文档库 最新最全的文档下载
当前位置:文档库 › 空间向量与空间角练习题

空间向量与空间角练习题

空间向量与空间角练习题
空间向量与空间角练习题

课时作业(二十)

[学业水平层次]

一、选择题

1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( )

A .30°

B .150°

C .30°或150°

D .以上均不对

【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且

异面直线所成角的围为?

????0,π2.应选A. 【答案】 A

2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( ) A.52266

B .-52266 C.52222

D .-52222 【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3),

∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266, ∴直线AB 、CD 所成角的余弦值为52266

. 【答案】 A

3.正方形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,若PA =AB ,则平面PAB 与平面PCD 的夹角为( )

A .30°

B .45°

C .60°

D .90°

【解析】 如图所示,建立空间直角坐标系,设PA =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD →

=(0,1,0).

取PD 中点为E ,

则E ?

????0,12,12, ∴AE →

=? ????0,12,12, 易知AD →是平面PAB 的法向量,AE →是平面PCD 的法向量,∴

cos AD →,AE →=22

, ∴平面PAB 与平面PCD 的夹角为45°.

【答案】 B

4.(2014·师大附中高二检测)如图3-2-29,在空间直角坐标系Dxyz 中,四棱柱ABCD —A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E 、F 分别为C 1D 1、A 1B 的中点,则二面角B 1-A 1B -E 的余弦值为( )

图3-2-29

A .-33

B .-32 C.33 D.32

【解析】 设AD =1,则A 1(1,0,2),B (1,2,0),因为E 、F 分别为C 1D 1、A 1B 的中点,所以E (0,1,2),F (1,1,1),所以A 1E →=(-1,1,0),A 1B →=(0,2,-2),设m =(x ,y ,z )是平面A 1BE 的法向量,则

????? A 1E →·m =0,A 1B →·m =0,所以????? -x +y =0,2y -2z =0,所以?????

y =x ,y =z ,取x =1,则y =z =1,所以平面A 1BE 的一个法向量为m =(1,1,1),又DA ⊥平面A 1B 1B ,所以DA →=(1,0,0)是平面A 1B 1B 的一个法向量,所以cos 〈m ,DA →〉=

m ·DA →|m ||DA →|

=13=33,又二面角B 1-A 1B -E 为锐二面角,所以二面角B 1-A 1B -E 的余弦值为33

,故选C. 【答案】 C

二、填空题

5.棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1、BB 1的中点,则异面直线AM 与CN 所成角的余弦值是________.

【解析】 依题意,建立如图所示的坐标系,则A (1,0,0),

M ? ????1,12,1,C (0,1,0),N ? ??

??1,1,12, ∴AM →

=? ????0,12,1,CN →=? ????1,0,12, ∴cos 〈AM →,CN →〉=1252·52

=25, 故异面直线AM 与CN 所成角的余弦值为25

. 【答案】 25

6.(2014·高二检测)在空间直角坐标系Oxyz 中,已知A (1,-2,0)、B (2,1,6),则向量AB →与平面xOz 的法向量的夹角的正弦值为________.

【解析】 设平面xOz 的法向量为n =(0,t,0)(t ≠0),AB →=(1,3,

6),所以cos 〈n ,AB →〉=n ·AB →

|n |·|AB →|=3t 4|t |,因为〈n ,AB →〉∈[0,π],所以sin 〈n ,AB →〉=

1-? ????3t 4|t |2=74. 【答案】

74 7.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,

且B1E=2EB,CF=2FC1,则平面AEF与平面ABC所成的二面角的正切值等于________.

【解析】如图,建立空间直角坐标系.

设正方体的棱长为1,平面ABC的法向量为n1=(0,0,1),平面AEF的法向量为n2=(x,y,z).

所以A(1,0,0),E

?

?

?

?

?

1,1,

1

3

,F

?

?

?

?

?

0,1,

2

3

所以AE

?

?

?

?

?

0,1,

1

3

,EF

?

?

?

?

?

-1,0,

1

3

??

?

??n2·AE→=0,

n2·EF

=0,

??

?

??y+13z=0,

-x+

1

3

z=0.

