文档库 最新最全的文档下载
当前位置:文档库 › deform边界条件说明

deform边界条件说明

deform边界条件说明
deform边界条件说明

Defining object boundary conditions

Boundary conditions are specified and enforced at nodes in the finite element mesh. The basic procedure for setting any boundary condition except Contact is the same:

1.Select the appropriate condition type.

2.Select the direction (where applicable).

3.Select the nodes to which boundary conditions will be applied using

one of the selection tools in the lower left button bar.

4.Apply the boundary conditions.

The selected nodes will be highlighted. To apply the boundary conditions click the Generate BCC's button. Colored markers will highlight the nodes to which boundary conditions have been applied. To delete specific boundary conditions, select the start and end nodes, and click the Delete BCC's button. To delete all boundary conditions of the specified type and direction, click the Initialize BCC's button.

Note : You can either select faces of the surface by using the surface patches feature or use the node button to select individual nodes.

Deformation boundary conditions

Velocity

Velocity of each node can be specified independently in the x and y directions (or x, y, and z directions in 3d). Velocity boundary conditions are normally set to zero for symmetry conditions (see section on symmetry in this manual), but may also be set to a specified non-zero value for processes such as drawing in which a workpiece is pulled through a die.

Force

Force boundary conditions specify the force applied to the node by an external object. The force is specified in default units. For die stress analysis, the force that the die exerted on the workpiece can be reversed and interpolated onto the dies by using the interpolation function. Refer to the tutorial labs on die stress analysis for a detailed procedure for using force interpolation to perform die stress analysis.

Pressure

The pressure boundary conditions specifies a uniform, or linearly varying, force per unit area on the element faces connecting the specified nodes. Displacement and shrink fit

A specified displacement can be specified in any direction for each node. This is frequently used for specifying shrink fit conditions between a die insert and a shrink ring. More information on this is available in the section on die stress analysis in this manual.

Movement

The movement of nodes on an object can be specified. If the movement boundary condition is specified, object movement controls must also be specified.

Contact

The Contact boundary condition displays interobject boundary contact conditions on a given object. The user should gain some experience with DEFORM before using this option. The contact conditions are stored in three components to represent the fact that there are three degrees of freedom for any given node.

Thermal

Heat exchange with the environment

This boundary condition specifies that heat exchange between element faces bounded by these nodes and their environment should occur. The contact boundary condition determines whether exchange will occur to the ambient atmosphere or to a contacting object.

Heat flux

Specifies an energy flux per unit area over the face of the element bounded by the nodes. Units are energy/time/area.

Nodal heat

Specifies a heat source at the given nodes. Units are energy/time. Temperature

Specifies a fixed temperature at the given nodes.

Heat Exchange windows

This function allows the user to define heat exchange conditions for local areas on a body by use of three dimensional window. To use heat exchange windows, perform the following actions:

1.Go to the Boundary Conditions window.

2.Select the Thermal tab.

3.Select the Heat exchange windows button.

4.Note the tools in the lower left corner of the display window

changes and the new heat exchange window that comes up.

5.At this point, heat exchange windows can be defined using the tools

in the lower left corner of the display window. Each window has its own

local environmental temperature, convection coefficient and emissivity.

See Figure for an example heat exchange window.

6.You can define up to 20 independent windows by the method. If two

regions share the same space, the lower number window wins. Diffusion [DIF]

Diffusion with the environment

Specifies diffusion of the dominant atom through the boundary elements bordered by the indicated nodes. Environment dominant atom content and surface reaction rate are specified under the Simulation Controls, Processing Conditions menu. Environment content and reaction rate for various regions of the part may be modified by using diffusion windows.

Fixed atom content

Specifies a fixed dominant atom content at the given nodes.

Atom flux

Specifies a fixed dominant atom flux rate over the elements bordered by the indicated nodes.

2.4.11. Contact boundary conditions

Contact boundary conditions are applied to nodes of a slave object, and specify contact between those nodes and the surface of a master object (see master-slave relationships under the Interobject data section). If a node is specified to be in contact with a particular object, it will placed on the surface of that object. If this requires changing the position of that node, it will be changed as necessary. Contact boundary conditions are generated under the InterObject , Contact Boundary Conditions.

