文档库 最新最全的文档下载
当前位置:文档库 › POE的性能及其在聚丙烯共混改性中的应用

POE的性能及其在聚丙烯共混改性中的应用

POE的性能及其在聚丙烯共混改性中的应用
POE的性能及其在聚丙烯共混改性中的应用

POE的性能及其在聚丙烯共混改性中的应用

聚烯烃弹性体(Polyolefin elastomer)(POE)是美国DOW化学公司以茂金属为催化剂的具有窄相对分子质量分布和均匀的短支链分布的热塑性弹性体。这种弹性体的主要性能非常突出,在很多方面的性能指标超过了普通弹性体。

POE分子结构与三元乙丙橡胶(EPDM)相似,因此POE也会具有耐老化、耐臭氧、耐化学介质等优异性能,通过对POE进行交联,材料的耐热温度被提高,永久变形减小,拉伸强度、撕裂强度等主要力学性能都有很大程度的提高。多用途的POE弹性体能够超过PVC、EVA、SBR、EMA和EPDM,今后POE可能取代传统的EPDM。由于POE的优异性能使其在汽车行业、电线电缆护套、塑料增韧剂等方面里都获得了广泛应用。

由于POE有较高的强度和伸长率,而且有很好的耐老化性能,某些耐热等级、永久变形要求不严的产品直接用POE即可加工成制品,可大大地提高生产效率,材料还可以重复使用。交联普通聚乙烯的研究已经有几十的时间,但对交联茂金属弹性体的报道还很少。

1 POE的结构与性能

1.1 POE的结构特点

POE之所以具有优异的性能,可实现高速挤出,与以下特点有关:(1)辛烯的柔软链卷曲结构和结晶的乙烯链作为物理交联点,使其具有优异的韧性又具有良好的加工性;(2)相对分子质量分布窄,与聚烯烃相容性好,具有较佳的流动性;(3)没有不饱和双键,耐候性优于其它弹性体;(4)较强的剪切敏感性和熔体强度,可实现高挤出,提高产量;(5)良好的流动性可改善填料的分散效果,同时亦可提高制品的熔接痕强度。

1.2 POE的性能特点

POE采用溶液法聚合工艺生产的,其中聚乙烯链结晶区(树脂相)起物理交联点的作用,一定量的辛烯的引入削弱了聚乙烯链的结晶区,形成了呈现橡胶弹性的无定型区(橡胶相)。聚合物的微观结构决定其宏观性能,与传统聚合方法制备的聚合物相比,一方面它有很窄的相对分子质量分布和短支链,因而具有优异的物理机械性能(高弹性、高强度、高伸长率)和良好的低温性能;又由于其分子链是饱和的,所含叔碳原子相对较少,因而具有优异的耐热老化和抗紫外线性能;窄的相对分子质量分布使材料在注射和挤出过程中不易产生挠曲。另一方面,限定几何构型催化剂技术(CGCT)可以控制在聚合物线型短支链支化结构中引入长支链,从而改善了聚合物的加工流变性能,还可以提高材料的透明度。

POE分子结构的特殊性赋予了其优异的力学性能、流变性能和抗紫外线性能。此外,它还具有和聚烯烃亲和性好、低温韧性好、性能价格比高等优点,因而被广泛应用于塑料改性,这种新材料的出现引起了全世界塑料和橡胶工业界的强烈关注,也为聚合物的改性和加工带来了一个全新的理念。

2 POE与的EPDM比较

EPDM是20世纪60年代初期发展起来的一种新型合成材料,由于其分子主链为饱和结构而呈现出卓越的耐候性、耐臭氧性及化学稳定性。EPDM凭借这些优异性能已成为高分子领域不可缺少的材料。虽然EPDM 对聚丙烯(PP)有良好的增韧效果,但EPDM价格高,碎胶有一定的困难,流动性也不太理想;而采用美国DOW化学公司利用茂金属催化剂催化乙烯与辛烯原位聚合获得的POE作为PP的抗冲击改性剂,通过对

POE进行交联,材料的耐热温度提高,永久变形减小,拉伸强度、撕裂强度等主要的力学性能都有很大程度的提高。

POE的分子主链结构与EPDM类似,也为饱和结构。由于采用了限定几何构型技术,可人为地控制POE 的分子支链;茂金属催化剂使得POE又具有窄的相对分子质量分布。因而,POE具有EPDM优异的性能,同时某些性能超过了EPDM,在将来,POE可作为EPDM的替代材料使用。

