文档库 最新最全的文档下载
当前位置:文档库 › 关于神经网络归一化的讨论

关于神经网络归一化的讨论

关于神经网络归一化的讨论
关于神经网络归一化的讨论

数据归一化处理

1.我有一个问题不太明白,神经网络在训练时,先对数据进行归一化处理,按照常理训练完之后应该对数据再进行反归一化啊,可是再很多资料上根本就看不出有反归一化这个步骤,而且很多时候训练效果不是很好。请问,哪个大侠能帮帮我啊

2.看一下MATLAB里的premnmx函数和postmnmx函数.它们一个是归一一个是反归一

3.并不是归一化的数据训练效果就好

4.我也遇到过类似的问题,有篇论文就是用postmnmx函数.效果不好可能是样本数据不太准.

5.可以采用标准化PRESTD,效果很好。

6.样本数据和测试数据是否放在一起归一化?

7.应该将样本数据和测试数据放在一起归一化,不然如果测试数据中有的值比样本数据最大值还大,岂不是超过1了?

神经网络训练的时候,应该考虑极值情况,即归一化的时候要考虑你所需要识别参数的极值,以极值作分母,这样可能效果更好一点。

8.激发函数如果选用的是倒s型函数,应不存在归一化的问题吧

9.我想问大家一下:在神经网络中,只有一个函数即:purelin这个函数对训练的输出数据不用归一化,而象logsig 和tansig函数都要归一化(如果数据范围不在[-1,1]或[0,1]之间).那既然用purelin函数可以不用归一化,为何又是还用归一化呢?

用神经网络里的PRESTD, PREPCA, POSTMNMX, TRAMNMX等函数归一化和直接用purelin这个函数有什么区别啊? 我作负荷预测时,象不用归一化的效果很好呀!

10.purelin没有作归一化啊,你用logsig 和tansig作为神经元激励函数,输出范围自然限制在[-1,1]或[0,1]之间了

11.

我所知道的关于归一化:

归一化化定义:我是这样认为的,归一化化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。首先归一化是为了后面数据处理的方便,其次是保正程序运行时收敛加快。

在matlab里面,用于归一化的方法共有三中,(1)premnmx、postmnmx、tramnmx(2)prestd、poststd、trastd(3)是用matlab语言自己编程。premnmx指的是归一到[-1 1],prestd归一到单位方差和零均值。(3)关于自己编程一般是归一到[0.1 0.9] 。具体用法见下面实例。

为什么要用归一化?

为什么要用归一化呢?首先先说一个概念,叫做奇异样本数据,所谓奇异样本数据数据指的是相对于

其他输入样本特别大或特别小的样本矢量。

下面举例:

m=[0.11 0.15 0.32 0.45 30;

0.13 0.24 0.27 0.25 45];

其中的第五列数据相对于其他4列数据就可以成为奇异样本数据(下面所说的网络均值bp)。奇异样本数据存在所引起的网络训练时间增加,并可能引起网络无法收敛,所以对于训练样本存在奇异样本数据的数据集在训练之前,最好先进形归一化,若不存在奇异样本数据,则不需要事先归一化。

具体举例:

close all

clear

echo on

clc

%BP建模

%原始数据归一化

m_data=[1047.92 1047.83 0.39 0.39 1.0 3500 5075;

1047.83 1047.68 0.39 0.40 1.0 3452 4912;

1047.68 1047.52 0.40 0.41 1.0 3404 4749;

1047.52 1047.27 0.41 0.42 1.0 3356 4586;

1047.27 1047.41 0.42 0.43 1.0 3308 4423;

1046.73 1046.74 1.70 1.80 0.75 2733 2465;

1046.74 1046.82 1.80 1.78 0.75 2419 2185;

1046.82 1046.73 1.78 1.75 0.75 2105 1905;

1046.73 1046.48 1.75 1.85 0.70 1791 1625;

1046.48 1046.03 1.85 1.82 0.70 1477 1345;

1046.03 1045.33 1.82 1.68 0.70 1163 1065;

1045.33 1044.95 1.68 1.71 0.70 849 785;

1044.95 1045.21 1.71 1.72 0.70 533 508;

1045.21 1045.64 1.72 1.70 0.70 567 526;

1045.64 1045.44 1.70 1.69 0.70 601 544;

1045.44 1045.78 1.69 1.69 0.70 635 562;

1045.78 1046.20 1.69 1.52 0.75 667 580];

%定义网络输入p和期望输出t

pause

clc

p1=m_data(:,1:5);

t1=m_data(:,6:7);

p=p1';t=t1';

[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t)

%设置网络隐单元的神经元数(5~30验证后5个最好)

n=5;

%建立相应的BP网络

pause

clc

net=newff(minmax(pn),[n,2],{'tansig','purelin'},'traingdm'); inputWeights=net.IW{1,1};

inputbias=net.b{1};

layerWeights=net.IW{1,1};

layerbias=net.b{2};

pause

clc

% 训练网络

net.trainParam.show=50;

net.trainParam.lr=0.05;

net.trainParam.mc=0.9;

net.trainParam.epochs=200000;

net.trainParam.goal=1e-3;

pause

clc

%调用TRAINGDM算法训练BP网络

net=train(net,pn,tn);

