文档库 最新最全的文档下载
当前位置:文档库 › 高中数学高考难点归纳19 解不等式知识点分析全国通用

高中数学高考难点归纳19 解不等式知识点分析全国通用

高中数学高考难点归纳19 解不等式知识点分析全国通用
高中数学高考难点归纳19 解不等式知识点分析全国通用

难点19 解不等式

不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式.

●难点磁场

(★★★★)解关于x 的不等式

2

)

1(--x x a >1(a ≠1).●案例探究

[例1]已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[-1,1],m +n ≠0时

n

m n f m f ++)

()(>0.

(1)用定义证明f (x )在[-1,1]上是增函数;(2)解不等式:f (x +

21)<f (1

1-x );(3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围.

命题意图:本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力,

属★★★★★级题目.

知识依托:本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用.

错解分析:(2)问中利用单调性转化为不等式时,x +

21∈[-1,1],1

1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方.

技巧与方法:(1)问单调性的证明,利用奇偶性灵活变通使用已知条件不等式是关键,(3)问利用单调性把f (x )转化成“1”是点睛之笔.

(1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=2

121)

()(x x x f x f --+·(x 1

-x 2)

∵-1≤x 1<x 2≤1,

∴x 1+(-x 2)≠0,由已知

2

121)

()(x x x f x f --+>0,又 x 1-x 2<0,

∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数.(2)解:∵f (x )在[-1,1]上为增函数,

∴???

?

?

?

???

-<+≤-≤

-≤+≤-112111111211x x x x 解得:{x |-23≤x <-1,x ∈R }(3)解:由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f (x )

≤1,所以要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立,故t 2-2at ≥0,记g (a )=t 2-2at ,对a ∈[-1,1],g (a )≥0,只需g (a )在[-1,1]上的最小值大于等于0,g (-1)≥0,g (1)≥0,解得,t ≤-2或t =0或t ≥2.∴t 的取值范围是:{t |t ≤-2或t =0或t ≥2}.

[例2]设不等式x 2-2ax +a +2≤0的解集为M ,如果M ?[1,4],求实数a 的取值

范围.

命题意图:考查二次不等式的解与系数的关系及集合与集合之间的关系,属★★★★级题目.

知识依托:本题主要涉及一元二次不等式根与系数的关系及集合与集合之间的关系,以及分类讨论的数学思想.

错解分析:M =?是符合题设条件的情况之一,出发点是集合之间的关系考虑是否全面,易遗漏;构造关于a 的不等式要全面、合理,易出错.

技巧与方法:该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;数形结合的思想使题目更加明朗.

解:M ?[1,4]有n 种情况:其一是M =?,此时Δ<0;其二是M ≠?,此时Δ>

0,分三种情况计算a 的取值范围.

设f (x )=x 2 -2ax +a +2,有Δ=(-2a )2-(4a +2)=4(a 2-a -2)(1)当Δ<0时,-1<a <2,M =

?[1,4]

(2)当Δ=0时,a =-1或2.当a =-1时M ={-1}1,4];当a =2时,m ={2}[1,4].(3)当Δ>0时,a <-1或a >2.设方程f (x )=0的两根x 1,x 2,且x 1<x 2,那么M =[x 1,

x 2],M ?[1,4]?1≤x 1<x 2≤4??

?>?≤≤>>?0

,410

)4(,0)1(且且a f f 即????

???>-<>>->+-2

100

71803a a a a a 或,解得:2<a <718,

∴M ?[1,4]时,a 的取值范围是(-1,

7

18

).●锦囊妙计

解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题:

(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法.

(2)掌握用序轴标根法解高次不等式和分式不等式,特别要注意因式的处理方法.

(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法.(4)掌握含绝对值不等式的几种基本类型的解法.

(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式.

(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论.●歼灭难点训练一、选择题

1.(★★★★★)设函数f (x )=????

???