POE用作PP的抗冲击改性剂,与传统使用的EPDM相比,有明显的优势:首先,粒状POE易与粒状的PP混合,省去块状EPDM复杂的造粒或预混工序;其次,POE与PP有更好的混合分散效果,与EPDM 相比,共混物的相态更为细微化,因而使抗冲击性得以提高;再者,采用一般橡胶作为PP的抗冲击改性剂,在提高冲击强度的同时,降低了产品屈服强度,而使用POE在增韧的同时,仍可保持较高的屈服强度及流动性。

王旭、温晨志等对PP/弹性体/滑石粉/BaSO4复合材料进行了研究,结果表明,POE的增韧效果优于EPDM,是由于POE侧己基长于侧甲基,在分子链间起到一种联结、缓冲作用,减少银纹因受力发展成裂纹的缘故;EPDM体系拉伸性能和弯曲性能明显优于POE体系,是因为EPDM中含大量丙烯基团,而POE 己基侧链较长,影响了PP结晶。

研究表明,与过氧化二异丙苯(DCP)交联之后,POE、EPDM都会形成三维网状结构,在DCP份数相同的条件下,EPDM的交联程度高于POE,但是力学性能低于POE;经白炭黑补强交联后,POE具有较高的耐老化、高冲击强度、高硬度、高强度和高耐磨性等优异性能。POE与EPDM相比,除硬度、耐磨性略低外,POE的各项力学性能均优于EPDM。

3 POE在PP改性中的应用

PP具有密度小、拉伸强度高、硬度高、屈服强度较高、热变形温度高等优点,且易加工,价格低廉,广泛应用于各个领域。但PP材料缺口冲击强度低,低温脆性尤为突出,使其应用受到限制,通过与弹性体共混来改善PP冲击性能是目前最广泛采用的方法。为优化PP性能,国内外都进行了大量的PP增韧改性研究,在多相共聚和共混改性方面取得了突破性进展。相比而言,共混改性简单易行,倍受青睐。

PP常采用的冲击改性材料有EPR、EPDM、LDPE、EVA、CPE、SBS、POE、TPU、聚丁二烯-1、丁苯胶、聚异丁烯、顺丁胶及天然胶等。其中以EPDM、LDPE、POE及SBS最常用,加入量一般为10%左右。POE以优异的性能以及与聚烯烃良好的亲和性,与PP组成的POE/PP体系,广泛应用于汽车工业。

3.1 POE增韧PP机理

PP/POE共混物的相结构属于“海-岛”结构,海相(连续相)为PP,岛相(分散相)为POE。遵循橡塑共混原理,共混物中分散相的粒径大小对共混物的性能影响很大,在最佳粒径范围内,粒径小时,对共混物的物理性能有较好的贡献。POE的粒径比EPDM小,且尺寸较均匀。

塑料共混弹性体有几种增韧机理,POE对PP增韧改性符合银纹-剪切带机理:脆性基体内加入弹性体后,在外来冲击力作用下,弹性体可引发大量银纹,而基体则产生剪切屈服,主要靠银纹、剪切带吸收能量。具体过程为:产生银纹进一步发展并将终止于另一弹性体或剪切带;同时银纹与银纹、银纹与剪切带之间相互作用;如银纹与银纹相遇时,会使银纹转向或支化;银纹前峰处的应力集中,可以诱发新的剪切带。所有这些作用,都会大大缓解材料的冲击破坏过程,并增加破坏过程的能量,从而提高材料韧性。

由增韧理论可知,添加相同质量的POE弹性体粒子粒径越小(平均粒径0.4μm),分布越均匀,其作为应力集中点时就能引发更多的银纹,消耗大量的能量;大量银纹之间相互干扰,降低了银纹端的应力,阻碍了银纹的进一步扩展,能有效中止银纹。从断裂机理分析,POE的侧链在分子间起到一种缠结、缓冲减少银纹因受力发展成裂纹的作用。

冯予星、刘力等研究了POE/PP增韧体系,表明PP/POE属部分相容体系,共混合金中出现明显的两相结构;在相同共混比例下,不同POE增韧的PP共混合金中,随着POE辛烯含量的提高,分散相POE粒子逐渐增大;结果表明POE对PP增韧符合银纹-剪切机理。