It is for this reason that the user should be VERY careful with how contact is specified. If it is improperly used, the mesh may be damaged and very often remeshing cannot aid this situation since the AMG cannot interpret the users intentions.

Contact boundary conditions can be displayed for a given object using the Objects, Boundary Conditions, Advanced Deformation BCC's icon.

DEFORM材料中文帮助

材料的属性窗口可以通过按材料属性图标(参见图2.2.1)材料的属性对话框显示在图第2.2.2。为了模拟获得高精确度,其非常重要的是需要理解DEFORM中指定材料的性能。用户在模拟中需要知道指定材料种类的作用。本节描述材料数据,可以指定为一个变形模拟。不同的数据集是: 弹性数据 热数据 塑性数据 扩散数据 再结晶晶粒再生长 硬度估计数据 折断数据 本节讨论的方式来定义每个这些数据集的,哪些类型的模拟每种所需。 图第2.2.2:定义阶段和混合物DEFORM-3D内。 2.2.1阶段和混合物 材料组织可以分为两大类,有规律的和混合。对于大多数应用程序的形成需要低于转换温度变形,属性定义了常规材料或单阶段材料。然而当操作在高温条件下,材料经历相变的地方是重要模型转换,并为每个阶段涉及到定义属性和组这些阶段混合气的材料。例如一个通用的钢存在的奥氏体、贝氏体,马氏体,等等。在热处理上面的每个阶段可以转换到另一个阶段。所以任何材料集团,可以转换到另一个阶段应该被分类为一个阶段材料。混合材料的所有阶段的合金系统和一个对象可以被指定这种混合材料如果体积分数计算数据。

图2.2.3:定义数据弹性材料。 2.2.2弹性数据 弹性数据是弹性材料和弹塑材料的变形分析所必要的。这三个变量用来描述属性的弹性变形是杨氏模量、泊松比和热膨胀。 杨氏模量 杨氏模量用于弹性材料和弹塑性材料屈服点以下。它可以被定义为一个常数或作为温度的函数,密度(用于粉末金属),占主导地位的atom内容(例如,碳含量),或温度的函数和atom内容。泊松比 泊松比之间的比率是轴向和横向疲劳。它是需要弹性和弹塑性材料。它可以被定义为一个常数或作为温度的函数,密度(用于粉末金属),占主导地位的atom内容(例如,碳含量),或温度的函数和atom内容。 热膨胀系数 热膨胀系数定义体积应变变化引起的温度。它可以被定义为一个常数或作为温度的函数。弹性的身体温度变化是定义为节点温度之间的区别和指定的参考温度(REFTMP): εth = α(T - T0) α是热膨胀系数,T0的参考温度和T是物料温度。对弹塑性体热膨胀阻输入在预处理程序是值的平均值热膨胀和有限元计算的瞬时(切)值的平均值。 ?εth = α*?T α*是正切的热膨胀系数,T是物料温度 实验数据的热膨胀和转换工具可用 用户界面现在可以直接进入切线热膨胀系数作为温度的函数,或者用户也可以导入瞬时值可以从实验数据(参见图2.2.4)。在导入该瞬时值,用户需要表明如果这些录音是基于加热或冷却测试和参考温度。这个瞬时热膨胀数据转换为可以平均数据。(也称为割线的,这些数据在要

DEFORM-3D基本操作技巧入门基础

DEFORM-3D基本操作入门 QianRF 前言 有限元法是根据变分原理求解数学物理问题的一种数值计算方法。由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。 现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。 有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。 一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+Δun(3)