取x=1,则y=-1,z=3.故n2=(1,-1,3).

所以cos〈n1,n2〉=

n1·n2

|n1||n2|=

311

11

.

所以平面AEF与平面ABC所成的二面角的平面角α满足cos α

311

11

,sin α=

22

11

,所以tan α=

2

3

.

【答案】

2

3

三、解答题

8. 如图3-2-30所示,在四面体ABCD 中,O ,E 分别是BD ,BC 的中点,CA =CB =CD =BD =2,AB =AD = 2.

图3-2-30

(1)求证:AO ⊥平面BCD ;

(2)求异面直线AB 与CD 所成角的余弦值.

【解】 (1)证明:连结OC ,

由题意知BO =DO ,AB =AD ,

∴AO ⊥BD .

又BO =DO ,BC =CD ,∴CO ⊥BD .

在△AOC 中,由已知可得AO =1,CO =3,

又AC =2,∴AO 2+CO 2=AC 2,

∴∠AOC =90°,即AO ⊥OC .

∵BD ∩OC =O ,∴AO ⊥平面BCD .

(2)以O 为坐标原点建立空间直角坐标系,

则B (1,0,0),D (-1,0,0),C (0,3,0),A (0,0,1),

E ? ?????

12,32,0,

∴BA →=(-1,0,1),CD →=(-1,-3,0),

∴cos〈BA

,CD

〉=

BA

·CD

|BA

|·|CD

|

2

4

.

∴异面直线AB与CD所成角的余弦值为

2

4

.

9.四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.

(1)求证:平面AEC⊥平面PDB;

(2)当PD=2AB且E为PB的中点时,求AE与平面PDB所成的角的大小.

【解】如图,以D为原点建立空间直角坐标系Dxyz,设AB=a,PD=h,则

A(a,0,0),B(a,a,0),C(0,a,0),D(0,0,0),P(0,0,h),

(1)∵AC

=(-a,a,0),DP

=(0,0,h),DB

=(a,a,0),∴AC

·DP

=0,AC

·DB

=0,

∴AC⊥DP,AC⊥DB,又DP∩DB=D,

∴AC⊥平面PDB,

又AC?平面AEC,∴平面AEC⊥平面PDB.

(2)当PD=2AB且E为PB的中点时,P(0,0,2a),

E

?

?

?

?

?

?

1

2

a,

1

2

a,

2

2

a,

设AC∩BD=O,O

?

?

?

?

?

a

2

a

2

,0,连结OE,由(1)知AC⊥平面PDB 于O,

∴∠AEO为AE与平面PDB所成的角,

∵EA

?

?

?

?

?

?

1

2

a,-

1

2

a,-

2

2

a,EO

?

?

?

?

?

?

0,0,-

2

2

a,∴cos∠AEO=

EA

·EO

|EA

|·|EO

|

2

2

∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.

[能力提升层次]

1.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E 是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( ) A.60°B.90°

C.45°D.以上都不对

【解析】以点D为原点,分别以DA,DC,DD1所在直线为x 轴、y轴、z轴,建立空间直角坐标系,如图.

由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以A1E

=(0,1,-1),D1E

=(1,1,-1),EA

=(0,-1,-1).