李艳霞等对比研究了PP/PO直体系和PP/EPDM体系,认为POE增韧PP符合银纹-剪切带机理;而

PP/EPDM体系中EPDM对PP增韧是由于EPDM对PP有成核作用,而晶体的生长速率降低,晶体尺寸减小,形成较小的球晶,从而提高体系的冲击强度。

毛立新、高翔等选择了5种茂金属POE,树脂,对1种共聚型聚丙烯(Co-PP)和2种均聚型聚丙烯(Ho-PP1和Ho-PP2)进行增韧改性。通过观察Co-PP/POE-2共混体系的冲击断面形貌,证实了POE对PP的增韧主要依靠弹性体诱发大量银纹与剪切带耗散冲击能,符合银纹-剪切带机理。

3.2 POE/PP共混体系

张金柱通过POE和EPDM、EPM等增韧剂对PP增韧进行改性研究,结果表明,POE对PP缺口冲击强度提高最大,而弯曲模量和拉伸强度降低最小;无论是均聚PP、共聚PP还是高流动性PP,无论是常温还是低温冲击强度,POE的增韧效果都优于EPDM或二元乙丙橡胶(EPM);同时用POE增韧高流动性PP时,仍具韧性,这样避免了以前使用高流动性材料作为增韧剂时,降低体系韧性的缺陷,在生产上可使用高流动性PP体系,从而可以缩短成型周期,降低生产成本。

邱桂学等研究了不同牌号的POE对PP与POE(60/40,质量比)共混物力学性能的影响,发现8480大幅度地提高了PP的断裂伸长率,共混物的冲击强度提高了1倍多;8842的增韧效果最佳,共混物的低温冲击强度是纯PP的20多倍,而且共混物仍保持较高的拉伸强度;其它牌号POE的增韧效果差别不大,约是纯PP的3倍多。研究结果表明,弹性体的增韧效果主要取决于基体中弹性体的含量,但POE用量过多会引起共棍物模量和强度的下降。POE对塑料的增韧存在一个临界含量,超过这个临界含量,弹性体才表现出明显的增韧效果。-30℃时,含有40%(质量分数)POE的共混物在冲击作用下不能完全断裂,因此较少的POE就可使PP获得高的低温冲击强度,可以阻止因加入弹性体而引起的刚性和强度的降低。

Da Silvi研究了POE/PP共混体系,并与EPDM/PP共混体系进行了比较。研究结果表明,两共混体系具有相似的结晶行为,因此,其机械性能相似。但POE/PP共混物较EPDM/PP共混物具有更低的转矩,因此,POE/PP共混物具有更好的加工性能。作为PP的冲击强度改性剂,POE较EPDM具有明显的价格、性能优势。

张玲、胡雄伟等也利用转矩流变仪,了解聚合物成型加工过程中的流变行为及规律,测定了共混物的转矩一时间曲线,比较了它们加工稳定转矩,发现当使用8200作为PP1300的冲击改性剂时,共混物将获得更好的加工性能,消耗更低的能量;比较研究了PP/POE及PP/EPDM共混物的加工性能、结晶性能及力学性能;还探讨了POE用量对PP/CaCO3,/POE复合体系力学性能的影响,POE的加入使PP/CaCO3的缺口冲击强度大幅度提高,而拉伸强度、弯曲强度及模量均有下降,但是,即使加入质量分数为15%POE 时,弯曲模量与纯PP相近。

赵枫等认为PP/POE/PE三元共混体系具有较好的协同效应。体系的熔体流动速率、屈服拉伸强度、弯曲强度和弯曲弹性模量均随着增韧剂POE含量的增加而下降,而缺口冲击强度随着增韧剂POE含量的增加而提高,只有断裂伸长率未发生变化。均聚PP共混物的脆韧转变点在POE质量分数为25%左右。共混体系随着共聚PP含量的增加,体系冲击强度得到改善,在得到同样冲击强度的材料时,完全可以减少POE 的含量,从而提高刚性,降低成本。

王珂等用扫描电镜(SEM)、动态力学分析及力学性能测试等方法研究了组分特性对PP/POE/BaSO4三相复合体系性态的影响及性态与复合材料力学性能的关系。结果表明,POE经过马来酸酐(MAH)接枝改性后,无机粒子与弹性体之间的相互作用加强,在熔融加工过程中,填料粒子倾向于进入橡胶相中,即形成橡胶包覆无机粒子的结构;而POE未接枝改性时,橡胶相与无机粒子倾向于形成相互分离的结构。对力学性能的研究表明,两种相态的三相复合体系的冲击强度和拉伸弹性模量均比纯PP、PP/POE和PP/BaSO4复合体系有显著的提高,即同时实现了增强和增韧。