%对BP网络进行仿真

A=sim(net,pn);

E=A-tn;

M=sse(E)

N=mse(E)

pause

clc

p2=[1046.20 1046.05 1.52 1.538 0.75;

1046.05 1046.85 1.538 1.510 0.75;

1046.85 1046.60 1.510 1.408 0.75;

1046.60 1046.77 1.408 1.403 0.75;

1046.77 1047.18 1.403 1.319 0.75];

p2=p2';

p2n=tramnmx(p2,minp,maxp);

a2n=sim(net,p2n);

a2=postmnmx(a2n,mint,maxt)

echo off

pause

clc

程序说明:所用样本数据(见m_data)包括输入和输出数据,都先进行归一化,还有一个问题就是你要进行预测的样本数据(见本例p2)在进行仿真前,必须要用tramnmx函数进行事先归一化处理,然后才能用于预测,最后的仿真结果要用postmnmx进行反归一,这时的输出数据才是您所需要的预测结果。

个人认为:tansig、purelin、logsig是网络结构的传递函数,本身和归一化没什么直接关系,归一化只是一种数据预处理方法。

12."tansig、purelin、logsig是网络结构的传递函数,本身和归一化没什么直接关系,归一化只是一种数据预处理方法",说的有问题,若用premnmx将输入输出归一化,其输出值在[-1,1]之间,若输出层传函为l ogsig 则无论怎么训练,输出值都不可能在[-1,1]之间.

13.我感觉如果激发函数是S型函数,应该不用规一化处理,但是效果不如规一化处理的好,不知道为什么?

14.我认为有可能是数据太大或太多,将其归一化之后,有利于快速的调整神经网络的网络结构,或者如同terry2008所说存在奇异值也肯定有影响。

当然,效果好就选谁!

15.如果输入数据中含有频率、幅值、相位以及其他一些不同类型的数据,需要对他们进行什么处理,才能用于网络的训练?只是简单的归一化就行吗?

16.如果数据的维数太多,可以考虑用prepca进行主元分析,不知道silvercx所说的简单的归一化是什么意思?我现在还不知道其他预处理方法?什么事都得试一下,试过了就知道,你可可以拿出具体问题一起讨论!

17.我认为讨论之前要搞清一个数学问题,就是每种激励函数的定义域和值域,我们都知道tansig的定义域是任意实数,值域为(-1,1)、purelin定义域和值域都是任意实数、logsig定义域任意实数,值域是(0 ,1)。

所以在具体实际中使用用事先考虑好这个问题,logsig的值域是(0,1),当然不可能使输出在(-1,1)

了。

我所说的:"tansig、purelin、logsig是网络结构的传递函数,本身和归一化没什么直接关系,归一化只是一种数据预处理方法",我并没说没有间接关系。

18.如果输入样本的数据组成为In=[频率; 幅值; 相位]

我只用premnmx对In进行归一化,训练BP网络,得到一个目标输出Out,其数据组成也为Out=[频率;

幅值; 相位]。这样子可以吗?总觉得把不同类型的数据放一起有点不妥。

19.完全可以,不过在输入数据和输出数据啊安排上可能要以时间序列的方式来安排。例如,用第1,2,3,4时刻的数据预测第5时刻的数据,用第2,3,4,5时刻的数据预测第6时刻的数据,依次类推,可以组成一定的输入输出对,以上只是举个例子,只是说明这种数据组织方法,silvercx 在实际中可以根据自己的要解决的问题,自己确定,我只是提供一个参考方法。

有问题再讨论!

20.目前在我的项目中,我是这样子来训练BP网络的。

在变频器输出频率为45~50Hz之间,采集电机的转矩(T)、转速(n)和另外一个目标量(RL)。

然后我对这些数据进行FFT变换,得到他们前几次谐波的幅值和相位。归一化。然后我利用两个网络分别训练幅值和相位。(下面Am表示幅值,Ph表示相位,即AmT45,表示在45Hz时电机的转矩前几次谐波幅值)

网络1:

in=[AmT45 AmT46 AmT47 AmT48 AmT49 AmT50;

Amn45 Amn46 Amn47 Amn48 Amn49 Amn50;];

out=[AmRL45 AmRL46 AmRL47 AmRL48 AmRL49 AmRL50];

网络2:

in=[PhT45 PhT46 PhT47 PhT48 PhT49 PhT50;

Phn45 Phn46 Phn47 Phn48 Phn49 Phn50;];

out=[PhRL45 PhRL46 PhRL47 PhRL48 PhRL49 PhRL50];

然后利用所训练的网络去测试其他频率下的数据RL。

这样进行网络的训练行不行,还是把幅值和相位放在一个网络内训练的效果好?

21.在神经网络BP网的预测中,对数据进行归一化处理,完了输出再反归一化。如果是单入单出系统好办,如果是多入单出系统,那么反归一化时,最大值和最小值怎么确定呢?

22.你可以自己指定,或者使用在训练网络时候确定的最大值和最小值

23.请问minmax(p),p是输入样本,

它的功能是做归一化吗,在MATLAB里面.

谢谢!

24.我认为,如果各维的数据不进行归一化处理,那么各维对误差函数的影响差异会很大。从而会影响学习性能。

不知道对不对?