说明书英文版

Instructions 1. Specifications for gears assembled The torch is equipped with the following 8 different gears: 2. Operation for switchover ● tail switch operation The tail switch is a button switch with the function of button-pressing for locking and unlocking, which is to realize the operation of internal switches through the metallic button’s delivering the pressing force in the following specific modes: ◆when the switch is off, if the metallic button is pressed hard, after it is released, the switch

will then be kept on, circuit connected with LED on. ◆when the switch is on, if the metallic button is pressed hard, after it is released, the switch will then be unlocked and kept off with LED accordingly off. ◆when the switch is on, if the metallic button is pressed gently, LED will be off immediately, but after the button is released, LED will then be on again, and the switch will then be kept on. This operation is defined as the “gentle pressing” that LED goes through momentary on-and-off as the metallic button is gently pressed and released. ●how to switch over If the torch is turned on for the first time, or turned on again after it is turned off for the first time and remains off or at least 2 seconds, the gear will then be automatically switched to the first gear in either case: “high light”. In the mode that the torch is kept on when LED is on, press the tail switch gently, and the torch will be switched to another gear. The 8 different gears assembled herein will be switched on by turns. Caution: if you have any problem with switchover before initial use, please contact relevant salespeople or the after-sale service department for more information. 3. Load batteries in the right way Unscrew the tail cover, put the batteries into the cabin with the positive electrode toward the torch head, and then screw the cover tight. If batteries are loaded in the wrong way, the torch won’t work due to circuit protection, but it will resume normal work after batteries are unloaded and reloaded in the right way. Caution: batteries with no-load voltage over 2V are not preferred in case the internal circuit suffers from damages. Only batteries with on-load voltage of or under 2V are recommended. Due to excellent discharging performance, NiMH batteries are strongly recommended here. Maintenance Four silicone rings are equipped, two in front of the middle pipe and two at the back, providing excellent water-proof performance. For daily use, the torch will continue normal work even if it is accidentally soaked in the water.

DEFORM

DEFORM-3D塑性成形CAE应用教程 第一章塑性成形CAE技术 本章学习目标:了解塑性成形CAE技术及国内外现状;了解塑性成形技术的特点;了解DEFORM-3D软件的发展、特点及功能。 本章教学要点: 知识要点能力要求相关知识 塑性成形CAE技术现状了解塑性成形CAE技术及国内外现状CAE技术及塑性成形 CAE的定义、优点及 常见技术 塑性成形技术的特点了解塑性成形技术的特点各种类型的常见塑性 成形技术原理及变形 特点 DEFORM-3D软件了解DEFORM-3D软件的发展、特点及功能了解有限元法及 刚黏塑性有限元法导入案例: 随着计算科学的快速发展和有限元技术应用的日益成熟,CAE技术模拟分析金属在塑性变形过程中的流动规律在现实生产中得到愈来愈广泛的应用。 CAE技术的成功运用,缩短了模具和新产品的开发周期,降低了生产成本,提高企业的市场竞争能力。 锻件预成形后的坯料应力分布 塑性成形CAE技术 塑性成形CAE的特点是以工程和科学问题为背景,建立计算模型并进行计算机仿真分析。一方面,CAE技术的应用,使许多过去受条件限制无法分析的复杂问题,通过计算机数值模拟得到满意的解答;另一方面,计算机辅助分析使大量繁杂的工程分析问题简单化,使复杂的过程层次化,节省了大量的时间,避免了低水平重复的工作。 国外现状 金属塑性成形技术 金属塑性成形技术是现代制造业中金属加工的重要方法之一,它是金属坯料在模具的外力作用下发生塑性变形,并被加工成棒材、板材、管材以及各种机器零件、构建或日用器具等技术。 金属塑性成形加工的作用如下: (1)塑性成形可将金属坯料内的疏松和空洞性缺陷压实,提高其性能和质量。 (2)塑性成形引起再结晶,从而改变金属坯料铸态偏析,改善金属坏料组织结构。

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作 热处理工艺在机械制造中占有十分重要的地位。随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。Deform-3d 软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。减少批量报废的质量事故发生。 热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。 但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。 本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。 1 、问题设置 点击“文档”(File)或“新问题”(New problem),创建新问题。在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。 图1 设置新问题 2、初始化设置 完成问题设置后,进入前处理设置界面。首先修改公英制,将默认的英制