利用向量解决空间角问题

利用向量解决空间角问题 一、教材分析:立体几何是高中数学教学中的一个重要内容,在整个高中数学学习中占有重要的地位,它不仅能培养学生的辩证唯物主义观点,还能培养学生的空间想象能力和逻辑思维能力,是历年高考的重点考查内容之一。用向量法处理几何问题,可使空间形式的研究从“定性”推理转化为“定量”计算.空间角又是立体几何中的重要知识点,学好了它对其他数学知识的学习及贯穿运用有很大的帮助,因此在首轮复习有必要再对其进行专题复习。 二、学情分析 学生虽已学完了立体几何,也对立体几何有了一定的认识,但由于空间角是一个难点,一般的方法是由“作、证、算”三部分组成,学生对作出空间角的方法即如何化空间角为平面角并在可解三角形中来求解有一定的困难,还不能熟练掌握,而空间向量的引入,使立几问题演绎难度降低,相比较来说过关比较容易,因此有必要对此内容通过引入空间向量的方法进行专题训练,使学生能更好地掌握。 三、教学目标 知识基础:空间向量的数量积公式、夹角公式,坐标表示。 认知目标:掌握利用空间向量求空间角(两条异面直线所成的角,直线和平面所成的角及二面角)的方法,并能熟练准确的求解结果及完整合理的表达。 能力目标:培养学生观察分析、类比转化的能力;体验从“定性”推理到“定量”计算的转化,提高分析问题、解决问题的能力. 使学生更好的掌握化归和转化的思想。 情感目标:激发学生的学习热情和求知欲,体现学生的主体地位;感受和体会数学美的魅力,激发“学数学用数学”的热情. 教学重点:1)向量法求空间角的方法和公式; 2)空间角与向量夹角的区别和联系。 教学难点:1)两条异面直线的夹角、二面角的平面角与两个空间向量的夹角之间的区别; 2)构建恰当的空间直角坐标系,并正确求出点的坐标及向量的坐标. 关键:建立恰当的空间直角坐标系,正确写出空间向量的坐标,将几何问题转化为代数问题. 四、课型及课时安排 课型:高三首轮复习专题课课时:一节课 五、教学方法:启发式讲解互动式讨论研究式探索反馈式评价 六、教学手段:借助多媒体辅助教学

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳 一、基础知识 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b | ? , 其中a ,b 分别是直线a ,b 的方向 向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量, φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | ? . 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ? ,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值. 直线与平面所成角的范围为????0,π 2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值. 利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互

补,需要结合图形进行判断. 二、常用结论 解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2. 如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角 [典例精析] 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为7 21 ,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→ 方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0). (1)证明:DE ―→=(0,2,0),DB ―→ =(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则????? n ·DE ―→=0,n ·DB ―→=0, 即????? 2y =0,2x -2z =0. 不妨取z =1,可得n =(1,0,1).

全国高中数学优秀课评选:《9.6空间向量的夹角和距离公式》教学设计教案或说明

1 9.6空间向量的夹角和距离公式 三维目标: 知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、 夹角公式、两点间距离公式、中点坐标公式,并会用这些公式 解决有关问题; ⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高 分析问题、解决问题的能力. 过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在 积极活跃的思维过程中,从“懂”到“会”到“悟”. 情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习 热情和求知欲,充分体现学生的主体地位; ⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的 魅力,培养学生“做数学”的习惯和热情. 教学重点:夹角公式、距离公式. 教学难点:数学模型的建立. 关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空 间向量的坐标. 教具准备:多媒体投影,实物投影仪. 教学过程: (一) 创设情境,新课导入 2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题. 引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离? C 1 A

2 (2)此时的视线与开始时的视线所成角的余弦值? (不考虑火炬手与小船本身的大小). 今天我们从另一个角度来分析这个问题. 分析:建立数学模型 问题(1)转化为:如何求空间中两点间的距离? 问题(2)转化为:如何求空间中两条直线所成角的余弦值? 1、空间两点间的距离公式 111222(,,)(,,),A x y z B x y z 已知:,则 ()212121,,AB x x y y z z =--- (AB AB AB x =?= ,A B d =2、夹角公式 设()()111222,,,,,a x y z b x y z ==, 则,a OA b OB = = cos ,a b a b a b ?<>== (二)例题示范,形成技能 例1: 在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离? (2)此时的视线与开始时的视线所成角的余弦值? (不考虑火炬手与小船本身的大小). 解:建立如图空间直角坐标系, x y z O 111(,,) A x y z 222(,,) B x y z a a b

用空间向量解决空间中“夹角”问题

利用空间向量解决空间中的“夹角”问题 学习目标 : 1.学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法; 2.能够应用向量方法解决一些简单的立体几何问题; 3.提高分析与推理能力和空间想象能力。 重点 : 利用空间向量解决空间中的“夹角” 难点 : 向量夹角与空间中的“夹角”的关系 一、复习引入 1.用空间向量解决立体几何问题的“三步曲” (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) 2.向量的有关知识: (1)两向量数量积的定义:><=?,cos |||| (2)两向量夹角公式:| |||,cos b a >= < (3)平面的法向量:与平面垂直的向量 二、知识讲解与典例分析 知识点1:异面直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角 设两异面直线a 、b 的方向向量分别为和, 问题1: 当与的夹角不大于90 的角θ与 和 的夹角的关系?问题 2:a 与b 的夹角大于90°时,,异面直线a θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ a