4 结语

茂金属POE具有良好的力学性能和加工性能,既有塑料的热塑性,又有橡胶的弹性,且与聚烯烃有良好的亲和性,是聚烯烃树脂有效的抗冲击改性剂。随着研究的深入和工业化进展,POE在聚丙烯共混改性中的应用将会越来越广泛。

聚丙烯材料改性研究

聚丙烯材料改性研究 摘要:利用共混的方法,针对聚丙烯制品在实际应用中出现韧性差,易燃烧的缺点,重点研究了增塑剂POE 不同的量对聚丙烯抗冲击强度的影响,以及氢氧化镁对聚丙烯燃烧性能的影响。本次试验采用了高混机对所用原料进行共混,再将共混的原料放入双螺杆挤出机中挤出造粒,然后将制成的粒料利用注射机制作我们所需的的标准样条,最后对标准样条测试抗冲击强度和氧指数。结果显示,POE 增塑剂的量越多,则对聚丙烯的韧性改善更好,氢氧化镁由于加的量比较少,对聚丙烯的阻燃作用不明显。 关键词:聚丙烯;改性;造粒;增塑;阻燃 1前言 聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotactic polypropylene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotactic polypropylene)三种。甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 采用相容剂技术和反应性共混技术对PP 进行共混改性是当前PP 共混改性发展的主要特点。它能在保证共混材料具有一定的拉伸强度和弯曲强度的前提下大幅度提高PP 耐冲击性。相容剂在共混体系中可以改善两相界面黏结状况,有利于实现微观多相体系的稳定,而宏观上是均匀的结构状态。反应型相容剂除具有一般相容剂的功效外,在共混过程中还能在两相之间产生分子链接,显著提高共混材料性能。 PP/弹性体二元共混体系虽有很好的韧性效果,但往往降低了材料的强度和刚度,耐热性能也有所降低。在二元共混体系中加入有增容作用或协同效应的物质,形成多元共混体系,则其综合性能可得到进一步提高。为了提高增韧PP 的硬度、热变形温度及尺寸稳定性,可使用经偶联剂活化处理的填料或增强材料进行补强。例如采用弹性体/无机刚性粒子/PP 三元复合增韧体系实现PP 的增韧增强,提高材料的综合性能,并且具有较低的成本。 溴系阻燃剂效率高、用量少,对材料的性能影响小,并且溴系阻燃剂价格适中。与其它类型的阻燃剂相比,溴系阻燃剂效能/价格比更具有优越性,我国供出口电子电气类产品中70%~80%都用此类阻燃剂。但是,近年来欧盟一些国家认为溴系阻燃剂燃烧时会产生有毒致癌的多溴代苯并恶瑛(PBDD)和多溴代二苯并呋喃(PBDF)。欧盟出台了禁令,在欧盟国家销售的所有电子电气设备,不能含有多溴联苯及多溴二苯醚。阻燃剂的种类众多,其用量和性能都各自不同,需要在不同的情况下选用不同的阻燃剂。现如今,聚丙烯的阻燃剂正向着高效、低烟、绿色、环保和低成本的方向发展。所以本次实验采用比较绿色的阻燃剂氢氧化镁。 本次实验采用POE 对聚丙烯增韧;氢氧化镁对聚丙烯进行阻燃改性,由于加入氢氧化镁的量太多,挤出机挤出较困难,所以同时加入少量三氧化二锑(Sb 2O 3)来减少氢氧化镁用量, 降低加工难度。 2.实验 2.1配方设计

2020年(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

热塑性低烟无卤阻燃电缆料性能

玻纤增强聚丙烯的抗蠕变性得到改善,能够比聚碳酸酯、耐热ABS、聚甲醛等塑料的性能更好。此外在150℃下保持1500小时,其拉伸强度和热变形温度都不会下降,在沸水和水蒸汽中可长期使用。 玻纤增强聚丙烯的加工流动性因玻纤的存在有所下降,但和其它塑料相比,仍然属良好的加工流动性。提高成型加工温度可使其流动性得到改善。

