文档库 最新最全的文档下载
当前位置:文档库 › 伺服三环结构框图及其控制模式

伺服三环结构框图及其控制模式

伺服三环结构框图及其控制模式
伺服三环结构框图及其控制模式

伺服三环结构框图及其控制模式

1、伺服三环框图

2、C为控制器,A+B是驱动器,伺服电机为执行原件,编码器为检测反馈元件;

3、A框到B框的蓝色信号线里,就是调节控制频率、电压的信号,速度环、电流环的调解器都是频率f

电压U调节器;

4、C框为控制器,相当PLC的作用,通过计数器知道伺服当前位置,并根据当期位置输出:启动、减速、匀速、减速、停车等指令;

5、A+B就是驱动器,相当变频器,通过调节频率f电压U,控制伺服的速度、电流和启动停止!

6、伺服电源线上的电流互感器表示电流检测原件,将检测结果回馈给电流环的输入端与给定电流比较,构成电流闭环;

7、编码器检测的脉冲频率数的微分,就是检测脉冲的频率,这个频率就是电机的转速的大小,反馈到速度环的输入端与给定速度比较,构成速度环;

8、编码器检测的脉冲数,表示电机的位移量,与给定指令脉冲数比较,确定判断伺服当前位置,相当于PLC里一个由计数器构成的逻辑判断功能,他不是一个自动控制PID闭环;

1、运动控制的三环;

2、变频器,即驱动器,有电流环和速度环;

3、控制器,即PLC,由计数器构成的位置环,该环不是PID闭环!

4、所谓速度环、电流环就是伺服电机调速电路的速度环、电流环,速度环控制期间,电机为硬特性;电流环控制期间电机呈软铁性!

5、所有伺服,伺服电机的控制就是一个“电机调速电路”,可以是交流电机的变频调速电路,也可以是直流电机的调速电路;

6、那么电机的启动、加速、匀速、减速、停车指令,由位置环产生,或者说由PLC构成的控制器产生;

1、这个图中,是说伺服指令脉冲数(位置)、指令脉冲频率(速度)给定的方式;

2、举例说电子凸轮给定方式、位置给定方式等;

3、所有伺服,不管他是什么型号,什么厂家、国家,伺服的速度环、电流环都在伺服电机的调速电路上!

4、如果是交流电机,肯定是在变频调速电路上!如果是直流电机肯定在直流调压调速电路上!

1、上边这个三环框图中,A+B就是变频调速度驱动器,有速度环、电流环构成;

2、对比上边的三环图,可以看出变频器就是伺服电机的速度环、电流环,他们的结构框图实质是一样的!

3、或者说A+B就是变频器的闭环框图:

引用my39366 的回复内容:

……根据指令位置(速度?),结合位置环增益,给出速度,再根据速度环增益,给出需要的电流,最终位置、速度都反应在电流的大小上。……

--------------------------------------------------------------------------------

1、这是个错误的说法;

2、速度环,保证电机以给定速度运行,这时如果负载重,电机的力矩大电流大;

3、速度环,保证电机以给定速度运行,这时如果负载庆,电机的力矩小电流小;

4、速度环,保证电机以给定速度运行,这时负载大小变化时,电机力矩、电流跟随负载轻重自动变化变化;

2、电流环,保证电机以给定电流、力矩运行,这时如果负载重,电机的速度迅速减小,保持力矩、电流恒定;

3、电流环,保证电机以给定电流、力矩运行,这时如果负载轻,电机的速度迅速增大;保持力矩、电流恒定;

4、电流环,保证电机以给定电流、力矩运行,这时负载大小变化时,电机的速度大小跟随负载轻重自动变化;

5、速度环与电流环自动控制的物理量不同,调节器“调节频率、电压的方向”因负载轻重变化而相反:

1)举例说速度环,负载重时,调节器调高频率、电压;

2)举例说电流环,负载重时,调节器调低频率、电压;

6、所以速度环、电流环的调解器不能同时工作;

5、速度环与电流环自动控制的物理量不同:

1)一个保持电机速度恒定,一个保证电机电流恒定;

2)负载轻重变化,前者保持速度恒定,而电机电流变化,后者保持电机电流恒定,运动体的速度变化:

6、所以速度环、电流环不能同时工作;

7、很多人一下子转不过弯来,他们想,电机有速度,也要有电流,当然是速度环、电流环同时工作的;

8、他们以为:

1)电机的速度来源速度环,速度环不工作就没了速度;

2)电机的电流来源电流环,电流环不工作就没了电流;

9、他们的错误是,没有认识到速度环是控制速度大小的,没有速度环或者速度环不工作时,只是电机速度得不到控制;

10、他们的错误是,没有认识到电流环是控制电流大小的,没有电流环或者电流环不工作时,只是电机电流得不到控制;

11、任何时候,电机速度、电流,只能控制一个,不能两个同时控制!

12、任何时候,电机速度、电流,只能控制一个,不能两个同时控制!所以电流环、速度环不能同时工作!