例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则 )2,,0(),0,21,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC -=,)2,21 ,23(1a a a CB = 即21 323||||,cos 22 111111==>=<,与θ的关系? 例2、如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和B B AA 11面所成角的正弦值. 分析:直线与平面所成的角步骤: 1. 求出平面的法向量 2. 求出直线的方向向量 3. 求以上两个向量的夹角,(锐角)其余角为所求角 解:如图建立空间直角坐标系xyz A -,则),0,,0(),2,0,0(1a a AA ==)2,21 ,23(1a a a AC -= 设平面B B AA 11的法向量为),,(z y x n = x y

利用空间向量求空间角和距离

利用空间向量求空间角和距离 A 级——夯基保分练 1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.30 30 B .3015 C. 3010 D. 1515 解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→ =(-1,-1,-2),D 1N ―→ =(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→ | |B 1M ―→|·|D 1N ―→|= |-1+4|1+1+4×1+4=30 10 . 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的 正弦值为( ) A.33535 B .277 C.33 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→,n =DC 1―→·n |DC 1―→|·|n| =33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 .

空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离 一、考点梳理 1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。 2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下: 1)求直线和直线所成的角 若直线AB 、CD 所成的角是α,cos α=|,cos |>

计算公式为: 4).利用法向量求点面距离 如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,则点P 到平面的距离 θcos ||||PA PO d == 5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面 间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二, 异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即 为所求。n 为异面直线AD 、BC 公共垂直的方向向量,可由0n AD ?=及0n BC ?=求得,其计算公式为: || || n AB d n =。其本质与求点面距离一致。 向量是新课程中引进的一个重要解题工具。而法向量又是向量工具中的一朵厅葩,解题方法新颖,往往能使解题有起死回生的效果,所以在学习中应起足够的重视。 二、范例分析 例1 已知ABCD 是上、下底边长分别为2和6,3将它沿对称轴1 OO n α A P O θ

用空间向量求空间角和距离

用空间向量求空间角和距离 四川省通江中学 徐荣德 空间中角和距离的计算问题是立体几何的重要内容,也是近几年高考的热点之一。空间向量为求空间角和距离提供了新的方法,可以使几何问题中的逻辑推理转化为向量的代数运算,使问题的解决更简洁、清晰,有较强的规律性,易于掌握。 一、求空间中的角 1、两异面直线所成的角 设异面直线AB 、CD 所成的角为])2 ,0((π αα∈ (如图1),则|| |||||,cos |cos CD AB ?=><=α。 2、直线与平面所成的角 设直线PA 与平面α(),αα?∈P A 所成的角 为])2 , 0[(π θθ∈,平面α的法向量为(如图2), 则|| |||| |,cos |sin n AP ?=><=θ。 3、二面角 设二面角βα--l 的大小为θ(),0(πθ∈), 平面βα,的法向量分别为n m ,(如图3), 则><-=>=<,,πθθ或。 例1、四棱锥P —ABCD 中,底面ABCD 是正方 形,侧面PAD 是边长为2的正三角形,且侧面PAD 与底面ABCD 垂直,E 为DP 的中点。 (1) 求异面直线AE 与PB (2) 求直线BE 与平面PCD 所成的角; (3) 求二面角E —AC —D 的大小。 解:建立如图4所示的空间直角坐标系,则 (1) A(0,0,0),B(2,0,0),P(0,1,3),E(0,23∴23 ,23,0(),3,1,2(=-=AE BP 4 6| |||,cos =?>= <∴AE BP ∴异面直线AE 与PB 所成的角4 6arccos .