商品说明书中英文对照

商品说明书中英文翻译对照 【药物名】对乙酰氨基酚 【其他名称】乙酰氨基酚;扑热息痛;退热净;醋氨酚;Acetaminophen;N-acetyl-P-aminophenol 【英文名称】Paracetamol 【适应症】用于感冒及流感,发热,减轻中度疼痛如关节痛、神经痛、肌肉痛、头痛、偏头痛、痛经、牙痛等症状。对阿司匹林过敏或不适应的患者应用本品尤为适宜。 【用法与用量】口服:成人每次300-500毫克,日2-3次。儿童每日2-3次,每次2-3岁50-100毫克;4-6岁100-150毫克;7-9岁150-200毫克;10-12岁200-250毫克;12岁以上250-500毫克;1岁以下儿童避免使用。 【注意事项】 (1)对阿司匹林过敏者一般对本品不发生过敏,但也有因对阿司匹林过敏而发生哮喘的病人中,少部分人在服用本品后发生轻度支气管痉挛性反应,因此,对阿司匹林过敏者慎用。 (2)孕妇和哺乳期妇女慎用。 (3)服用本品后如出现红斑或水肿症状,应立即停药。 【不良反应】一般剂量较少引起不良反应,对胃肠道刺激小,不会引起胃肠道出血。但也偶可引起恶心、呕吐、出汗、腹泻及面色苍白等不良反应。长期大量用药,对肝、肾均有损害,尤其是肾功能低下者,可能出现肾绞痛或急性肾功能衰竭。另外还可发生高铁血红蛋白血症。 【禁忌症】 (1)对本品过敏者禁用。

(2)1岁以下儿童及新生儿因肝、肾功能发育不全,应避免使用。 (3)酒精中毒、患肝病或病毒性肝炎时,本品有增加肝脏毒性作用的危险,应禁用。 (4)肾功能不全者禁用。 【限定剂型】片剂,咀嚼片,缓释片,泡腾片,分散片,胶囊剂,口服溶液剂,滴剂,糖浆剂,颗粒剂,泡腾颗粒剂,栓剂。 【药物贮藏】应在阴凉干燥处密闭保存。 【药物配伍】1、长期饮酒或正在应用其他肝酶诱导剂时,尤其是巴比妥类或其他抗痉挛药的患者,连续使用本品,有发生肝脏毒性反应的危险。 2、长期大量与阿司匹林、其他水酸盐制剂或其他非甾体抗炎药合用时(如每年累积用量达1000克,应用3年以上),可明显增加肾毒性的危险。 3、与抗病毒药剂多夫定合用时,会增加毒性,应避免同时应用。 4、与抗凝血药合用时可增加抗凝血作用,故要调整抗凝血药的用量。Paracetamol Main Use :Pain, fever Active Ingredient :Paracetamol Manufacturer :Non-proprietary How does it work? This medicine contains the active ingredient paracetamol, which is a medicine used to relieve mild to moderate pain. It is also useful for reducing fever. It is not fully understood how paracetamol produces these effects. Paracetamol can be used to relieve mild to moderate aches and pains associated with conditions such as headaches, migraine, toothache, teething, colds and flu. It is also useful for reducing fever and discomfort associated with colds and flu and following vaccinations.

最新DEFORM软件汇总

D E F O R M软件

DEFORM软件 DEFORM简介 Deform软件是一个高度模块化、集成化的有限元模拟系统,它主要包括前处理器、模拟器、后处理器三大模块。 前处理器:主要包括三个子模块(1)数据输入模块,便于数据的交互式输入。如:初始速度场、温度场、边界条件、冲头行程及摩擦系数等初始条件;(2)网格的自动划分与自动再划分模块;(3)数据传递模块,当网格重划分后,能够在新旧网格之间实现应力、应变、速度场、边界条件等数据的传递,从而保证计算的连续性。 模拟器:真正的有限元分析过程是在模拟处理器中完成的,Deform运行时,首先通过有限元离散化将平衡方程、本构关系和边界条件转化为非线性方程组,然后通过直接迭代法和Newton-Raphson法进行求解,求解的结果以二进制的形式进行保存,用户可在后处理器中获取所需要的结果 后处理器:后处理器用于显示计算结果,结果可以是图形形式,也可以是数字、文字混编形式,获取的结果可为每一步的有限元网格;等效应力、等效应变;速度场、温度场及压力行程曲线等 DEFORM功能 1. 成形分析 冷、温、热锻的成形和热传导耦合分析(DEFORM所有产品)。