13、速度闭环控制,电机机械特性硬;

14、电流闭环控制,电机机械特性软;

15、他们各自有各自的用场,举例说

1)在速度闭环时,如果电流过载失速保护,是电流环起的作用,速度环失速;

2)机加工主轴,一般需要速度闭环控制,保持车削速度很定;

3)收放卷控制,一般需要电流闭环恒转矩控制,保证即拉不断,也不会散乱!

1、下来说说伺服控制中的“增益”是什么意思?

2、交流伺服的“增益”,变频调速时,实际就是提高电机的频率-电压曲线的电压;

3、调高增益,会使交流电机在频率一定的情况下电压调高,可以调高力矩曲线,但电机的速度不变,受速度环的控制;

4、调高电压,调高转矩,是在一个合适的区间,超调电压都会适得其反,有经验的人知道,电压超调时,过高、过低都会使电机电流增大,损耗增大、转矩下降!

5、当你需要较高的速度时,你就去速度环设定调高速度,电机速度才会得以提高!不一定要提高增益!

1、所谓位置环的“环”,不是我们说的PID闭环,位置不能像速度大小、电流大小那样通过调节器调节;

2、电机转子、运动体的位置可以用编码器也可以直接用位置检测的方法,所以伺服都有直接位置检测信号的输入接口!

3、所谓运动控制的方式,主要是看运动体的那个运动参数受到控制:

1)力矩控制模式:就是电机电流闭环控制,例如收、放卷控制系统;

2)速度控制模式:就是速度闭环控制模式,例如机加工的主轴速度的控制;

3)位置控制模式:就是运动体的位置控制,例如机加工的车刀进给控制;

4、三种控制模式的差异:

1)力矩控制模式,电机电流大小受控,速度不受控,负载力矩小时,速度就快,反之,负载力矩大时,速度就慢,速度的大小处于被动变化,而电流、力矩是主动变化;

2)速度控制模式,电机的速度大小受到控制,电流不受控,负载力矩小时,电流就小,反之,负载力矩大时,电流就大,电流的大小处于被动变化,而速度是主动变化;

3)位置控制模式,只要是控制运动体的位移或者位置,速度可大可小,电流可大可小,电流、速度的控制为位移或位置的控制而服务,处于协助、协调、服从、需要的位置;

4)三种模式都有电机的“启、停”,唯有位置控制模式,电机的“起、停”与确定的“起点”和“终点”相关,是确定的“起点”“终点”决定了电机的“起停”!

直流伺服电机调速系统(三闭环)要点

摘要 本设计以微型计算机8097为主控器,采用PID算法设计三环全数字式控制器。在本次设计中选择霍尔元件做为电流检测传感器,将检测到的弱电信号通过运算放大器LF356组成的两级放大电路放大滤波后,输入8097内部的A/D转换电路转换进而得到电流反馈量;光电脉冲发生器作为速度检测传感器以及位置传感器,通过光电隔离器PC900和GAL16V8的分频鉴相得到速反馈量,同时与8097内部的计数器和计数器8254结合以可逆计数方式得到位置反馈量;通过软件设置电流环、速度环和位置环的工作方式。此外,采用串口通信使伺服系统与上位微型计算机实现通信联系以发送各种运行指令,最终实现微型计算机对电流环、速度环和位置环的控制。 关键词:微型计算机,8097,HIS,8254,PID ABSTRACT This design adopts the micro-computer 8097 as the main component, and chooses the PID algorithm to design. Hall element as a current detection sensor will get weak signals in the design. Then the weak signals will be amplified and filtered through the amplifier circuit which constructed by LF356 , and imports 8097-internal A/D converter circuit to switch so that get the feedback signal of current .As speed detection sensors and position sensors, the optical pulse generator through the optical isolator PC900 and GAL16V8 to division frequency and phase in order to get the feedback signal of speed .Combined with the 8097 internal counter and the counter 8254 we can get feedback signal of position relying on reversible counting. In this design, we adopt software to set the operation mode of current loop, velocity loop and position loop work. In addition, we used the serial communication to set up the communications between system and upper monitor in order to send a variety of operating instructions, and ultimately system achieved control of the current loop, velocity loop and position loop. KEY WORDS:Microcomputer,8097,HIS,8254,PID

三环减速机

三环减速机 百科名片 三环减速机 三环减速机由三片相同的内齿环板带动一个外齿齿轮输出,故称为三环减速器,属平行轴一动轴齿轮传动减速器,齿轮啮合运动属于动轴轮系,具有少齿差行星传动特征,输出与输入轴间平行配置,又有平行轴圆柱齿轮减速器的特征。具有承载和超载能力强、传动比大、分级密集、效率高、结构紧凑、体积小、质量轻、装拆维修方便、适用性宽广等优点。可用于矿山、冶金、石油、化工、橡塑、建筑、建材、起重、运输、食品、轻工等行业。 产品简介 三环减速机 高速轴转速不超过1500r/min;瞬时超载转矩不大于额定输出转矩的2.7倍;工作环境温度为-40~45℃,低于0℃时,启动前应对润滑油采取预热措施;正、反两向运转。产品型号 ZZSH桩孔钻机单级三环减速器,SHZP组合二级传动三环减速器,SHCDP组合二级传动三环减速器,SHZ组合二级三环减速器,SHL单级三环减速器,QXSH 起重机用三环减速器,MSH水泥磨三环减速器,SHC1组合二级传动三环减速器,S HLD单级三环减速器,SHC2组合二级传动三环减速器,SH基本型三环减速器,YP SH圆盘给料机用三环减速器,SHP单级三环减速器,LSHZ组合二级三环减速器,QSH起重机用三环减速器,STH单级三环减速器,LLSH连续铸钢拉矫三环减速器,SHS三环减速机,SHCD组合二级传动三环减速器,SHDK基本型三环减速器,SH D三环减速器, 产品形式 Y型:圆柱轴伸,单键平键联接; Z型:圆锥轴伸,单键平键联接; H型:渐开线花键轴伸;