(2) C(2,2,0),D(0,2,0),)2 3 , 23,2(),3,1,2(),0,0,2(-=--=-=∴BE CP CD , 设平面PCD 的一个法向量),,,(z y x = 则? ???? ?==∴=+--=-z y x z y x x 30,03202,取1=z ,得)1,3,0(= 设直线BE 与平面PCD 所成的角为θ,则 =θsin 7 21 || |,cos |= =>< ∴直线BE 与平面PCD 所成的角为7 21arcsin 。 (3))0,2,2(),2 3 , 23,0(==AC AE ,设平面ACE 的一个法向量),,(z y x n =, 则???-=-=∴?????=+=+y z y x y x z y 3,0 2202323 ,取1-=y ,得)3,1,1(-=n , 显然)1,0,0(=m 是平面ACD 的一个法向量, 5 15 ,cos = >= <∴n m ∴ 二面角E —AC —D 的大小为5 15arccos 。 二、求空间中的距离 1、两异面直线的距离 设异面直线b a ,间的距离为d ,AB 是b a ,的公垂线 段,D 、C 分别是b a ,上的一点,n 是AB 的方向向量(如图5)。 | |||n d CD n AB n DB CD AC AB = =∴?=?∴++= 2、点到平面的距离 设平面α外一点P 到平面α的距离为d ,点A 是平面α 任一点,是平面α的法向量(如图6)。则

空间向量解决空间角和空间距离补充知识

一、法向量的求法 例1、如图,在棱长为2的正方体1111D C B A ABCD -中,11B A 的中点是P ,建立适当空间坐标系,求出平面BPC 1的一个法向量n 练习:1、如图,在底面是直角梯形的四棱锥S —ABCD 中,⊥?=∠SA ABC ,90面ABCD ,SA=AB=BC=1,AD=. 21 求平面SBD 的一个法向量 2、(坐标法)如图,长方体1111CD C D AB -A B 中,1D AB =A =,12AA =,点P 为1 DD 的中点. ⑴ 求证:直线1//D B 平面C PA ; ⑵ 求证:平面C P A ⊥平面1D D B ; ⑶ 求证:直线1P B ⊥平面C PA ; C A D B P 1 A 1 B 1 C 1 D D S A B C P D 1 C 1 B 1 A 1 D C B A

二、点面距离、线面距离、面面距离公式: 由图可知,AO PA PO +=,则n PA n AO PA n PO ?=?+=?)(, 所以||||n PA n PO ?=? 因此d = 例1、正四棱柱1111D C B A ABCD -中,底面边长为6,侧棱长为4,E 、F 分别为棱AB 、 BC 的中点 (1)求证:平面EF B 1⊥平面11BDD B (2)求点1D 到平面EF B 1的距离d 练习:已知:正方形ABCD 的边长为4,CG ⊥平面ABCD , CG=2,E 、F 分别是AB 、AD 的中点, 求点B 到平面GEF 的距离。 C D F A E B G

例2、已知:正方体ABCD—A1B1C1D1中,P为AB中点,求BC到面A1D1P的距离 练习:已知四棱柱ABCD-A 1 B1C1D1中,AB=1,AA1=2, 点E是CC1的中点,F是BD1中点。 (1)证明:EF是BD1与CC1的公垂线; (2)求直线B1D1到面BDE的距离。 三、异面直线间的距离 例3、已知正方体ABCD-' ' ' 'D C B A的棱长为1,求直线' DA与AC的距离.

空间向量解决空间角问题——解答题

18.(本小题满分14分)如图,棱锥-P ABCD 的底面ABCD 是矩形, PA ⊥ 面,4,ABCD PA AD BD ===E 为PD 的中点. (1)求证:BD ⊥面PAC ; (2)求二面角--E AC D 的余弦值; (3)设M 为PA 的中点,在棱BC 上是否存在点F , 使//MF 面ACE ?如果存在,请指出F 点的位置; 如果不存在,请说明理 18.(本小题满分14分) 证明:(1) 在 ?Rt ABD 中,4,==AD BD 4,∴=AB ABCD 为正方形,因此⊥BD AC . ……………2分 ∵⊥PA 面ABCD ,?BD 面ABCD , ∴⊥BD PA . ……………3分 又?= PA AC A ∴BD ⊥面PAC . ……………4分 解: (2) 建立如图所示的直角坐标系,则(0,0,0)A 、(0,4,0)D 、(0,0,4)P .………5分 在?Rt ABD 中,4=AD ,=BD ∴4=AB ,(4,4,0)C ,(0,2,2)E , ∴(0,2,2)= AE ,(4,4,0)= AC .……6分 设面ACE 的法向量(,,)= n x y z , 则 0220 440 0??=+=?????+=?=??? n AE y z x y n AC , 可以得到面ACE 的一个法向量(1,1,1)=- n . …………7分 又⊥ PA 平面ABCD , E B A D P M 。 (第18题图) y