2改性聚丙烯发展动向

聚丙烯在生产数量迅速发展的同时,也在性能上不断出新,使其应用的广度和深度不断变化,近年来或者通过在聚合反应时加以改进,或者在聚合后造粒时采取措施,有壹些更具独特性能的聚丙烯新的品种问世,如透明聚丙烯、高熔体强度聚丙烯等。 2.1透明改性 PP的结晶是造成不透明的主要原因,利用急冷冻结PP的结晶趋向,能够得到透明的薄膜,但有壹定壁厚的制品,因热传导需要时间,芯层不可能迅速被冷却冻结,因此对于有壹定厚度的制品不能指望用急冷的办法提高透明度,必须从PP的结晶规律和影响因素入手。 经壹定技术手段得到的改性PP,可具有优良的透明性和表面光泽度,甚至能够和典型的透明塑料(如PET、PVC、PS等)相媲美。透明PP更为优越的是热变形温度高,壹般可高于110℃,有的甚至可达135℃,而上述三种透明塑料的热变形温度都低于90℃。由于透明PP的性能优势明显,近年来在全球都得以迅速发展,应用领域从家庭日用品到医疗器械,从包装用品到耐热器皿(微波炉加热用),都在大量使用。 PP的透明性提高可通过以下三种途径: (1)采用茂金属催化剂聚合出具有透明性的PP; (2)通过无规共聚得到透明性PP; (3)在普通聚丙烯中加入透明改性剂(主要是成核剂)提高其透明性。 4.1.1国内外发展态势 据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a之上。日本透明PP市场以微波炉炊具及家具俩方面的消耗量最大。日本出光化学X公司制造出和PVC具有同样透明性和光泽性的透明PP,当下能够广泛替代普通透明PVC制作文具、笔记本壹类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200t透明PP。

聚丙烯改性

聚丙烯纤维的表面改性 学院:同济大学浙江学院 姓名:董瀚 学号:090736 摘要:结合聚丙烯( PP) 纤维分子结构特点、表面特性以及在水泥基材料应用中存在的问题, 研究了等离子处理方法对聚丙烯纤维表面的改性技术。 关键词:聚丙烯纤维; 表面改性;等离子处理 Research Progress in Surface Modification Technology of PP Fiber ABSTRACT:In this article, we discussed the molecule structure and surface characteristics of PP fiber and the problems whenthey were used in cement matrix material. The surface modification technology of PP fiber was also researched with corona treatment with coupling agent. KEYWORDS:polypropylene fiber; surface modification;corona treatment 1 前言 近年来, 聚丙烯( PP) 纤维在抗裂要求较高的混凝土工程中得到迅速的推广应用, 其出色的阻裂效果已得到试验及工程的证实。但同时也存在一些致命缺点: 表面光滑; 表面能低; 分子链上不含任何活性基团, 而且表面疏水, 以致于纤维在水泥基材料中不易分散; 与水泥基材的物理化学粘接性能较差等,严重制约了其在水泥基材料中的应用。因此对纤维表面进行适当的改性, 提高其在水泥基材料基体中的分散性和界面结合力是聚丙烯纤维扩大应用的关键所在。本文主要介绍等离子处理方法(塑性开裂性能的缺陷)。 2 PP 纤维的结构和性能 聚丙烯是一种结构规整的结晶型聚合物, 为乳白色, 无味, 无毒, 质轻, 是聚烯烃的一种, 密度为0190~ 0. 91g/ cm3, 不溶于水, 熔点为165 ℃ , 燃点为590 ℃; 耐热性能良好; 聚丙烯几乎不吸水, 耐蚀性能良好, 与大多数化学品, 如酸、碱和有机溶剂接触不发生作用; 物理机械性能良好, 抗拉强度330 ~414MPa, 极限伸长率200% ~ 700% , 弹性模量为3.92~ 4. 90GPa; 耐光性能差【1】。 聚丙烯纤维是聚丙烯切片经纺丝、拉伸工艺制成的纤维级产品, 其抗拉强度、极限伸长率以及弹性模量随制作工艺不同而变化较大【2】。聚丙烯纤维虽然具有很好的力学性能, 耐化学侵蚀, 但也存在一些致命缺点, 分子不带有极性基团、表面呈化学惰性和憎水性、在水泥基材料的应用中存在与基材的粘结性和抗蠕变性能较差的缺点。 众所周知, 水泥基材料耐久性的重要地位并不亚于强度和其它性能, 而耐久性不足最终都归结为材料开裂。在水泥基材料中掺入高弹性模量的钢纤维, 其作用主要是阻止硬化材料破坏时的裂缝扩展, 使硬化材料在开裂后仍能保持一定的抗拉强度。与钢纤维相比, 聚丙烯纤维的掺入能有效的抑制早期( 塑性期和硬化初期) 水泥基材料由于离析、泌水、收缩等因素形成的原生裂隙的发生和发展, 减少原生裂隙的数量和尺寸。因此, 聚丙烯纤维和钢纤维的阻裂效应是不同的, 它们分别改善了不同时期水泥基材料的性能。在一些对水泥基材料裂缝要求严格的工程中, 掺用聚丙烯纤维则有可能获得更为满意的效果, 因钢纤维在材料开裂后方能发挥阻裂效应,有些场合并无实际意义, 而水泥基材料在早期易发生塑性开裂性能的缺陷, 却可通过掺入聚丙烯纤维得到解决和改善。