C型:齿轮轴伸(仅QSH(QTR)和QXSH(QXTP)减速器用); K型:圆柱型轴孔,平键套装联结; K(Z)型:圆锥形轴孔,平键套装联结; K(H)型:花键轴孔,套装联结; D型:轴伸与电动机直联。 关于产品 减速器的工作条件: a、工作环境温度为-40℃C~+45℃,环境温度低于0℃时,启动前润滑油应预热。 b、高速轴转速不得超过功率表中规定的最高值。 c、瞬时允许尖锋转矩为额定转矩的2.7倍。 d、适用于连续,短时或断续工作制,可正反转。 e、减速器与原动机(常用电动机)和工作机之间应用非刚性联轴器且其轴心线应严格对中。 三环减速机使用及维护: 安装后用手转动高速轴,使低速轴正反两向灵活一周上。 减速器一般用油池溅油润滑,自然冷却,当长期连续运转热平衡功率不够时应采用取散热措施或用循环冷却润滑。润滑油采用N110-N200中极压齿轮油。对于断续工作制可用半流体润滑脂。 正式使用前应空运转两小时,然后按额定载荷的25%、50%、75%100%逐级加载。情况正常,应运转平稳,无冲击,最高油温不超过80℃,温升不超过60℃。 新减速器运转300小时后换润滑油,以后3000小时换一次。换油时应清选减速器内壁及传动件。 应经常检查固件有无松动,油位高低,油温和轴承温度,齿轮,轴承应无异常振动和噪声。 应保持减速器外表清洁,透气塞不得堵塞,以便散热。 使用中或开箱检查以及更换配件后减速器不得有渗漏现象。 配件应与制造厂联系,更换配件后经跑合以及加载试验再正式使用。

伺服系统设计.

辽宁工程技术大学《电力拖动自动控制系统》课程设计 目录 1、前言 (1) 1.1设计目的 (1) 1.2设计内容 (1) 2、伺服系统的基本组成原理及电路设计 (2) 2.1伺服系统基本原理及系统框图 (2) 2.2 伺服系统的模拟PD+数字前馈控制 (4) 2.3 伺服系统的程序 (6) 3、仿真波形图 (9) 结论 (12) 心得与体会 (13) 参考文献 (14)

1、前言 1.1设计目的 1、使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力; 2、使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力; 3、熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。 1.2设计内容 1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图; 2、分析并理解具有三环结构的伺服系统原理。

2、伺服系统的基本组成原理及电路设计 2.1伺服系统基本原理及系统框图 伺服系统三环的PID控制原理: 以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号. 图2-1 转台伺服系统框图 伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路. 转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示. 图2-2 伺服系统位置环框图 图2-3 伺服系统速度环框图

教务管理系统(概要设计及详细设计)

概要设计说明书 1. 总体设计 1.1 需求规定 教务管理系统可分为学生信息管理系统和教师管理信息系统,系统开发的整体任务是实现学校教师和学生信息管理的系统化、规范化、自动化和智能化,从而达到提高学校管理效率的目的。 本阶段目的在于明确系统的数据结构和软件结构,此外总体设计还将给出内部软件和外部系统部件之间的接口定义,各个软件模块的功能说明,数据结构的细节以及具体的装配要求。 1.2 运行环境 软件基本运行环境为Windows XP环境。 1.3 基本设计概念和处理流程 概要说明书的目的在于明确系统的数据结构和软件结构,设计外部软件和内部软件的接口,说明各个软件模块的功能说明,数据结构的细节等。系统的总体处理流程如图1-1所示:

图1-1 系统的总体处理流程 1.4 系统体系结构 用一览表及框图的形式说明本系统的系统元素(各层模块、子程序、公用程序等)的划 教务管理系统 选择操作 基础维护 教学管理 报表统计 选择操作 选择操作 班级信息维护 课程信息维护 学生选课 课表查询 成绩输入 打印成绩单 学生信息维护 教 师信息维护