≥-<<-+-≤+)1(11

)11(22)1()1(2x x

x x x x ,已知f (a )>1,则a 的取值范围是( )

A.(-∞,-2)∪(-21

,+∞) B.(-

21,2

1)C.(-∞,-2)∪(-2

1

,1)

D.(-2,-2

1

)∪(1,+∞)

二、填空题

2.(★★★★★)已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0

的解集是(2

2

a ,

2

b

),则f (x )·g (x )>0的解集是__________.3.(★★★★★)已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________.三、解答题

4.(★★★★★)已知适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3.(1)求p 的值;

(2)若f (x )=1

1+-x x p p ,解关于x 的不等式f --

1(x )>k x p +1log (k ∈R +)

5.(★★★★★)设f (x )=ax 2+bx +c ,若f (1)=2

7

,问是否存在a 、b 、c ∈R ,使得不等式:x 2+

21≤f (x )≤2x 2+2x +2

3

对一切实数x 都成立,证明你的结论.6.(★★★★★)已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)

≥2.

(1)求p 、q 之间的关系式;(2)求p 的取值范围;

(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值.

7.(★★★★)解不等式log a (x -

x

1

)>18.(★★★★★)设函数f (x )=a x 满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.

参考答案

难点磁场

解:原不等式可化为:

2

)

2()1(--+-x a x a >0,

即[(a -1)x +(2-a )](x -2)>0.

当a >1时,原不等式与(x -1

2

--a a )(x -2)>0同解. 若12--a a ≥2,即0≤a <1时,原不等式无解;若1

2--a a <2,即a <0或a >1,于是a >1时原不等式的解为(-∞,1

2

--a a )∪(2,+∞).

当a <1时,若a <0,解集为(12--a a ,2);若0<a <1,解集为(2,1

2

--a a )

综上所述:当a >1时解集为(-∞,12--a a )∪(2,+∞);当0<a <1时,解集为(2,1

2

--a a );

当a =0时,解集为?;当a <0时,解集为(1

2

--a a ,2).

歼灭难点训练

一、1.解析:由f (x )及f (a )>1可得:

???>+-≤1)1(12

a a ① 或???>+<<-12211a a ② 或???

??>-≥1111

a

a ③ 解①得a <-2,解②得-

2

1

<a <1,解③得x ∈? ∴a 的取值范围是(-∞,-2)∪(-2

1

,1)

答案:C 二、

2.解析:由已知b >a 2∵f (x ),g (x )均为奇函数,∴f (x )<0的解集是(-b ,-a 2),g (x )<0

的解集是(-2

,22

a b -).由f (x )·g (x )>0可得:

???

??-

<<--<<-?????<<<>2222

,0)(0)(0)(0)(22

22a x b a x b b x a b x a x g x f x g x f 或即或 ∴x ∈(a 2,

2b )∪(-2b

,-a 2) 答案:(a 2,2b )∪(-2

b

,-a 2)

3.解析:原方程可化为cos 2x -2cos x -a -1=0,令t =cos x ,得t 2-2t -a -1=0,原问题转

化为方程t 2-2t -a -1=0在[-1,1]上至少有一个实根.令f (t )=t 2-2t -a -1,对称轴t =1,

画图象分析可得?

??≤≥-0)1(0

)1(f f 解得a ∈[-2,2].

答案:[-2,2]

三、

4.解:(1)∵适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3,

∴x -3≤0,∴|x -3|=3-x .

若|x 2-4x +p |=-x 2+4x -p ,则原不等式为x 2-3x +p +2≥0,其解集不可能为{x |x ≤3}的子集,∴|x 2-4x +p |=x 2-4x +p .

∴原不等式为x 2-4x +p +3-x ≤0,即x 2-5x +p -2≤0,令x 2-5x +p -2=(x -3)(x -m ),可得m =2,p =8.

(2)f (x )=1818+-x x ,∴f --

1(x )=log 8x

x -+11 (-1<x <1),

∴有log 8

x x -+11>log 8k

x

+1,∴log 8(1-x )<log 8k ,∴1-x <k ,∴x >1-k . ∵-1<x <1,k ∈R +,∴当0<k <2时,原不等式解集为{x |1-k <x <1};当k ≥2时,

原不等式的解集为{x |-1<x <1}.

5.解:由f (1)=27得a +b +c =27,令x 2+21=2x 2+2x +23x ?=-1,由f (x )≤2x 2+2x +2

3

推得 f (-1)≤

2

3

. 由f (x )≥x 2+21推得f (-1)≥23,∴f (-1)=23,∴a -b +c =2

3

,故 2(a +c )=5,a +c =25且b =1,∴f (x )=ax 2+x +(25

-a ).