25.那样本数据\测试数据\预测数据\期望数据要一起进行归一化吗?

26.我所知道的关于归一化:

归一化化定义:我是这样认为的,归一化化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。首先归一化是为了后面数据处理的方便,其次是保正程序运行时收敛加快。

在matlab里面,用于归一化的方法共有三中,(1)premnmx、postmnmx、tramnmx(2)prestd、poststd、trastd(3)是用matlab语言自己编程。premnmx指的是归一到[-1 1],prestd归一到单位方差和零均值。(3)关于自己编程一般是归一到[0.1 0.9] 。具体用法见下面实例。

为什么要用归一化?

为什么要用归一化呢?首先先说一个概念,叫做奇异样本数据,所谓奇异样本数据数据指的是相对于

其他输入样本特别大或特别小的样本矢量。

下面举例:

m=[0.11 0.15 0.32 0.45 30;

0.13 0.24 0.27 0.25 45];

其中的第五列数据相对于其他4列数据就可以成为奇异样本数据(下面所说的网络均值bp)。奇异样本数据存在所引起的网络训练时间增加,并可能引起网络无法收敛,所以对于训练样本存在奇异样本数据的数据集在训练之前,最好先进形归一化,若不存在奇异样本数据,则不需要事先归一化。

具体举例:

程序说明:所用样本数据(见m_data)包括输入和输出数据,都先进行归一化,还有一个问题就是你要进行预测的样本数据(见本例p2)在进行仿真前,必须要用tramnmx函数进行事先归一化处理,然后才能用于预测,最后的仿真结果要用postmnmx进行反归一,这时的输出数据才是您所需要的预测结果。

个人认为:tansig、purelin、logsig是网络结构的传递函数,本身和归一化没什么直接关系,归一化只是一种数据预处理方法。

你好,我用了你的归一化方法,但当p2数据取比这些数大很多的值时,好像就不行了,出现了这样的问题,是不是数值超出了最大值的原因?我用的是GRNN网络

Warning: Divide by zero.

> In normprod at 73

In calca at 119

In network.sim at 204

In xgi at 60

a2=postmnmx(a2n,mint,maxt)

a2 =

Columns 1 through 9

1602 1602 NaN NaN NaN NaN NaN NaN NaN

Column 10

NaN

29.而且预测值受样本期望输出的最大值限制,

30.这个问题我提出来很多天了,为什么没有人表示意见呢,是这个问题本身就是神经网络的BUG,还是,我走的路偏了,对神经网络本质误解所致,大家多多指教阿,我在这等很久了呀!

非常不好意思,请教一问题:

31.利用归一化后的数据建了BP网络,但最后预测值在反归一化前却超出了[-1,+1],不知问题出在哪?

32.小波神经网络对于时间序列预测在文献上报道得神乎其神,据称预测精度相对偏差平均达5%以下。鄙人尝试后认为,小波神经网络只是加快了收敛速度,而预测精度决定于问题本身,很多数据预测结果并不能达到以上效果。欢迎各位仁兄讨论改进方法。

33.有个问题:归一化的时候我认为应该考虑数据的物理含义

34.为什么我的简单的归一化程序总是错的?谢各位大虾指点

p=[1520 510 5.155 33.88;1468 521 5.321 35.79;

.......共5行]';

t=[0.7 1.9;0.6 1.798;.....共10行]';

for i=1:4

P(i,: )=(p(i,: )-min(p(i,: )))/(max(p(i,: ))-min(p(i,: )));就是这行总说有错,到底是程序错还是软件不好??

end

此程序出自<神经网络理论与MATLAB7实现>,第269页,类似的归一化在我机子里都说不对,急死了,等毕业呢.

35.不要用这个归一化啊,换函数premnmx试试

36.为什么要归一化?

神经网络输入的一维代表一个特征,当神经网络的输入是多维时,要识别的模式有多个特征,当这多个特征的数据相差很大,如几个数量级时,就需要归一化,变成相同数量级,以防某些数值低的特征被淹没。

matlab-BP神经网络(贝叶斯正则化算法程序)

close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对BP 神经网络进行训练 % SIM——对BP 神经网络进行仿真 pause % 敲任意键开始 clc % 定义训练样本矢量 % P 为输入矢量 sqrs=[0.0000016420520 0.0000033513140 0.0000051272540 0.0000069694860 0.0000088776310 0.0000139339960 -0.0000594492310 -0.0001080022920 -0.0001476714860 ... 0.0000112367340 0.0002021567880 0.0008695337800 -0.0001189929700 -0.0000912336690 0.0002160472130 0.0006358522040 0.0012365884200 0.0049930394010 ]./0.001657904949 ; sqjdcs=[0.0000399039272 0.0000805129702 0.0001218448339 0.0001639173001 0.0002067504102 0.0003172835720 0.0000421189848 0.0000870310694 0.0001350858140 ... 0.0001866997652 0.0002423599348 0.0004033628719 0.0000394450224 0.0000830935373 0.0001317612004 0.0001864881262 0.0002486249700 0.0004497441812 ]./0.000533286; sqglmj=[0.0000068430669 0.0000147605347 0.0000240097285 0.0000349372747 0.0000480215187 0.0000954580176 0.0000005804238 0.0000011640375 0.0000017508228 ... 0.0000023407605 0.0000029338317 0.0000044301058 0.0000030813582 0.0000071511410 0.0000126615618 0.0000203910217 0.0000318028637 0.0001118629438 ]./0.000034868299 ; s1=[0.0001773503110 0.0003553133430 0.0005338922010 0.0007130899610 0.0008929096590 0.00#### 0.0005747667510 0.0012111415700 0.0019195724060 ... 0.0027130110200 0.0036077110840 0.0064386221260 0.0005056929850 0.0010189193420 0.00#### 0.0020685403470 0.0026052286500 0.0039828224110 ]./0.00275071; %s2=[25.9167875445 24.0718476818 22.2364947192 20.4105777318 18.5939487791 14.0920619223 990.2535888432 1040.4661104131 1096.3830297389 1159.029******* ... % 1229.6925839338 1453.3788619676 164.1136642277 142.4834641073 121.6137611080 101.4436832756 81.9180522413 35.6044841634]; glkyl=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3];