分,扼要说明每个系统元素的标识符和功能,分层次地给出各元素之间的控制与被控制关系。 本系统的体系架构如图1-2所示: 图1-2 系统体系架构 本系统体系结构大致可以定义为:客户机层上的表示层主要是通过Struts 框架实现的,由显示视图产生一个请求。请求被ActionServlet(控制器)接收,它在struts-config.xml文件中寻找请求的URI,找到对应的Action类后,Action类执行相应的业务逻辑。Action类执行建立在模型组件基础上的业务逻辑,模型组件是和应用程序关联的。一旦Action类处理完业务逻辑,它把控制权返回给ActionServlet,Action类提供一个键值作为返回的一部分,它指明了处理的结果。ActionServlet使用这个键值来决定在什么视图中显示Action的类处理结果。当ActionServlet把Action类的处理结果传送到指定的视图中,请求的过程也就完成了。中间业务层是通过Spring框架实现的,首先建立一个BaseAction,它继承了Action类,而其他定义的Action都要继承这个BaseAction。这个BaseAction需要导入AppContext工具类,这个AppContext需要导入Spring中org.springframework.context.support.*;这样一个继承BaseAction的Action,就可以getXXXService()的方法得到某一个service的实例-----服务定位器的设计模式。持久(PO)层是由hibernate 架构实现的,它包括关于整体数据库的hibernate.cfg.xml文件、每个表的JavaBean类和每个表的hbm.xml文件,通过Spring集成模板HibernateTemplate提供DAO 来使用PO。在Spring 的配置文件(applicationContext. xml)中配置sessionFactory的bean 来管理hibernate。

三环减速器的结构原理

三环减速器设计 第一章绪论 三环减速器是少齿差行星齿轮传动中的一种。它由一个外齿轮与一个内齿轮组成一对内啮合齿轮副,采用的是渐开线齿形,内外齿轮的齿数相差很小(通常为1、2、3或4),故简称为少齿差传动。 三环减速器是由重庆钢铁设计院陈宗源高级工程师在1985年申请的发明专利,它以其适用与一切功率、速度范围和一切工作条件的优点而受到了广泛关注。 1.1三环减速器的概况: 齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。最近报导,日本住友重工研制的FA型高精度减速器,美国Alan-Newton公司研制的X-Y式减速器,在传动原理和结构上与本项目类似或相近,都为目前先进的齿轮减速器。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。因此,除了不断改进材料品质、提高工艺水平外,还在传动原理和传动结构上深入探讨和创新,平动齿轮传动原理的出现就是一例。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。目前,超小型的减速器的研究成果尚不明显。 在医疗、生物工程、机器人等领域中,微型发动机已基本研制成功,美国和荷兰近期研制的分子发动机的尺寸在纳米级范围,如能辅以纳米级的减速器,则应用前景远大。 1.3 课题研究意义: (1)减速比大,三环式单级减速比为11到99,双级传动比达9801。普通外啮合齿轮减速器单级减速比最大为10。 (2)体积小重量轻,外啮合齿轮只在一点捏合,接触应力是影响传动的瓶颈,三环式三点啮合,接触处两齿轮曲率半径在同侧,尺寸接近,接触面积大,接触应力小,设计是用不着核算接触应力,只要弯曲应力够就行了,由于三环式中间外齿轮齿数较多,其抗变曲性能也较,据有关资料介绍同扭矩的减速器,三环式重量只有普通减速器的1/3,体积只有1/4。这里无疑有巨大的经济效益。 (3)承载能力高,轴承寿命长。由于采用少齿差内啮合传动,三环式除了三点啮合外,在过载时由于齿的弹性变形,会有很多齿同时工作,所以齿轮的承载能力较高;另外由于接触应力小,有利于润滑,三根轴上的载荷都呈120度角均匀分布,转臂轴承位于内齿圈外,起布置空间大,所以轴的弯曲应力小,主轴承载小,有利于承受过载载荷,因而转臂轴承的寿命较高,可达到2万小时以上。

伺服三环结构框图及其控制模式

伺服三环结构框图及其控制模式 1、伺服三环框图 2、C为控制器,A+B是驱动器,伺服电机为执行原件,编码器为检测反馈元件; 3、A框到B框的蓝色信号线里,就是调节控制频率、电压的信号,速度环、电流环的调解器都是频率f 电压U调节器; 4、C框为控制器,相当PLC的作用,通过计数器知道伺服当前位置,并根据当期位置输出:启动、减速、匀速、减速、停车等指令; 5、A+B就是驱动器,相当变频器,通过调节频率f电压U,控制伺服的速度、电流和启动停止! 6、伺服电源线上的电流互感器表示电流检测原件,将检测结果回馈给电流环的输入端与给定电流比较,构成电流闭环; 7、编码器检测的脉冲频率数的微分,就是检测脉冲的频率,这个频率就是电机的转速的大小,反馈到速度环的输入端与给定速度比较,构成速度环; 8、编码器检测的脉冲数,表示电机的位移量,与给定指令脉冲数比较,确定判断伺服当前位置,相当于PLC里一个由计数器构成的逻辑判断功能,他不是一个自动控制PID闭环;