依题意:ax 2+x +(25-a )≥x 2+2

1

对一切x ∈R 成立,

∴a ≠1且Δ=1-4(a -1)(2-a )≤0,得(2a -3)2≤0,

∴f (x )=23

x 2+x +1

易验证:23x 2+x +1≤2x 2+2x +2

3

对x ∈R 都成立.

∴存在实数a =23,b =1,c =1,使得不等式:x 2+21≤f (x )≤2x 2+2x +2

3

对一切x ∈R 都成

立.

6.解:(1)∵-1≤sin θ≤1,1≤sin θ+2≤3,即当x ∈[-1,1]时,f (x )≤0,当x ∈[1,

3]时,f (x )≥0,∴当x =1时f (x )=0.∴1+p +q =0,∴q =-(1+p )

(2)f (x )=x 2+px -(1+p ),

当sin θ=-1时f (-1)≤0,∴1-p -1-p ≤0,∴p ≥0 (3)注意到f (x )在[1,3]上递增,∴x =3时f (x )有最大值.即9+3p +q =14,9+3p -1-p =14,∴p =3.

此时,f (x )=x 2+3x -4,即求x ∈[-1,1]时f (x )的最小值.又f (x )=(x +23)2-4

25,显然此函数在[-1,1]上递增.

∴当x =-1时f (x )有最小值f (-1)=1-3-4=-6.

7.解:(1)当a >1时,原不等式等价于不等式组???????>->-a x

x

1101

1

由此得1-a >

x 1.因为1-a <0,所以x <0,∴a

-11<x <0. (2)当0<a <1时,原不等式等价于不等式组:???????<->-a x

x

11011

由 ①得x >1或x <0,由②得0 <x <

a -11,∴1<x <a -11. 综上,当a >1时,不等式的解集是{x |a

-11

<x <0},当0<a <1时,不等式的解集为

{x |1<x <a

-11

}.

8.解:由已知得0<a <1,由f (3mx -1)>f (1+mx -x 2)>f (m +2),x ∈(0,1]恒成立.

?????+<-+-+<-?2

11132

2

m x mx x

mx mx 在x ∈(0,1]恒成立. 整理,当x ∈(0,1)时,?????+<--<1

)1(1222x x m x x 恒成立,即当x ∈(0,1]时,???

????-+>-<11212

2

x x m x

x m 恒成立,且x =1时,?????+<--<1

)1(122

2

x x m x

mx 恒成立, ∵2121212-=-x x x 在x ∈(0,1]上为减函数,∴x x 212

-<-1, ∴m <x x 212

-恒成立?m <0.

又∵2112

)1(112+-+-=-+x x x x ,在x ∈(0,1] ∴1

12-+x x <-1.

∴m >112-+x x 恒成立?m >-1当x ∈(0,1)时,???

????-+>-<11

2122x x m x

x m 恒成立?m ∈(-1,0)① 当x =1时,?????+<--<1

)1(122

2

x x m x

mx ,即是???<<100m ∴m <0 ②

∴①、②两式求交集m ∈(-1,0),使x ∈(0,1]时,f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,m 的取值范围是(-1,0)

① ②

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高中不等式知识点总结

1.不等式的解法 (1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解, m f x g x <>0,()()与mf x mg x ()()<同解; (3) f x g x () () >0与f x g x g x ()()(()?>≠00同解); 2.一元一次不等式 ax b a a a >?>=≠()或ax bx c a 200++<≠?()分a >0 及a <0情况分别解之,还要注意?=-b ac 2 4的三种情况,即?>0或 ?=0或?<0,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0??? ?≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)?()()()11当时,a f x g x >>; ()()()201当时,<<?(1)当a >1时, g x f x g x ()()()>>?? ???0;(2)当01<在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚 线以表示区域不包括边界直线。当我们在坐标系中画不等式