(0,0,4)∴= AP 为面ACD 的一个法向量, …………8分 则 cos ,?<>== = n AP n AP n AP , ∴二面角--E AC D 的余弦值为. …………10分 (3) M 为PA 的中点, ∴M 的坐标为(0,0,2). 设棱BC 上存在点(4,,0)λF 使//MF 平面ACE , 则(4,,2)λ=- MF , …………11分 由(2)得面ACE 的一个法向量(1,1,1)=- n , 02λ∴?=?= MF n , …………13分 ∴在棱BC 上存在点F ,使//MF 平面ACE ,且F 为棱BC 的中点.……14分 17.(本题满分14分) 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,5=AB AA 1=4,点D 是AB 的中点. (1)求证:AC ⊥BC 1; (2)求多面体111C B A ADC -的体积; (3)求二面角1D CB B --的平面角的正切值. 17、(本小题满分14分) (1)证明:直三棱柱ABC -A 1B 1C 1,底面三边长AC=3, BC=4,AB=5, 222AC BC AB += ∴ AC ⊥BC , 又 AC ⊥C 1 C ,C BC C C = 1 ∴ AC ⊥平面BCC 1; ∴ AC ⊥BC 1

利用空间向量求空间角检测题

利用空间向量求空间角检测题 (试卷满分100分,考试时间90分钟) 一、选择题(每小题5分,共40分) 1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B.135° C .45°或135° D .90° 解析:选C ∵cos m ,n =m ·n |m ||n |=12=22,∴m ,n =45°. ∴二面角为45°或135°.故选C. 2.已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的正弦值为 ( ) A.33535 B.277 C.3 3 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→ ,n =DC 1―→·n | DC 1―→ |·|n |=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 . 3.把边长为2的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AD ,BC 所成的角为( ) A .120° B.30° C .90° D .60° 解析:选D 建立如图所示的空间直角坐标系,则A (2,0,0),B (0,2,0),C (0,0,

空间向量计算距离与角度

【例1】 在正方体1111ABCD A B C D -中,1111111 44 A B B E D F == =,求1BE 与1DF 所成角的余弦值. 【例2】 直三棱柱111ABC A B C -中,1111BC AC BC AB ⊥⊥,.求证:11 AB AC =. 【例3】 如图所示,在底面是直角梯形的四棱锥S ABCD -中,90ABC ∠=°,SA ⊥平面 ABCD ,1 12 SA AB BC AD ==== ,.求面SCD 与面SBA 所成的二面角的正切值. C 1 B 1 A 1 C B A D C B A S 典例分析 板块四.用空间向量计算距离 与角度

【例4】 已知(023)A ,,,(216)B -,,,(115)C -,,,求方向向量为(001)j =,,直线与平 面ABC 所成角的余弦值. 【例5】 已知平行六面体ABCD A B C D ''''-中,4AB =,3AD =,5AA '=, 60BAA DAA ''∠=∠=°,90BAD ∠=°,求AC '的长 【例6】 如图直角梯形OABC 中,π 2 COA OAB ∠=∠= ,2OC =,1OA AB ==,SO ⊥平面OABC ,1SO =,以OC 、OA 、OS 分别为x 轴、y 轴、z 轴建立直角坐标系O xyz -. ⑴求SC 与OB 的夹角α的大小(用反三角函数表示); ⑵设(1)n p q =,,,满足n ⊥平面SBC ,求 ①n 的坐标; ②OA 与平面SBC 的夹角β(用反三角函数表示); ③O 到平面SBC 的距离. 【例7】 如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G , G 在AD 上,且4PG =,1 3 AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点. ⑴求异面直线GE 与PC 所成的角的余弦值; ⑵求点D 到平面PBG 的距离; ⑶若F 点是棱PC 上一点,且DF GC ⊥,求 PF FC 的值. D ' C ' B 'A 'D C B A C B A O S