1、运动控制的三环; 2、变频器,即驱动器,有电流环和速度环; 3、控制器,即PLC,由计数器构成的位置环,该环不是PID闭环! 4、所谓速度环、电流环就是伺服电机调速电路的速度环、电流环,速度环控制期间,电机为硬特性;电流环控制期间电机呈软铁性! 5、所有伺服,伺服电机的控制就是一个“电机调速电路”,可以是交流电机的变频调速电路,也可以是直流电机的调速电路; 6、那么电机的启动、加速、匀速、减速、停车指令,由位置环产生,或者说由PLC构成的控制器产生; 1、这个图中,是说伺服指令脉冲数(位置)、指令脉冲频率(速度)给定的方式; 2、举例说电子凸轮给定方式、位置给定方式等; 3、所有伺服,不管他是什么型号,什么厂家、国家,伺服的速度环、电流环都在伺服电机的调速电路上! 4、如果是交流电机,肯定是在变频调速电路上!如果是直流电机肯定在直流调压调速电路上!

B系列三环减速机

B系列三环减速机 用途 三环减速器是一种先进的传动机械,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制药、造船、机械、环保及食品轻工等领域。一般可替代行星齿轮减速器、摆线针轮减速器、多级圆柱齿轮减速器和蜗轮蜗杆减速器等使用。 特点 ★承载能力强实现了多齿对称啮合传动,有9—18对齿同时进入啮合区,输出扭矩高并且能承受较强的过载力,可应用于重载、冲击、频繁启动等各种恶劣工况。 ★传动比大单级传动比11—99,双级传动比可达9801。 ★运转平稳各传动部件受力均匀、运转平稳、噪声低。 ★效率高单级传动效率可达92%—96%以上。 ★结构紧凑体积小,重量轻,其体积和重量比同等功率的齿轮减速器减小1/3—2/3。 ★适用性广外形及装配形式可根据用户实际使用性况进行配置,制成卧式、立式、法兰连接及组合传动等多种结构形式。 ★使用寿命长结构设计合理,具有很高的可靠性,使用寿命长,正常情况下无需特别维护。 轴伸型式: Y型:圆柱轴伸,单键平键联接; Z型:圆锥轴伸,单键平键联接; H型:渐开线花键轴伸; C型:齿轮轴伸(仅QBJ、QXBJ减速器使用) K型:圆柱形轴孔,平键套装联接; K(Z)型:圆锥形轴孔,平键套装联接; K(H)型:花键轴孔,套装联接; D型:轴伸与电机直联。 常用轴伸形式,高速轴与低速轴同为圆柱形轴伸或低速轴为套装孔的,可省略附加标识。非圆柱型轴伸或高速轴与低速轴的轴伸型式不同时,则按高速轴轴伸在前,低速轴轴伸在后的顺序标注轴伸型式标识。 型号表示法: BJ、BJD、BJDK、BJC、BJCD、MBJ、BJS型三环减速机装配型式

LLBJ型三环减速机装配型式 BJT、QBJ、QXBJ型三环减速机装配型式

自动控制原理课程设计 速度伺服控制系统设计

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指导老师 机电工程学院 2009年12月

目录一课程设计设计目的 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参考文献

一、课程设计目的: 通过课程设计,在掌握自动控制理论基本原理、一般电学系统自动控制方法的基础上,用MATLAB实现系统的仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,要求利用根轨迹法确定测速反馈系数' k,以 t 使系统的阻尼比等于0.5,并估算校正后系统的性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改善控制系统的性能,除可选用串联校正方式外,常常采用反馈校正方式。常见的有被控量的速度,加速度反馈,执行机构的输出及其速度的反馈,以及复杂系统的中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中的一部分环节以实现校正,。从控制的观点来看,采用反馈校正不仅可以得到与串联校正同样的校正效果,而且还有许多串联校正不具备的突出优点:第一,反馈校正能有效地改变被包围环节的动态结构和参数;第二,在一定

条件下,反馈校正装置的特性可以完全取代被包围环节的特性,反馈校正系数方框图从而可大大削弱这部分环节由于特性参数变化及各种干扰带给系统的不利影响。 该设计应用的是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +() =22t 1T s T K s ζ+(2+)+1 =22'1 T s 21Ts ζ++ 试中,' ζ=ζ+ t K 2T ,表明微分负反馈不改变被包围环节的性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改善了系统的平稳性。 微分负反馈校正系统方框图

运动伺服三环控制系统

伺服电机三环控制系统 运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。 1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID 调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环 的。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。 3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度 环的给定。位置环的反馈也来自于编码器。 编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。 谈谈PID各自对差值调节对系统的影响: 1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有