08第八章___神经网络的参数优化设计方法

1 第8章 神经网络的参数优化设计 在神经网络的泛化方法中,研究最多的是前馈神经网络的结构优化设计方法(剪枝算法、构造算法及进化算法等,我们将在以后各章讨论)。除了结构设计,其余前馈神经网络的泛化方法还有主动学习、最优停止法、在数据中插入噪声、神经网络集成及提示学习方法等,由于这些方法中神经网络的结构是固定的,因此神经网络性能是通过参数优化改善的,我们称这些方法为神经网络的参数优化设计方法。本章介绍最主要的参数优化设计方法,并给出了每种方法的算法实现和仿真例子。 8.1 主动学习 8.1.1 原理 按照学习机器对训练样本的处理方式,可将学习方式分为两类:被动学习方式和主动学习方式。被动学习是常用的学习方式,常被称为“从样本中学习” (Learning from samples ),该方式被动地接受训练样本,并通过学习从这些样本中提取尽可能多的信息。与被动学习相反,主动学习属于更高层次的、具有潜意识的学习。主动学习对训练样本的选择是主动的,通常通过对输入区域加以限制,有目的地在冗余信息较少的输入区域进行采样,并选择最有利于提高学习机器性能的样本来训练分类器,从而提高了整个训练样本集的质量。由上一章的讨论,训练样本质量对神经网络的泛化能力有极大影响,甚至超过网络结构对泛化能力的影响。因此采用主动学习方法,是改进神经网络泛化能力的一个重要方法。 主动学习机制大部分用于分类或概念学习[Baum1991,HwCh1990,SeOp1992]。在单概念学习中,Mitchell[Mitch1982]关于版本空间(Version Space)的论述有着较大的影响。下面,我们先简要介绍一下这一理论。 如果X 为一线性空间,概念c 定义为X 中点的集合。对目标概念t ,训练样本可写为()()x x t ,,其中X ∈x 为样本输入,()x t 为对x 的分类。如果t ∈x ,则()1=x t ,称()()x x t ,为t 的正样本;如果t ?x ,则()0=x t ,此时称()()x x t ,为t 的负样本。显然,对线性空间内的任何两个可分概念1c 和2c ,如果()()x x 1,c 是1c 的正样本(负样本),则()()x x 11,c ?必然是2c 的负样本(正样本),即任意两个可分概念的正负样本之间可以互相转换。如果某概念c 对x 的分类与目标概念对其的分类()x t 相等,即()()x x t c =,

贝叶斯正则化Bayesian BP Regulation

APPLICATION OF BAYESIAN REGULARIZED BP NEURAL NETWORK MODEL FOR TREND ANALYSIS,ACIDITY AND CHEMICAL COMPOSITION OF PRECIPITATION IN NORTH CAROLINA MIN XU1,GUANGMING ZENG1,2,?,XINYI XU1,GUOHE HUANG1,2,RU JIANG1 and WEI SUN2 1College of Environmental Science and Engineering,Hunan University,Changsha410082,China; 2Sino-Canadian Center of Energy and Environment Research,University of Regina, Regina,SK,S4S0A2,Canada (?author for correspondence,e-mail:zgming@https://www.wendangku.net/doc/168217103.html,,ykxumin@https://www.wendangku.net/doc/168217103.html,, Tel.:86–731-882-2754,Fax:86-731-882-3701) (Received1August2005;accepted12December2005) Abstract.Bayesian regularized back-propagation neural network(BRBPNN)was developed for trend analysis,acidity and chemical composition of precipitation in North Carolina using precipitation chemistry data in NADP.This study included two BRBPNN application problems:(i)the relationship between precipitation acidity(pH)and other ions(NH+4,NO?3,SO2?4,Ca2+,Mg2+,K+,Cl?and Na+) was performed by BRBPNN and the achieved optimal network structure was8-15-1.Then the relative importance index,obtained through the sum of square weights between each input neuron and the hidden layer of BRBPNN(8-15-1),indicated that the ions’contribution to the acidity declined in the order of NH+4>SO2?4>NO?3;and(ii)investigations were also carried out using BRBPNN with respect to temporal variation of monthly mean NH+4,SO2?4and NO3?concentrations and their optimal architectures for the1990–2003data were4-6-1,4-6-1and4-4-1,respectively.All the estimated results of the optimal BRBPNNs showed that the relationship between the acidity and other ions or that between NH+4,SO2?4,NO?3concentrations with regard to precipitation amount and time variable was obviously nonlinear,since in contrast to multiple linear regression(MLR),BRBPNN was clearly better with less error in prediction and of higher correlation coef?cients.Meanwhile,results also exhibited that BRBPNN was of automated regularization parameter selection capability and may ensure the excellent?tting and robustness.Thus,this study laid the foundation for the application of BRBPNN in the analysis of acid precipitation. Keywords:Bayesian regularized back-propagation neural network(BRBPNN),precipitation,chem-ical composition,temporal trend,the sum of square weights 1.Introduction Characterization of the chemical nature of precipitation is currently under con-siderable investigations due to the increasing concern about man’s atmospheric inputs of substances and their effects on land,surface waters,vegetation and mate-rials.Particularly,temporal trend and chemical composition has been the subject of extensive research in North America,Canada and Japan in the past30years(Zeng Water,Air,and Soil Pollution(2006)172:167–184 DOI:10.1007/s11270-005-9068-8C Springer2006