高考数学不等式知识点总结及解题思路方法

高考数学不等式知识点总结及解题思路方法 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│ §06. 不等式知识要点 1.不等式的基本概念 (1)不等(等)号的定义:. - = < ? a< ? b ? > > - = - b ; 0b ; a a a b b a b a (2)不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3)同向不等式与异向不等式. (4)同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a >(对称性) ? a< b b (2)c ? > >,(传递性) a> c a b b (3)c + ? > >(加法单调性) c a+ a b b (4)d + > >,(同向不等式相加) a+ > ? d b c a c b

(5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>?<(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等 . ,3a b c a b c R +++∈≥(4)若、、则a=b=c 时取等号) 0,2b a ab a b >+≥(5)若则(当仅当a=b 时取等号) 2222(6)0||; ||a x a x a x a x a x a x a a x a >>?>?<->

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

关于高级高中数学不等式知识点总结归纳教师版

高中数学不等式专题教师版 一、 高考动态 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ 二、不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.

高中不等式知识点总结(2020年九月整理).doc

1 1.不等式的解法 (1)同解不等式((1)与同解; (2)与同解,与同解; (3)与同解); 2.一元一次不等式 情况分别解之。 3.一元二次不等式 或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0????≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式 0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,则把 直线画成实线。 说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入 Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特 殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直

1 线哪一侧的平面区域。特别地,当0C ≠时,通常把原点作为此特殊点。 (2)有关概念 引例:设2z x y =+,式中变量,x y 满 足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最 小值。 由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些 平面区域的公共区域。由图知,原点(0,0)不在公共区域内,当 0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小,所以, max 25212z =?+=,min 2113z =?+=。 在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称 为线性约束条件。2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。又由于2z x y =+是 ,x y 的一次解析式,所以又叫线性目标函数。 一般地,求线性目标函数在线性约束条件下的最大值 或最小值的问题,统称为线性规划问题。满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。 O y x A C 430x y -+= 1x = 35250x y +-=

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

一元一次不等式知识点总结

四、列一元一次方程解应用题的步骤有: 1、审清题意:应认真审题,分析题中的数量关系,找出问题所在。 2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。 3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。 4、列方程:根据等量关系列出方程。列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。 5、解方程:求出方程的解. 方程的变形应根据等式性质和运算法则。 6、检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。 7、作答:正确回答题中的问题。 五、常见的一元一次方程应用题: 1、和差倍分问题: (1)增长量=原有量×增长率; (2)现在量=原有量+增长量 2、等积变形问题: 常见几何图形的面积、体积、周长计算公式,依据形虽变,但面积不变。 (1)圆柱体的体积公式 V=底面积×高=S ·h = r 2h (2)长方开的面积 周长=2×(长+宽) S=长×宽 3、数字问题: 一般可设个位数字为a ,十位数字为b ,百位数字为c 。 十位数可表示为10b+a , 百位数可表示为100c+10b+a 。 然后抓住数字间或新数、原数之间的关系找等量关系列方程。 4、市场经济问题:( 以下“成本价”在不考虑其它因素的情况下指“进价” ) (1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价 ×100% (3)售价=成本价×(1+利润率) (4)商品销售额=商品销售价×商品销售量 (5)商品的销售利润=(销售价-成本价)×销售量 (6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。或者用标价打x 折: 折后价(售价)=标价×10 x 计算。 5、行程问题:路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 6、工程问题: (1)工作总量=工作效率×工作时间; 工作效率=工作总量÷工作时间 (2)完成某项任务的各工作总量的和=总工作量=1 (3)各组合作工作效率=各组工作效率之和 (4)全部工作总量之和=各组工作总量之和

不等式知识点总结及题型归纳

不等式的基本知识 一、解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则 不等式的解的各种情况如下表: 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根 00 2>=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集)0(02>>++a c bx ax {}2 1 x x x x x ><或 ???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 2、简单的一元高次不等式的解法: 标根法:其步骤是: 1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; 2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回; 3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3

3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0() ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 二、线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数: 关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标

不等式知识点总结

期末复习之不等式知识点 2 3 1) (x – 2)(ax – 2)>0 (2)x2–(a+a2)x+a3>0; (3)2x2 +ax +2 > 0; 注: 解形如ax2+bx+c>0的不等式时分类讨论的标准有: 1、讨论a与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小;运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想(4)含参不等式恒成立的问题: 例1.已知关于x的不等式 在(–2,0)上恒成立,求实数a的取值范围. ? ? ? ?? ? ? ? ? ? ≠ ≤ ? ? ≤ > ? ? > )x(g )x(g )x(f )x(g )x(f )x(g )x(f )x(g )x(f 22 (3)210 x a x a +-+-< ? ? ? ? ? 用图象 分离参数后用最值 函数 、 、 、 3 2 1