利用空间向量求空间角-教案

利用空间向量求空间角-教案

利用空间向量求空间角 备课人:龙朝芬授课人:龙朝芬 授课时间:2016年11月28日一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标

系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l , m 的方向向量分别为a ,b ,异面直线l ,m 所成的角 为θ,则cos cos ,a b θ== a b a b ?. 2、线面角公式:设直线l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成的角,则sin cos ,a n θ== a n a n ?. α m b θ a l

3、面面角公式:设1 n ,2 n 分别为平面α、β的法向 量,二面角为θ,则12 ,n n θ= 或12 ,n n θπ=- (需要根据 具体情况判断相等或互补),其中121212 cos ,n n n n n n ?= . (二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=, SO ⊥ 面OABC ,且1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. α θ O O A B C S n a

利用空间向量求空间角 教案

利用空间向量求空间角 备课人:龙朝芬授课人:龙朝芬 授课时间:2016年11月28日一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l,m的方向向量分别为a,b,异面直线l,m b a b a b ? . bθ a

2、线面角公式:设直线l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ== a n a n ?. 3、面面角公式:设1n ,2n 分别为平面α、β的法向量,二面角为θ,则12,n n θ=或12,n n θπ=-(需要根据具体情况判断相等或互补) ,其中12 1212 cos ,n n n n n n ?=. (二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. O A B C S

空间向量与空间距离

空间向量与空间距离 (45分钟 100分) 一、选择题(每小题6分,共30分) 1.已知△ABC的三个顶点的坐标为A(-1,0,1),B(1,3,5),C(-1,-1,1),则BC边上的中线AD的长为( ) A. B.6 C. D.3 2.在棱长为a的正方体ABCD-A1B1C1D1中,M是AA1的中点,则点A1到平面MBD的距离是( ) A. a B. a C. a D. a 3.(2013·开封高二检测)四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别为PB,PD的中点,则P到直线EF的距离为( ) A.1 B. C. D. 4.已知正方体ABCD-A1B1C1D1的棱长为3,E为CD的中点,则点D1到平面AEC1的距离为( ) A. B. C. D.1 5.(2013·石家庄高二检测)正方体ABCD-A1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为( ) A.1 B. C. D. 二、填空题(每小题8分,共24分) 6.(2013·东莞高二检测)平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3, ∠BAD=90°,∠BAA1=∠DAA1=60°,则AC1的长为. 7.在直四棱柱ABCD-A1B1C1D1中,底面为直角梯形,AB∥CD

且∠ADC=90°,AD=1,CD=,BC=2,AA1=2,E是CC1的中点,则A1B1到平面ABE的距离是. 8.在长方体ABCD-A1B1C1D1中,AB=4,BC=3,CC1=2,则平面A1BC1与平面ACD1的距离是. 三、解答题(9题,10题14分,11题18分) 9.正方形ABCD的边长为2,E,F分别是AB和CD的中点, 将正方形沿EF折成直二面角(如图所示),M是矩形 AEFD内一点,如果∠MB'E=∠MB'C',MB'和平面B'C'FE 所成的角的正切值为,求点M到直线EF的距离. 10.(2013·济南高二检测)如图所示的多面体是由底面 为ABCD的长方体被截面AEC1F所截而得到的,其中 AB=4,BC=2,CC1=3,BE=1. (1)求||. (2)求点C到平面AEC1F的距离. 11.(能力挑战题)如图所示,在直三棱柱ABC-A1B1C1中, ∠ABC=90°,BC=2,CC1=4,EB1=1,D,F,G分别为CC1,B1C1, A1C1的中点,EF与B1D相交于点H. (1)求证:B1D⊥平面ABD. (2)求证:平面EGF∥平面ABD. (3)求平面EGF与平面ABD的距离.