基于神经网络的优化计算实验报告

人工智能实验报告 实验六基于神经网络的优化计算实验 一、实验目的: 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件: VC++6.0。 四、实验内容: 1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。

五、实验报告要求: 1、画出连续Hopfield神经网络求解TSP问题的流程图。 2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程371 最佳路线 →→→→→→→→→→→→→→→1914861351534712210111 (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。 遗传算法易出现早熟收敛和收敛性差的缺点。 Hopfield算法对高速计算特别有效,但网络不稳定。 用Hopfield解TSP问题效果并不理想。相对前面的遗传算法解TSP 性能有相当大差距。

模块化神经网络结构自组织设计方法

模块化神经网络结构自组织设计方法 从仿生学角度出发,根据脑功能分区原理和脑式信息处理理论,对模块化神经网络结构自组织设计中的子网络结构自组织问题、复杂任务动态分解问题和子网络动态重组问题展开了系统而深入的研究,内容包括:1.提出了一种基于改进拟熵的权衰减算法,该算法对Shannon熵进行改进,改进后的熵与Shannon熵对不确定性的描述具有相同的效果,但克服了Shannon熵固有的缺点。将神经网络实际输出与期望输出的交叉熵和隐节点输出拟熵作为代价函数,并采用熵周期的策略对网络参数进行寻优。最后,通过删除冗余的权连接,实现了简化神经网络结构的目的。2.针对传统修剪算法必须将网络训练到代价函数局部极小的问题,提出了一种基于神经网络复杂度的修剪算法。 该算法利用网络连接权矩阵的协方差矩阵计算网络的信息熵,获得网络的复杂度,在保证网络信息处理能力的前提下,删除对网络复杂度影响最小的隐节点。由于该算法只与神经网络的内部连接特性有关,而与外部输入无关,因此该算法不要求训练网络到代价函数的极小点,适合在线修剪网络结构。3.针对权衰减和修剪算法采取贪婪搜索策略易陷入局部最优网络结构的问题,提出了一种自适应前馈神经网络结构设计算法。该算法根据前馈网络输出节点的输出是隐节点输出的线性组合的事实,结合前馈网络的学习动态,采取自适应寻优策略合并和分裂隐节点。 当神经网络中有冗余隐节点时,利用互信息找到输出线性相关的隐节点进行合并,以简化神经网络结构;当神经网络学习能力不足时,采用随机分裂隐节点的方法,以增大神经网络的学习能力。实验表明,该算法能够达到设计最优神经网络结构的目的。4.针对单一神经网络训练时间长、对复杂问题处理精度较低、易陷入局部极小等缺陷,提出了一种多层协同模块化神经网络结构。该神经网络具有层级结构,基于条件模糊聚类技术对样本进行分类,根据分类结果实现对神经网络的模块划分,采用代数算法对网络权值进行求解,基于距离测度设计了处理输入信息的子网络选择方法。 为提高神经网络对复杂问题的逼近能力,选择数目不等的多个子网络参与给定输入的协同学习,采取“分而治之”与“集成学习”相结合方法以提高网络的性能。实验表明,对于复杂问题,多层协调模块化神经网络可以有效地提高网络

BP程序

例1 采用动量梯度下降算法训练BP 网络。 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为t = [-1 -1 1 1] 解: % P 为输入矢量 P=[-1, -2, 3, 1; -1, 1, 5, -3]; % T 为目标矢量 T=[-1, -1, 1, 1]; % 创建一个新的前向神经网络 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; % 调用TRAINGDM 算法训练BP 网络 [net,tr]=train(net,P,T); % 对BP 网络进行仿真 A = sim(net,P) % 计算仿真误差 E = T - A MSE=mse(E)