例2.关于x 的不等式 对所有实数x ∈R 都成立,求a 的取值范围. 4 第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点; 第三步:解方程的最优解,从而求出目标函数的最大值或最小值。 5 (1),a b R ∈?222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈?2 a b +≥当且仅当a =b 时取“=”号). (3),a b R +∈?22a b ab +??≤ ??? (当且仅当a =b 时取“=”号). 总结:已知y x ,都是正数,则有 (1)如果积xy 是定值p ,那么当且仅当y x =时和y x +有最小值p 2; (2)如果和y x +是定值s ,那么当且仅当y x =时积xy 有最大值24 1s . (3)用均值不等式求最值时,若不正,则要加负号,若不定,则要凑定值,若不等,则求导考虑单调性。 )1(log 22++-=ax ax y y z x =z ax by =+22y x z +=

高考数学一轮复习不等式知识点讲解

2019年高考数学一轮复习不等式知识点讲 解 不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。下面是不等式知识点讲解,请考生掌握。 1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。 2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学 生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可

记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。 3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

高考数学不等式知识点归纳

高考数学不等式知识点归纳 不等式概念 用不等号可以将两个解析式连接起来所成的式子。在一个式子中的数的关系,不全是 等号,含不等符号的式子,那它就是一个不等式.例如x+y≥xy,-2x≤1,x>0 ,x<3, 3x≠5等。根据解析式的分类也可对不等式分类,不等号两边的解析式都是代数式的不等式,称为代数不等式;也分一次或多次不等式。只要有一边是超越式,就称为超越不等式。例如lg1+x>x是超越不等式。 不等式性质 ①如果x>y,那么yy;对称性 ②如果x>y,y>z;那么x>z;传递性 ③如果x>y,而z为任意实数或整式,那么x+z>y+z;加法原则,或叫同向不等式可加 性 ④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz ⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷zy,m>n,那么x+m>y+n;充分不必要条件 ⑦如果x>y>0,m>n>0,那么xm>yn; ⑧如果x>y>0,那么x的n次幂>y的n次幂n为正数或负数 [1] 或者说,不等式的基本性质有: ①对称性; ②传递性: ③加法单调性:即同向不等式可加性: ④乘法单调性: ⑤同向正值不等式可乘性:; ⑥正值不等式可乘方: ⑦正值不等式可开方:: ⑧倒数法则。 [2]

…… 如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上 是其中比较有名的。 不等式原理编辑 主要的有: ①不等式Fx< Gx与不等式 Gx>Fx同解。 ②如果不等式Fx < Gx的定义域被解析式H x 的定义域所包含,那么不等式 Fx0,那么不等式FxHxGx同解。 ④不等式FxGx>0与不等式同解;不等式FxGx<0与不等式同解。 例题解析 例1:判断下列命题的真假,并说明理由. 若a>b,c=d,则ac2>bd2;假若,则a>b;真若a>b且ab<0,则;假若a若,则a>b;真若|a|b2;充要条件命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思 维的严密性. a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.≥ 说明:强调在最后一步中, 说明等号取到的情况,为今后基本不等式求最值作思维准备. 例2:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小. 说明:本例条 件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对 a,b的取值情况加以分类讨论.因为a>b,可由三种情况1a>b≥0;2a≥0>b;30>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想. 练习: 1.若a≠0,比较a2+12与a4+a2+1的大小.> 2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.> 3.判断下列命题的真假,并说明理由. 1若a>b,则a2>b2;假 2若a>b,则a3>b3;真 3若a>b,则ac2>bc2;假 4若,则a>b;真若a>b,c>d,则a-d>b-c.真. 1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。 2.绝对值不等式的解法及其几何意义是什么? 3.解分式不等式应注意什么问题?用“根轴法”解整式分式不等式的注意事项是什么? 4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。

相关文档
相关文档 最新文档