(完整word版)数据库课程设计教务管理系统

洛阳理工学院 课程设计报告 课程名称数据库课程设计 设计题目教务管理系统 专业计算机科学与技术 班级 学号 姓名 完成日期

课程设计任务书 设计题目:教务管理系统 设计内容与要求: 设计教务管理系统,类似于我校教务管理系统,有四类用户:教务员、学生、教师、管理员教务员可以输入学生、教师、班级、课程信息。一个班级只属于一个专业,一个学生只属于一个班级。教务员负责输入每个专业、每个班级需要学习哪些课程,指定课程的任课教师。教师可以查看学习该课程的学生名单。课程结束后,教师可以录入课程成绩。一个教师可以教授多个班的多门课程,每门课由多位老师讲授。课程分两类,必修课和选修课。系统要记录每个学生学习各门必修课的成绩,还要记录学生选修了哪些选修课以及课程成绩。学生可以查看自己各门课程的成绩。学生还可以进行评教,给老师打分。管理员可以输入教室信息,并结合班级、课程、教室信息实现自动排课。 要求: 1.完成本系统的需求分析,写出功能需求和数据需求描述; 2.完成数据库的概念结构设计、逻辑结构设计、物理结构设计; 3.完成本系统的部分功能模块的程序界面设计。 指导教师: 2017 年12 月29 日 课程设计评语 成绩: 指导教师:_______________ 年月日

目录 一、概述 (2) 1.1、本设计的目的与意义 (2) 1.2、数据库开发工具和应用程序开发工具 (2) 二、需求分析 (2) 2.1功能需求 (2) 2.2数据需求 (2) 三、概念结构设计 (2) 3.1、E-R模型设计 (2) 3.2、总体E-R图描述 (4) 四、逻辑结构设计 (4) 4.1、关系模型 (4) 4.2、关系模式的优化与说明 (4) 五、物理结构设计 (5) 5.1建立数据库 (5) 5.2表与表结构 (5) 六、应用程序设计 (6) 6.1、系统总体结构 (6) 6.2、系统界面与源代码 (7) 6.2.1、界面 (8) 6.2.2、功能描述 (9) 6.2.3、程序源代码 (10) 七、设计总结 (23)

减速器工作原理及各部分结构

齿轮、螺纹及标准件的测量及计算方法 1.标准直齿圆柱齿轮测绘方法和步骤

①数出齿数 Z 。 ②测量齿顶圆直径d a : 如下图所示,如果是偶数齿,可直接测得,见图( a )。若是奇数齿,则可先测出孔的直径尺寸D1 及孔壁到齿顶间的单边径向尺寸H,见图( c ) , 则齿顶圆直径:da =2H+D1 ③计算和确定模数m: 根据公式m = da /( Z+2) 算出m的测得值,然后与标准模数值比较,取较接近的标准模数为被测齿轮的模数。 ( 同时要根据标准模数反推出理论da 值 ) ④计算分度圆直径d: d=mZ ,与相啮合齿轮两轴的中心距a校对,应符合 a=(d1+d2)/2 =m(Z1+Z2)/2 ⑤测量计算齿轮其它各部分尺寸。 2.测绘螺纹方法 :①外螺纹测绘 测螺纹公称直径: (1) 用卡尺或外径千分尺测出螺纹实际大径,与标准值比较,取较接近的标准值为被测外螺纹的公称直径。 (2) 测螺距: 可用螺纹规直接测量。无螺纹规时,可用压痕法测量,即用一张薄纸在外螺纹上沿轴向压出痕迹,再沿轴向测出几个(至少4个)痕迹之间的尺寸,除以间距数(痕迹数减去1)即得平均螺距,然后再与标准螺距比较,取较接近的标准值为被测螺纹的螺距。也可以沿外螺纹轴向用卡尺或直尺直接量出若干螺距的总尺寸,再取平均值,然后查表比较取标准值。 (3) 旋向: 将外螺纹竖直向上,观察者正对螺纹,若螺纹可见部分的螺旋线从左往右上升,则该外螺纹为右旋螺纹,若螺纹可见部分的螺旋线从右往左上升,则为左旋螺纹。 (4) 测螺纹其它尺寸。 ②内螺纹测绘: 内螺纹一般不便直接测绘,但可找一能旋入(能相配)的外螺纹,测出外螺纹的大径及螺距,取标准值即为内螺纹的相关尺寸。螺纹孔的深度可用卡尺直接量取。 3.标准件的测量 标准件一般不画零件图,但在装配图中应进行必要的标注,以便采购人员按其规格尺寸、数量进行采购。因此,对标准件也必须进行测量,按相关标准取其标准值,再按相关标准的标注示例在装配图中注出标记代号。 实训考核标准. 测绘有关附表及参考图零件的尺寸公差及配合要求 零件的表面粗糙读要求

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

伺服电机的三种控制方式

选购要点:伺服电机的三种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。接下来,松文机电为大家带来伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要 求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。 如果上位控制器(在一个运动控制系统中“上位控制”和“执行机构”是系统中举足轻重的两个组成部分。“执行机构”部分一般不外乎:步进电机,伺服电机,以及直流电机等。它们作为执行机构,带动刀具或工件动作,我们称之为“四肢”;“上位控制”单元的四种方案:单片机系统,专业运动控制PLC,PC+运动控制卡,专用控制系统。“上位控制”是“指挥”执行机构动作的,我们也称之为“大脑”。 随着PC(Personal Computer)的发展和普及,采用PC+运动控制卡作为上位控制将是运动控制系统的一个主要发展趋势。这种方案可充分利用计算机资源,用于运动过程、运动轨迹都比较复杂,且柔性比较强的机器和设备。从用户使用的角度来看,基于PC机的运动控制卡主要是功能上的差别:硬件接口(输入/输出信号的种类、性能)和软件接口(运动控制函数库的功能函数)。按信号类型一般分为:数字卡和模拟卡。数字卡一般用于控制步进电机和伺服电机,模拟卡用于控制模拟式的伺服电机;数字卡可分为步进卡和伺服卡,步进卡的脉冲输出频率一般较低(几百K左右的频率),适用于控制步进电机;伺服卡的脉冲输出频率较高(可达几兆的频率),能够满足对伺服电机的控制。目前随着数字式伺服电机的发展和普及,数字卡逐渐成为运动控制卡的主流。)有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的