丰富的材料数据库,包括各种钢、铝合金、钛合金和超合金(DEFORM所有产品)。 用户自定义材料数据库允许用户自行输入材料数据库中没有的材料(DEFORM所有产品)。 提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息。 刚性、弹性和热粘塑性材料模型,特别适用于大变形成形分析(DEFORM所有产品)。 弹塑性材料模型适用于分析残余应力和回弹问题(DEFORM-Pro, 2D, 3D)。 烧结体材料模型适用于分析粉末冶金成形(DEFORM-Pro, 2D, 3D)。 完整的成形设备模型可以分析液压成形、锤上成形、螺旋压力成形和机械压力成形(DEFORM所有产品)。 用户自定义子函数允许用户定义自己的材料模型、压力模型、破裂准则和其他函数(DEFORM-2D,3D)。 网格划线(DEFORM-2D,PC,Pro)和质点跟踪(DEFORM所有产品)可以分析材料内部的流动信息及各种场量分布、温度、应变、应力、损伤及其他场变量等值线的绘制使后处理简单明了(DEFORM所有产品)。 自我接触条件及完美的网格再划分使得在成形过程中即便形成了缺陷,模拟也可以进行到底(DEFORM-2D,Pro)。 多变形体模型允许分析多个成形工件或耦合分析模具应力(DEFORM-2D,Pro,3D)。

Deform二次开发步骤

Deform 3D二次开发步骤 为了在金属成形工艺模拟过程中进行微观组织演化的定量预测,所使用的模拟软件必须有包含微观组织变化的本构模型和专门的微观组织演化分析模块。当前国际上虽然有多个知名商业软件流行,但是它们都不具备微观组织演化的预测功能。庆幸的是多数商业软件都为二次开发设置了用户子程序功能,通过用户子程序,用户就能根据自己的需要增加自己的微观组织预测功能。 为了使DEFORM3D软件具有微观组织演化预测功能,本研究尝试将包含动态再结晶的热刚—粘塑性材料本构模型植入到DEFORM3D中,并在模拟结果中能够显示晶粒度等用户变量在变形体内的分布。在研究出具体开发步骤前,必须要对Defom中的程序有所深入了解。 一、DEFORM3D二次开发基础理论 1、用户子程序结构 本研究的DEFORM3D二次开发涉及到的子程序有:USRMSH、USRMTR、UFLOW、USRUPD(含USR和CHAZHI)。 (1)可以改变几乎所有变量的子程序(USRMSH)

子程序功能:该子程序包含了有限元计算中所有的全局变量,通过这个用户子程序,可以修改所有这些变量。但这些全局变量的改变将直接影响有限元的计算,处理不当就会使整个程序不能正常进行。 在DEFORM3D子程序功能中,所有的用户变量必须在USRUPD子程序中定义。本文的用户子程序中共定义了18个用户单元变量。各用户变量的含义如列表所示。 该子程序用于某些必要数据的获取和存储流程图如下图所示: (2)流动应力子程序(USRMTR、UFLOW) SUBROUTINE USRMTR(NPTRTN,YS,YPS,FIP,TEPS,EFEPS,TEMP)SUBROUTINE UFLOW(YS,YPS,FIP,TEPS,EFEPS,TEMP)子程序的变量含义:NPTRTN:应力模型编号;YS:流动应力;YPS:流动应力对等效应变的导数;FIP:流动应力对等效应变速率的导数;TEPS:等效应变;EFEPS:等效应变;TEMP:温度。 子程序USRMTR和UFLOW运行时需要输入:应力模型编号、等效应变、等效应变速率、温度。子程序执行完后将输出:流动应力值、流动应力对等效应变的导数,流动应力对等效应变速率的导数。这几个变量可以用用户定义变量来计算。