例2 采用贝叶斯正则化算法提高BP 网络的推广能力。在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成: 输入矢量:P = [-1:0.05:1]; 目标矢量:randn(’seed’,78341223); T = sin(2*pi*P)+0.1*randn(size(P)); 解:本例的MATLAB 程序如下: % P 为输入矢量 P = [-1:0.05:1]; % T 为目标矢量 randn('seed',78341223); T = sin(2*pi*P)+0.1*randn(size(P)); % 绘制样本数据点 plot(P,T,'+'); hold on; plot(P,sin(2*pi*P),':'); % 绘制不含噪声的正弦曲线 % 创建一个新的前向神经网络 net=newff(minmax(P),[20,1],{'tansig','purelin'}); disp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR'); choice=input('请选择训练算法(1,2):'); figure(gcf); if(choice==1) % 采用L-M 优化算法TRAINLM net.trainFcn='trainlm'; % 设置训练参数 net.trainParam.epochs = 500; net.trainParam.goal = 1e-6; net=init(net); % 重新初始化 elseif(choice==2) % 采用贝叶斯正则化算法TRAINBR net.trainFcn='trainbr'; % 设置训练参数 net.trainParam.epochs = 500; randn('seed',192736547); net = init(net); % 重新初始化

神经网络最新发展综述

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

BP神经网络模型应用实例

BP神经网络模型 第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11)(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并 传向输出层。每一层神经元的状态只影响下一层神经

(整理)BP神经网络工具箱.

1.神经网络 神经网络是单个并行处理元素的集合,我们从生物学神经系统得到启发。在自然界,网络功能主要由神经节决定,我们可以通过改变连接点的权重来训练神经网络完成特定的功能。 一般的神经网络都是可调节的,或者说可训练的,这样一个特定的输入便可得到要求的输出。如下图所示。这里,网络根据输出和目标的比较而调整,直到网络输出和目标匹配。作为典型,许多输入/目标对应的方法已被用在有监督模式中来训练神经网络。 神经网络已经在各个领域中应用,以实现各种复杂的功能。这些领域包括:模式识别、鉴定、分类、语音、翻译和控制系统。 如今神经网络能够用来解决常规计算机和人难以解决的问题。我们主要通过这个工具箱来建立示范的神经网络系统,并应用到工程、金融和其他实际项目中去。 一般普遍使用有监督训练方法,但是也能够通过无监督的训练方法或者直接设计得到其他的神经网络。无监督网络可以被应用在数据组的辨别上。一些线形网络和Hopfield网络是直接设计的。总的来说,有各种各样的设计和学习方法来增强用户的选择。 神经网络领域已经有50年的历史了,但是实际的应用却是在最近15年里,如今神经网络仍快速发展着。因此,它显然不同与控制系统和最优化系统领域,它们的术语、数学理论和设计过程都已牢固的建立和应用了好多年。我们没有把神经网络工具箱仅看作一个能正常运行的建好的处理轮廓。我们宁愿希望它能成为一个有用的工业、教育和研究工具,一个能够帮助用户找到什么能够做什么不能做的工具,一个能够帮助发展和拓宽神经网络领域的工具。因为这个领域和它的材料是如此新,这个工具箱将给我们解释处理过程,讲述怎样运用它们,并且举例说明它们的成功和失败。我们相信要成功和满意的使用这个工具箱,对范例和它们的应用的理解是很重要的,并且如果没有这些说明那么用户的埋怨和质询就会把我们淹没。所以如果我们包括了大量的说明性材料,请保持耐心。我们希望这些材料能对你有帮助。 这个章节在开始使用神经网络工具箱时包括了一些注释,它也描述了新的图形用户接口和新的运算法则和体系结构,并且它解释了工具箱为了使用模块化网络对象描述而增强的机动性。最后这一章给出了一个神经网络实际应用的列表并增加了一个新的文本--神经网络设计。这本书介绍了神经网络的理论和它们的设计和应用,并给出了相当可观的MA TLAB和神经网络工具箱的使用。 2. 反向传播网络(BP网络) 1.概述 前面介绍了神经网络的结构和模型,在实际应用中,我们用的最广泛的是反向传播网络(BP网络)。下面就介绍一下BP网络的结构和应用。 BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。一个典型的BP网络采用的是梯度下降算法,也就是Widrow-Hoff算法所规定的。backpropagation就是指的为非线性多层网络计算梯度的方法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。神经网络工具箱提供了许多这样的算法。这一章我们将讨论使用这些规则和这些算法的优缺点。

基于神经网络模型的最新系统辨识算法

基于神经网络模型的最新系统辨识算法 摘要:神经网络具有大规模并行分布式结构、自主学习以及泛化能力,因此可以利用神经网络来解决许多传统方法无法解决的问题。神经网络应用在非线性系统的辨识中有良好的结果。本文在阅读大量参考文献的基础上,对最新的基于神经网络的系统辨识算法进行总结。 关键字:神经网络;系统辨识;辨识算法 The latest algorithm about identification system based on neural network model Abstract: Neural network has large parallel distributed structure, learning by itself and has generalization ability. So neural network is used to solve many questions which traditional method cannot. Neural network is well applied to nonlinear system which has got good achievements in identification system. Based on most of documents, the paper summaries the latest algorithm about identification system based on neural network model. Keywords:Neural network, identification system, identification algorithm 0 前言 在国内,系统辨识也取得了许多成绩,尽管成果丰硕,但传统辨识法仍存在不少局限:传统辨识法较适用于输入端中扰动水平比较低的控制系统,对于具有外界干扰的控制系统,就会出现计算量大、鲁棒性不够好的问题;最小二乘法及其相关改进算法一般利用梯度算法进行信息搜索,容易陷入局部极小值。鉴于此,神经网络控制在系统辨识中得到了新的应用。本文在阅读大量文献后,针对国内基于神经网络的结合其他算法的最新辨识算法进行综述分析。 1 神经网络的应用优势 神经网络的吸引力在于:能够充分逼近任意复杂的非线性关系,能够学习适应不确定性系统的动态特性;所有定量或定性的信息都分布储存于网络内的各个神经元,所以有很强的鲁棒性和容错性;采用并行分