伺服电机速度环、位置环、扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。 1、电流环:电流环的输入是速度环 PID 调节后的那个输出,电流环的输入值和电流环的反 馈值进行比较后的差值在电流环内做 PID 调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号) 反馈给电流环的。电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/ 转矩的控制以达到对速度和位置的相应控制。 2、速度环:速度环的输入就是位置环PID 调节后的输出以及位置设定的前馈值, 速度环输入值和速度环反馈值进行比较后的差值在速度环做PID 调节(主要 是比例增益和积分处理)后输出到电流环。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。速度环控制包含了速度环和电流环。 3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电 子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉 冲信号经过偏差计数器的计算后的数值在经过位置环的PID 调节(比例增益 调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。 位置环的反馈也来自于编码器。位置控制模式下系统进行了 3 个环的运算, 系统运算量大,动态响应速度最慢。 编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机 的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环 是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯 泡)电流环就能形成反馈工作。 三种控制模式 位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定 转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控 制装置的外环 PID 控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的 位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机 轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样 的优点在于可以减少中间传动过程中

三环控制原理

三环控制原理 1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。 3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度环的给定。位置环的反馈也来自于编码器。 编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。。。1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。。。增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。。。 2、单独的I(积分)就是使调节器的输出信号的变化速度与差值信号成正比,大家不难理解,如果差值大,则积分环节的变化速度大,这个环节的正比常数的比例倒数我们在伺服系统里通常叫它为积分时间常数,积分时间常数越小意味着系统的变化速度越快,所以同样如果增大积分速度(也就是减小积分时间常数)将会降低控制系统的稳定程度,直到最后出现发散的震荡过程,。。。这个环节最大的好处就是被调量最后是没有残差的。。。 3、PI(比例积分)就是综合P和I的优点,利用P调节快速抵消干扰的影响,同时利用I调节消除残差。。。 4、单独的D(微分)就是根据差值的方向和大小进行调节的,调节器的输出与差值对于时间的导数成正比,微分环节只能起到辅助的调节作用,它可以与其他调节结合成PD和PID调节。。。它的好处是可以根据被调节量(差值)的变化速度来进行调节,而不要等到出现了很大的偏差后才开始动作,其实就是赋予了调节器以某种程度上的预见性,可以增加系统对微小变化的响应特性。。。 5、PID综合作用可以使系统更加准确稳定的达到控制的期望。。。 伺服的电流环的PID常数一般都是在驱动器内部设定好的,操作使用者不需要更改。。。 速度环主要进行PI(比例和积分),比例就是增益,所以我们要对速度增益和速度积分时间常数进行合适的调节才能达到理想效果。。。 位置环主要进行P(比例)调节。。。对此我们只要设定位置环的比例增益就好了。。。 位置环、速度环的参数调节没有什么固定的数值,要根据外部负载的机械传动连接方式、负载的运动方式、负载惯量、对速度、加速度要求以及电机本身的转子惯量和输出惯量等等很多条件来决定,调节的简单方法是在根据外部负载的情况进行大体经验的范围内将增益参数从小往大调,积分时间常数从大往小调,以不出现震动超调的稳态值为最佳值进行设定。。。 当进行位置模式需要调节位置环时,最好先调节速度环(此时位置环的比例增益设定在经验值的最小值),调节速度环稳定后,在调节位置环增益,适量逐步增加,位置环的响应最好比速度环慢一点,不然也容易出现速度震荡。。。

三环减速机原理

三环减速机原理 三环减速机基本型的工作原理如图所示,由一根具有外齿轮套接的低速轴1、二根由三个互呈120度偏心的高速轴2和三片具有内齿轮的环板3组成。减速时,高速轴2作为输入轴,带动环板3上的内齿轮做平面运动,靠内齿轮与低速轴1上的齿轮啮合实现大速比。齿型一般为渐开线齿型,各输入轴的轴端可单独或同时输入动力。 如要求增速,则轴1(外齿轮轴)作输入轴,轴2作输出 三环机工作原理简单介绍 采用行星齿轮内啮合方式传递动力。根据火车头采用的“四杆机构”的原理,同步旋转二根曲轴,带动相互平行的、嵌有内齿轮的三只环片,在空间作平面圆周运动,内齿轮都围绕一只输出轴齿轮旋转,呈现“多层齿圈”围绕一个中心轮、作行星式“流转啮合”的布局。 对比同类产品,[三环减速器]的主要优点: 1.传动比大,单级[i]=11-99,二级[i]=50-10000; 2.利用“动率分流”和“内齿多齿接触”的优势,承载能力较强; 3.结构较简单、零件少、体积小、重量轻; 4.效率较高,单级效率[η]=92%-96%; 5.不需要特殊材料和特殊加工工艺制造成本低; 6.机组齿轮线速度较低; 7.传动比范围大,可省去常规齿轮传动中所用大齿轮; 8.采用内啮合方式,有多对齿同时啮合,不发生接触疲劳破坏; 三环机的性能、适用范围: 输出扭矩范围:0.12KN.m≤[T]≤469KN.m 减速比范围:单级减速之场合:[i]min=9-12;[i]max=90-120 双级减速之场合:[i]max=500-10000 SH三环机可制成卧式、立式及各种安装方式与使用条件下的“派生形式”,可应用于所有动力设备需要减速的场合,特别适用于要求高安全系数的环境,是一种高档减机。 https://www.wendangku.net/doc/178119603.html,/2007-7/200771085923.htm

