各种碳钢、合金钢管以及要求内外层有不同成分的双层材质钢轧辊。立式离心铸造机则主要用以生产各种环形铸件和较小的非圆形铸件。 离心铸造所用的铸型,根据铸件形状、尺寸和生产批量不同,可选用非金属型(如砂型、壳型或熔模壳型)、金属型或在金属型内敷以涂料层或树脂砂层的铸型。铸型的转数是离心铸造的重要参数,既要有足够的离心力以增加铸件金属的致密性,离心力又不能太大,以免阻碍金属的收缩。尤其是对于铅青铜,过大的离心力会在铸件内外壁间产生成分偏析。一般转速在每分钟几十转到1500转左右。 离心铸造的特点是金属液在离心力作用下充型和凝固,金属补缩效果好,铸件组织致密,机械性能好;铸造空心铸件不需浇冒口,金属利用率可大大提高。因此对某些特定形状的铸件来说,离心铸造是一种节省材料、节省能耗、高效益的工艺,但须特别注意采取有效的安全措施。 离心铸造既是传统、又是一种现代的铸造方法。我国铸件的年产量在1500万t左右,而其中约有220万t是用离心铸造方法生产的,占15%。其中球墨铸铁管125万t,灰铸铁管50万t,内燃机缸套35万t,各种轧辊5万t。随着人民生活水平的提高,国家在城镇化建设、西气东输、南水北调等项目上的大力投资,以及汽车作为支柱产业的兴起,预计到2010年,用离心铸造生产的铸件,每年可达到320万t以上。不言而喻,在生产铸件的各种方法中离心铸造方法将仅次于砂型的铸造方法,具有举足轻重的地位。 人们提出对输水工具的需要要早于工业革命时期。我国在明洪武年代(1368—1399年),就生产了铸管,用在南京武庙闸渠;德国第一根铸管是在1455 年生产的,用在迪伦堡宫殿(Schloss Dillenburg);法国则是在1644年生产的铸管,用在塞纳河至凡尔赛宫34hn长的管线上。由于输水线路—般较长,如何提高铸管的生产效率和质量,在当时成为批量生产的关键。于是英国人埃尔恰尔特(Emhart)在1809年提出了世界上第一个离心铸造法的专利,名称为“用铁液生产更好、更纯净的金属制品”。它要比德国人贝士麦(Bessmmer)提出的连续铸管的方法早d8年(1857年)。随后,离心铸造方法在和连续铸造、砂型铸造的竞争中不断发展,并逐渐推广到其他环形铸件(例如气缸套、轴瓦)的生产中。但真正使离心铸造发展成第二大类的铸造工艺方法,还要归功于巴西人代—拉沃德的水冷金属型离心铸造机的发明与20世纪中球墨铸铁在铸管卜的应用,从而开始了用离心铸造工艺

相关文档