神经网络基本知识

(一)三层神经网络 1)该模型的参数通过两个步骤训练获得:在该网络的第一层,将输入映射 至隐藏单元激活量的权值可以通过稀疏自编码器训练过程获得。 在第二层,将隐藏单元映射至输出的权值可以通过 logistic 回归或 softmax 回归训练获得。 2)在描述上述过程时,假设采用了“替代(Replacement)”表示而不是“级联 (Concatenation)”表示。在替代表示中,logistic 分类器所看到的训练样 本格式为;而在级联表示中,分类器所看到的训练样本格式 为。在级联表示神经网络中,输入值也直接被输入 至 logistic 分类器。 3)在训练获得模型最初参数(利用自动编码器训练第一层,利用 logistic/softmax 回归训练第二层)之后,可以进一步修正模型参数,进而降低训练误差。具体来说,可以对参数进行微调,在现有参数的基础上采用梯度下降或者 L-BFGS 来降低已标注样本集 上的训练误差。 微调的作用在于,已标注数据集也可以用来修正权值,这样可以对 隐藏单元所提取的特征做进一步调整。

对于微调来说,级联表示相对于替代表示几乎没有优势。因此,如果需要开展微调,通常使用替代表示的网络。但是如果不开展微调,级联表示的效果有时候会好得多。 通常仅在有大量已标注训练数据的情况下使用微调。在这样的情况下,微调能显著提升分类器性能。如果有大量未标注数据集(用于非监督特征学习/预训练),却只有相对较少的已标注训练集,微调的作用非常有限。 (二)深度网络 深度神经网络,即含有多个隐藏层的神经网络。通过引入深度网络,可以计算更多复杂的输入特征。因为每一个隐藏层可以对上一层的输出进行非线性变换,因此深度神经网络拥有比“浅层”网络更加优异的表达能力。 1.深度神经网络的优势 1)当训练深度网络的时候,每一层隐层应该使用非线性的激活函数。这 是因为多层的线性函数组合在一起本质上也只有线性函数的表达能力(例如,将多个线性方程组合在一起仅仅产生另一个线性方程)。因此,在激活函数是线性的情况下,相比于单隐藏层神经网络,包含多隐藏层的深度网络并没有增加表达能力。 2)深度网络最主要的优势在于,它能以更加紧凑简洁的方式来表达比浅层网络 大得多的函数集合。即可以找到一些函数,这些函数可以用层网络简洁地表达出来(这里的简洁是指隐层单元的数目只需与输入单元数目呈多项式 关系)。但是对于一个只有层的网络而言,除非它使用与输入单元 数目呈指数关系的隐层单元数目,否则不能简洁表达这些函数。 3)当处理对象是图像时,使用深度网络,能够学习到“部分-整体”的分解关 系。例如,第一层可以学习如何将图像中的像素组合在一起来检测边缘,第二层可以将边缘组合起来检测更长的轮廓或者简单的“目标的部件”,在更深的层次上,可以将这些轮廓进一步组合起来以检测更为复杂的特征。 这种分层计算很好地模仿了大脑皮层对输入信息的处理方式。视觉图像在人脑中是分多个阶段进行处理的,首先是进入大脑皮层的“V1”区,然后紧跟着进入大脑皮层“V2”区,以此类推。 2.训练深度网络的困难 目前主要使用的学习算法是:首先随机初始化深度网络的权重,然后使用有 监督的目标函数在有标签的训练集上进行训练。其中通过使用梯度下降法来降低训练误差,这种方法通常不是十分凑效。

BP神经网络的设计实例MATLAB编程

神经网络的设计实例(MATLAB编程) 例1 采用动量梯度下降算法训练BP 网络。 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为t = [-1 -1 1 1] 解:本例的MATLAB 程序如下: close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对BP 神经网络进行训练 % SIM——对BP 神经网络进行仿真 pause % 敲任意键开始 clc % 定义训练样本 P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量 T=[-1, -1, 1, 1]; % T 为目标矢量 pause; clc % 创建一个新的前向神经网络 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc % 调用TRAINGDM 算法训练BP 网络 [net,tr]=train(net,P,T);