运动伺服一般都是三环控制系统

运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。 1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID 调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。 3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度环的给定。位置环的反馈也来自于编码器。 编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。 谈谈PID各自对差值调节对系统的影响: 1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。。。增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。。。 2、单独的I(积分)就是使调节器的输出信号的变化速度与差值信号成正比,大家不难理解,如果差值大,则积分环节的变化速度大,这个环节的正比常数的比例倒数我们在伺服系统里通常叫它为积分时间常数,积分时间常数越小意味着系统的变化速度越快,所以同样如果增大积分速度(也就是减小积分时间常数)将会降低控制系统的稳定程度,直到最后出现发散的震荡过程,。。。这个环节最大的好处就是被调量最后是没有残差的。。。

摆线减速机结构原理

摆线减速机结构原理 行星摆线针轮减速机全部传动装置可分为三部分:输入部分、减速部分、输出部分。 在输入轴上装有一个错位180°的双偏心套,在偏心套上装有两个滚柱轴承,形成H机构,两个摆线轮的中心孔即为偏心套上转臂轴承的滚道,并由摆线轮与针齿轮上一组环形排列的针齿轮相啮合,以组成少齿差内啮合减速机构,(为了减少摩擦,在速比小的减速机中,针齿上带有针齿套)。 当输入轴带着偏心套转动一周时,由于摆线轮上齿廊曲线的特点及其受针齿轮上针齿限制之故,摆线轮的运动成为即有公转又有自转的平面运动,在输入轴正转一周时,偏心套亦转动一周,摆线轮于相反方向上转过一个齿差从而得到减速,再借助W输出机构,将摆线轮的低速自转运动通过销轴,传递给输出轴,从而获得较低的输出转速。 偏心套与摆线轮的关系不是三言两语就能够说完的哦!其实偏心套就是由上下两个偏差180度的圆结构而又是由同一个轴心构成的偏心原理设计而成的!偏心套上面这两个上下外圆分别装上偏心轴承,在两个偏心轴承外面有分别装上偏差正好180度的摆线轮,这就使得在偏心套里面的电机轴在电机的带动下使偏心套转动时,在针齿(减速比的决定因素)的配合下从而使摆线轮产生了既有自传由有公转的平面运动!在电机轴即输入轴正转一周时,偏心套亦转动一周,摆线轮于相反方向上转过一个齿差从而得到减速,将行星摆线轮的低速自转运动通过销轴,传递给输出轴,从而获得较低的输出转速。这个就是摆线针轮减速机最基本的也是摆线针轮减速机结构图的减速的最根本原理!

简要说明:摆线减速机简介/摆线针轮减速机原理 摆线针轮减速机全部传动装置可分为三部分:输入部分、减速部分、输出部分。 在输入轴上装有一个错位180°的双偏心套,在偏心套上装有两个滚柱轴承,形成H机构,两个摆线轮的中心孔即为偏心套上转臂轴承的滚道,并由摆线轮与针齿轮上一组环形排列的针齿轮相啮合,以组成少齿差内啮合减速机构,(为了减少摩擦,在速比小的减速机中,针齿上带有针齿套)。 详细介绍: 摆线减速机原理/摆线针轮减速机结构、参数、详解、性能及表示法 一、摆线针轮减速机是一种比较新型的传动机构,其独特的平稳结构在许多情况下可替代普通圆柱齿轮减速机及蜗轮蜗杆减速机,因为摆线针轮减速机具有:1、传动比大:摆线针轮减速机一级减速时传动比为1:7到1:87;两级减速时转动比为121~7569,用户也可以根据自己的实际需要选用减速比更大的三级减速! 2、传动效率高: 摆线针轮减速机由于该机啮合部位采用了滚动啮合,一般效率为可达90%以上。 3、保养方便(潤滑方式): #6125以下使用不要保養的専用高級油脂; 4、体积小,重量轻: 摆线针轮减速机采用行星传动原理,输入轴和输出轴在同一轴线上而且有与电动机直联呈一体的独特之处,因而摆线针轮减速机本身具有结构紧凑,体积小、

相关文档