deform基础

一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式,其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+ Δu n(3) 将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。 二、Deform-3d基本模拟功能 切削machining(cutting) 成形forming 模具应力分析die stress analysis 滚轧shap and ring rolling 热处理heat treatment 三、Deform-3d基本结构与方法 包括前处理程序(Pre-processor)、模拟程序(simulator)和后处理程序(Post Processor)。首先要在CAD软件(如Pro/E、UG等)中进行实体造型,建立模具和坯料的实体信息并将其转换成相应的数据格式(STL);然后在软件中设定变形过程的相应环境信息,进行网格剖分;再在应用软件上进行数值模拟计算;最后在后处理单元中将计算结果按需要进行输出。 事实上,由于设置了冷成形、工件材料、模具等信息后,环境条件几乎全是默认的。因此只要熟悉了操作步骤,严格按要求操作可以顺利完成预设置工作(pre-processor);设置完成后,通过数据检查(check data)、创建数据库(generate data),将数据保存,然后关闭操作;开启模拟开关(switch simulation)、运行模拟程序(run simulation),进入模拟界面,模拟程序开始自动解算,在模拟解算过程中,可以打开模拟图表(simulation graphics)监视模拟解算进程,并进行图解分析,对变形过程、应力、应变、位移、速度等进行监视。 应用后处理器(post processor),分析演示变形过程,也可以打开动画控制开关(animation control),隐去工(模)具(single object mode),进行动画演示。并同时可以打开概要(summary)和图表(graph),对荷栽、应力、应变、位移和速度等进行详细分析。 四、软件安装 Deform-3d软件的安装,只要按提示操作,可以顺利完成安装。安装完成后,分别打开原始程序文件夹和已经安装好的程序文件夹,在原始文件夹中找到

安装bt5到u盘方法与步骤

安装bt5到u盘方法与步骤 先弄个BackTrack的Live版ISO文件,官网上有。我选的是BackTrack5R2KDE64位(文档上介绍的GNOME版) 运行虚拟机,从ISO文件启动,BackTrack就跑起来了。用startx命令切换到图形界面。 安装过程需要从互联网下载安装软件,所以先检查互联网连接,可用nslookup https://www.wendangku.net/doc/188357787.html, 如果域名解析成功,互联网连接就没问题了。不行的话用ifconfig检查接口状态,用/etc/init.d/networking stop关闭网络接口,用/etc/init.d/networking start启动网络接口 在U盘上安装先要在系统中找到U盘,即找到它的路径,可以用dmesg|egrep hd.\|sd.命令,一般U盘的路径是/dev/sdb,不过不同环境不一样,例如,接了不止一个U盘的话,就不一定是这个路径了。 找到U盘。用fisk/dev/sdb对它做分区,分区步骤如下 1)建一个主分区(primary),大小500M左右,把它toggle为83,设为active(这个区后面是用作/boot分区的,路经是/dev/sdb1) 2)建一个扩展分区(extend),大小是剩下的空间(就是直接敲回车就行了) 3)建一个逻辑分区(logical),大小跟2)的一样(也是直接敲回车就行了,这个后面是用作/分区,路经是/dev/sdb5) 4)别忘了敲w命令哦,保存分区表 后面的安装需要一些软件和工具,所以要升级一下BackTrack apt-get update apt-get install hashalot 升级成功后,要对U盘上的分区启用加密 cryptsetup-y--cipher aes-xts-plain--key-size512luksFormat/dev/sdb5 这里会要求建立加密口令的

Deform使用简明步骤

Deform-3D(version6.1)使用步骤 Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。 以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。 一、模拟准备 模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。 实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。 二、前处理 前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。 首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform 模拟文件的文件夹→下步的problem name可任意填写。注意:所有路径不能含有中文字符。 simulation controls)→改变单位(units)为SI,接受 弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。 导入坯料、模具并设置参数: 导入毛坯: 1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为刚性 (rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意); 材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。 2、geometry:importgeometry from a file:从保存的STL格式文件中找到坯料,导入后会在 左侧窗口显示出预览,然后点击check GEO检查模型,务必保证出现下图椭圆中数值。