遗传算法与神经网络的结合

系统工程理论与实践 Systems Engineering——Theory & Practice 1999年 第2期 第19卷 vol.19 No.2 1999 遗传算法与神经网络的结合 李敏强 徐博艺 寇纪淞 摘要 阐明了遗传算法和神经网络结合的必要性和可行性,提出用多层前馈神经网络作为遗传搜索的问题表示方式的思想。用遗传算法和神经网络结合的方法求解了短期地震预报问题,设计了用遗传算法训练神经网络权重的新方法,实验结果显示了遗传算法快速学习网络权重的能力,并且能够摆脱局部极点的困扰。 关键词 遗传算法 进化计算 神经网络 On the Combination of Genetic Algorithms and Neural Networks Li Minqiang Xu Boyi Kou Jisong (Institute of Systems Engineering, Tianjin University, Tianjin 300072) Abstract In this paper, we demonstrate the necessity and possibility of combining neural network (NN) with GAs. The notion of using multilayered feed forward NN as the representation method of genetic and the searching technique is introduced. We combine GA and NN for solving short term earthquake forecasting problem, design a novel method of using GAs to train connection weights of NN.The empirical test indicates the capability of the new method in fast learning of NN and escaping local optima. Keywords genetic algorithms; evolutionary computation; neural networks 1 引言 智能可以分为三个层次:高层次的是生物智能(BI),其次是人工智能(AI), 处于低层次的是计算智能(CI)。 计算智能是国际上新近提出的学科概念,在计算智能中,计算的概念是传统计算概念的拓展,计算对象不仅局限于数和字符,运算符号也不再局限于加减乘除等运算,在这个范畴内的加减乘除也需赋于新的含义。但一般来说,AI 偏重于逻辑推理,而CI则偏重于数值计算。 目前,计算智能正处于迅猛发展的阶段,其主要技术包括模糊技术、神经网络、进化计算等[5]。这几项技术各自均有了数十年的历史,但当时这些方法并未受到足够的重视,一是当时这些方法还不很成熟,二是受当时计算机软硬件的限制,而这些方法一般需要较大的计算量,难以取得实际应用。随着计算机技术的发展和普及,它们在最近十年得到了突飞猛进的发展,引起了诸多领域专家学者的关注,成为一个跨

实验八:基于神经网络的优化计算实验

实验八:基于神经网络的优化计算实验 一、实验目的 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件 VC++6.0。 四、实验内容

1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。 五、实验报告 1、画出连续Hopfield神经网络求解TSP问题的流程图。

2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程 371 最佳路线 1914861351534712210111 →→→→→→→→→→→→→→→ (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。

神经网络11大常见陷阱及应对方法

深度学习的这些坑你都遇到过吗?神 经网络11 大常见陷阱及应对方法【新智元导读】如果你的神经网络不工作,该怎么办?本文作者列举了搭建神经网络时可能遇到的11个常见问题,包括预处理数据、正则化、学习率、激活函数、网络权重设置等,并提供解决方法和原因解释,是深度学习实践的有用资料。 如果你的神经网络不工作,该怎么办?作者在这里列出了建神经网络时所有可能做错的事情,以及他自己的解决经验。 1.忘记规范化数据 2.忘记检查结果 3.忘记预处理数据 4.忘记使用正则化 5.使用的batch太大 6.使用了不正确的学习率 7.在最后层使用了错误的激活函数 8.你的网络包含了Bad Gradients 9.初始化网络权重不正确 10.你使用的网络太深了 11.使用隐藏单元的数量不对 忘记规范化数据了

问题描述 在使用神经网络时,思考如何正确地规范化数据是非常重要的。这是一个无法改变的步骤——假如这一步骤没有小心、正确地做,你的网络就几乎不可能工作。由于这个步骤非常重要,在深度学习社区中也是众所周知的,所以它很少在论文中被提及,因此初学者常常在这一步出错。 怎样解决? 一般来说,规范化(normalization)的意思是:将数据减去均值,再除以其方差。通常这是对每个输入和输出特征单独做的,但你可能经常会希望对特征组做或特别主翼处理某些特征的规范化。 为什么? 我们需要对数据进行规范化的主要原因是大部分的神经网络流程假设输入和输出数据都以一个约是1的标准差和约是0的均值分布。这些假设在深度学习文献中到处都是,从权重初始化、激活函数到训练网络的优化算法。 还需要注意 未训练的神经网络通常会输出约在-1到1范围之间的值。如果你希望输出其他范围的值(例如RBG图像以0-255范围的字节存储)会出现一些问题。在开始训练时,网络会非常不稳定,因为比如说预期值是255,网络产生的值是-1或1——这会被大多数用于训练神经网络的优化算法认为是严重的错误。这会产生过大的梯度,可能导致梯度爆炸。如果不爆炸,那么训练的前几个阶段就是浪费的,因为网络首先学习的是将输出值缩小到大致是预期的范围。如果规范化了数据(在这种情况下,你可以简单地将数值除以128再减去1),就不会发生这些问题。 一般来说,神经网络中特征的规模也决定了其重要性。如果输出中的有一个特征规模很大,那么与其他特征相比它会产生更大的错误。类似地,输入中的大规模特征将主导网络并导致下游发生更大的变化。因此,使用神经网络库的自动规范化往往是不够的,这些神经网络库会在每个特征的基础上盲目地减去平均值并除以方差。你可能有一个输入特征,通常范围在0.0到0.001之间——这个特征的范围如此之小,因为它是一个不重要的特征(在这种情况下,你可能不想重新scale),或者因为与其他特征相比它有一些小的单元(在这种情

相关文档