利用空间向量解决空间角练习

利用空间向量解决空间角 1、在棱长为2的正方体1111ABCD A B C D -中,F G ,分别是111A D CD ,的中点,则FG 与平面AC 所成的 角的余弦为( ) (A 3 (B )3 (C )6 (D 62、已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧 棱1CC 的中点,则异面直线1AB BM 和所成的角的大是 。 3、已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点。求:D 1E 与平面BC 1D 所成角的余弦值 4、已知,E F 分别是正方体1111D C B A ABCD -的棱BC 和CD 的中点,求: (1)1A D 与EF 所成角的大小;(2)1A F 与平面1B EB 所成角的大小;(3)二面角B B D C --11的大小。 5、如图所示:边长为2的正方形ABFC 和高为2的直角梯形ABFC 所在的平面互相垂直且2DE = , ED AF P 且O 90DAF ∠=。(1)求BD 和面BEF 所成的角的余弦;(2)线段EF 上是否存在点P 使过 ,,P A C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由。 6、在如图所示的几何体中,四边形 ABCD 为正方形,⊥EA 平面ABCD ,//EF AB ,=4,=2,=1AB AE EF .(Ⅰ)若点M 在线段AC 上,且满足 1 4 CM CA =,求证://EM 平面FBC ; (Ⅱ)求证:⊥AF 平面EBC ;(Ⅲ)求二面角--A FB D 的余弦值. E C B D M A F

F E A B F A 1 B E 7、在正四棱柱1111ABCD A B C D -中, 122AA AB ==,E 为AD 中点, F 为1CC 中点.(Ⅰ)求证:1AD D F ⊥;(Ⅱ)求证://CE 平面1AD F ;(Ⅲ) 求平面1AD F 与底面ABCD 所 成二面角的余弦值. 8、如图,在多面体ABCD EF -中,四边形ABCD 为正方形,//EF AB ,EF EA ⊥,2AB EF =, 090AED ∠=,AE ED =,H 为AD 的中点.(Ⅰ)求证:// EH 平面FAC ;(Ⅱ)求证:EH ⊥平面ABCD ; (Ⅲ)求二面角A FC B --的大小. 9、如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置, 使二面角1A EF B --成直二面角,连结1A B ,1A P .(如图2)(Ⅰ)求证:E A 1⊥平面BEP ;(Ⅱ)求直线E A 1与平面BP A 1所成角的大小. E D A B C F H

利用空间向量求空间角解析方法

1.(2017·全国卷Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠APD =90°,求二面角A -PB -C 的余 弦值. 解:(1)证明:由已知∠BAP =∠CDP =90°, 得AB ⊥AP ,CD ⊥PD . 因为AB ∥CD ,所以AB ⊥PD . 又AP ∩PD =P ,所以AB ⊥平面PAD . 又AB ?平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内作PF ⊥AD ,垂足为F . 由(1)可知,AB ⊥平面PAD ,故AB ⊥PF ,可得PF ⊥平面ABCD . 以F 为坐标原点,FA ―→的方向为x 轴正方向,|AB ―→|为单位长 度,建立如图所示的空间直角坐标系F -xyz . 由(1)及已知可得A ????2 2,0,0,P ????0,0,2 2,B ????2 2,1,0, C ????-2 2,1,0. 所以PC ―→=????-2 2,1,-2 2,CB ―→=(2,0,0), PA ―→=????22,0,-2 2,AB ―→=(0,1,0). 设n =(x 1,y 1,z 1)是平面PCB 的法向量, 则????? n ·PC ― →=0,n ·CB ―→=0,即????? -22x 1+y 1-22z 1=0, 2x 1=0. 所以可取n =(0,-1,-2). 设m =(x 2,y 2,z 2)是平面PAB 的法向量, 则????? m ·PA ―→=0,m ·AB ―→=0,即????? 22x 2-2 2z 2=0, y 2=0. 所以可取m =(1,0,1). 则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-3 3. 由图知二面角A -PB -C 为钝角,

利用空间向量求空间角教案设计

利用空间向量求空间角 备课人:龙朝芬 授课人:龙朝芬 授课时间:2016年11月28日 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . (二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. α θ O O A B C S n r a

相关文档
相关文档 最新文档