市场流通科破解企业难题调研报告完整版

编号:TQC/K764 市场流通科破解企业难题调研报告完整版 Daily description of the work content, achievements, and shortcomings, and finally put forward reasonable suggestions or new direction of efforts, so that the overall process does not deviate from the direction, continue to move towards the established goal. 【适用信息传递/研究经验/相互监督/自我提升等场景】 编写:________________________ 审核:________________________ 时间:________________________ 部门:________________________

市场流通科破解企业难题调研报告 完整版 下载说明:本报告资料适合用于日常描述工作内容,取得的成绩,以及不足,最后提出合理化的建议或者新的努力方向,使整体流程的进度信息实现快速共享,并使整体过程不偏离方向,继续朝既定的目标前行。可直接应用日常文档制作,也可以根据实际需要对其进行修改。 为进一步理清工作思路,破解发展难题,确保学习实践科学发展观活动取得实际效果,根据《市商务局深入学习实践科学发展观活动实施方案》的要求,经局党组研究决定,组织局领导和机关各科室进行深入企业调研。XX年4月19日市场流通科在分管领导熊洲林副局长的带领下到鲁甸县生猪标准化健康养殖示范基地——鲁甸长城建安有限公司进行调研,了解了企业的基本情况,为企业进一步理清了发

DEFORM二次开发各模块介绍

材料本构模型是实现计算机数值模拟的前提条件之一,【关于计算机数值模拟技术的发展介绍】 本论文所采用的有限元模拟软件DEFORM-3D进行材料的微观组织模拟介绍,DEFORM-3D 有限元软件是集成了原材料、成形、热处理和机加工为一体的软件,可用于分析各种塑性体积成形过程中金属流动以及材料的应力、应变和温度等物理场量的分布变化情况,同时提供了材料的流动、模具间的填充、成型过程的载荷量、模具所受应力、材料的纤维流向、成型过程的坯料形成、材料的韧性断裂以及金属微观组织结构等信息。 为了实现在金属成形工艺模拟过程中进行微观组织演化的定量预测,所使用的模拟软件必须有包含微观组织变化的本构模型和专门的微观组织演化分析模块。当前国际上虽然有多个知名商业有限元软件流行,但是它们都不具备微观组织演化的预测功能;或者软件具有微观组织变化的本构模型,但仍需使用者输入材料的参数方可进行,而软件不提供材料的参数;故很多软件都淡化此微观组织演化分析模块。庆幸的是多数商业软件都为二次开发设置了用户子程序功能,通过编制用户子程序就能实现对微观组织演化的预测功能。 用户自定义本构模型的输入方法 在当今的科学研究方向中,新材料的开发占据了一个重要的角色。不同的材料工作者开发了不同的新材料,得到了不同的本构模型,需要对这种新材料进行模拟,为了满足这种需求,DEFORM提供了两种用户自定义本构模型的输入方法: (1)以函数形式输入本构模型。DEFORM提供了若干常用本构模型,如图4.6所示。若用户的本构模型与系统提供的本构模型一致,则可直接输入其相关系数即可;若用户的本构模型在系统中不存在,则可通过二次开发编程的方式将用户的本构模型加入到DEFORM中,然后在图4.6中选择“User routine”并输入所调用的本构模型子程序的编号。 (2)以数据形式输入本构模型。DEFORM还允许通过输入数据的方式来定义材料的塑性流动行为。具体方法是根据材料的真应力一真应变曲线,取若干个数据点,逐个输入该材料在某个温度、某个变形速率和某个真应变下的真应力。该方法的优点是既不用求取材料的本构模型,也不用进行二次开发编程,就可以定义材料的塑性流动行为,同时,若输入的数据点较多,得到的精度比输入函数形式的本构方程要精确得多。 本论文采用第一种方式,基于windows平台的DEFORM编程接口将求取的本构方程输入到DEFORM中。 文件配置 在windows操作系统中,在向DEFORM-3D/-2D中加入用户子程序之前,要对一些文件作相关配置,具体方法如下: 1) 先C:\DEFORM3D\V6_1\目录下的DEF_SIM.exe文件和C:\DEFORM3D\V6_1\UserRoutine\DEF_SIM\目录下的def_usr.f文件作一个备份;这两个文件是在安装完DEFORM-3D后就会自动生成的文件;因为本文的二次开发将会先对def_usr.f

dpdk安装及示例程序使用指南(虚拟机版)

DPDK安装及示例程序使用指南(适用于虚拟机) --torronto 2016.1.27 关于dpdk的介绍不用多说,主要就是它是intel开发的一个网络数据包查找转发的套件,用以分析网络数据的,所以只支持intel的网卡以及极少数除intel之外的网卡,具体支持的型号,官网有说明。因此,大多数时候,我们都是用虚拟机来仿真。 1.在虚拟机中的ubuntu系统上手动设置2个网卡(一共3个),就使用默认的桥接模式,然后修改处理器个数为2个处理器,每个处理器2核心。内存分配,1GB以上,2GB更好。 2.去官网下载dpdk软件包,http://www.dpdk.eu/download 3.将软件包解压在主目录下,根据个人喜好,因为后面编译和使用示例每次都要访问的。

4.从终端进入 5.tools文件夹中有一个setup.sh方便新手完成dpdk的设置初始化操作:(当然,配置编译之前先进入特权模式) 6.我们可以看到setup.sh里的一些选项如下: ------------------------------------------------------------------------------ RTE_SDK exported as /home/torronto/dpdk-2.2.0 ------------------------------------------------------------------------------ ---------------------------------------------------------- Step 1: Select the DPDK environment to build ---------------------------------------------------------- [1] arm64-armv8a-linuxapp-gcc [2] arm64-thunderx-linuxapp-gcc [3] arm64-xgene1-linuxapp-gcc [4] arm-armv7a-linuxapp-gcc [5] i686-native-linuxapp-gcc [6] i686-native-linuxapp-icc [7] ppc_64-power8-linuxapp-gcc [8] tile-tilegx-linuxapp-gcc [9] x86_64-ivshmem-linuxapp-gcc [10] x86_64-ivshmem-linuxapp-icc [11] x86_64-native-bsdapp-clang [12] x86_64-native-bsdapp-gcc

中英文对照说明书

前言 Preface 感您使用燃烧控制研究院生产的就地点火控制柜装置。 本公司的就地点火控制柜装置是燃烧控制研究院自主开发生产的高品质就地控制装置,在使用系列本程控装置之前请您仔细阅读该手册以保证正确使用并充分发挥其优越性。 本说明书对就地控制柜(以下简称控制柜)的操作和安装方法等做了详细的介绍。使用控制柜以前,在阅读本说明书的基础上,进行安全正确使用。Thank you for choosing the Local Ignition Control Cabinet designed by our company. The local ignition control device is explored by our company for the ignition control of boiler. This manual describes installation and operation of the cabinet clearly, please read this manual before using. 容介绍Brief introduction 本手册介绍了点火控制柜的组成、安装、配线、功能参数、日常使用维护及对故障的处理 The manual includes the cabinet’s components, installation, wiring, data, maintenance, and troubleshooting. 读者对象Applicable readers 本书适合下列人员阅读This manual is applicable for 设备安装人员、维护人员、设计人员 Installer, maintenance man, and designer 本书约定Stipulation 符号约定Symbol stipulations 说明提醒操作者需重点关注的地方 Points operator should pay attention to 由于没有按要求操作可能造成死亡或重伤的场合危险! This symbol indicates death or GBH that may occur as a result

deform基本操作

DEFORM-3D基本操作入门QianRF 前言 有限元法是根据变分原理求解数学物理问题的一种数值计算方法。由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。 现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。 有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。 一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式 其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+ Δu n(3) 将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。 二、Deform-3d基本模拟功能 切削machining(cutting) 成形forming 模具应力分析die stress analysis 滚轧shap and ring rolling 热处理heat treatment 三、Deform-3d 基本结构与方法

相关文档