聚丙烯酸酯

聚丙烯酸酯 以丙烯酸酯类为单体的均聚物或共聚物。R、R'为取代基,取代基不同,聚合物性质也不同。丙烯酸酯在光、热及引发剂作用下非常容易聚合。 基本信息: ?中文名称聚丙烯酸酯 ?外文名称polyacrylate ?性状无色或微黄色透明粘稠液体 ?毒性无毒 性质应用: 聚丙烯酸酯易溶于丙酮、乙酸乙酯、苯及二氯乙烷,而不溶于水。由于其高分子链的柔顺性,它们的玻璃化温度(T g)较低,并随酯基的碳原子数及其支化情况而异,当碳原子数为8时最低。在相同碳原子数的酯基中,支化者玻璃化温度较高(见表)。 玻璃化温度聚丙烯酸酯能形成光泽好而耐水的膜,粘合牢固,不易剥落,在室温下柔韧而有弹性,耐候性好,但抗拉强度不高。可做高级装饰涂料。 聚丙烯酸酯有粘合性,可用作压敏性胶粘剂和热敏性胶粘剂。由于它的耐老化性能好,粘结污染小,使用方便,其产量增加较快。在纺织工业方面,聚丙烯酸酯可用于浆纱、印花和后整理,用它整理过的纺织品,挺括美观,手感好;它还可用作无纺布和植绒、植毛产品的粘合剂。聚丙烯酸酯可用于鞣制皮革,可增加皮革的光泽、防水性和弹性。 类型: 最简单的丙烯酸酯是丙烯酸甲酯,可由丙烯酸与甲醇酯化,或由氰乙醇与甲醇在浓硫酸作用下反应而得。它是具有异臭的液体,其沸点为80℃,密度为0.950

克/厘米(25℃)。聚丙烯酸甲酯PMA在室温下是完全没有粘性的物质,强韧,略具弹性,硬度中等,能形成可挠性膜,其断裂伸长约为750%。 聚丙烯酸乙酯较聚丙烯酸甲酯柔软,伸长率为1800%。聚丙烯酸丁酯就更柔软,伸长率为2000%,并且在室温下具有很大的粘合性。酯基有8个碳原子的聚丙烯酸-2-乙基己酯的粘合性又大很多。所以,用聚丙烯酸酯作胶粘剂时,多通过这些酯的共聚合来综合调节其弹性、粘合性和可挠性等。 丙烯酸酯与丙烯酸的失水甘油酯、羟烷基酯或丙烯酸等反应性单体的共聚物,经加热固化后可得到表面硬度高、耐污染性和光泽良好的涂膜。 丙烯酸甲酯与季戊四醇、三羟甲基丙烷等反应,可得到多官能性交联剂,可用于光敏涂料、光敏油墨和感光树脂印刷版等方面。 α-氰代丙烯酸酯的-CN基的极性强,渗透性能又好,聚合后的粘合强度很高,是金属、玻璃、皮革、木材等的良好胶粘剂。α-氰代丙烯酸酯胶粘剂是以单体状态保存的胶粘剂,滴至粘合部位后很快就能聚合而粘合,称为瞬间胶粘剂。 聚丙烯酸酯乳液的改性 以丙烯酸或丙烯酸酯类为主要原料合成的丙烯酸酯乳液具有优异的光稳定性和耐候性,良好的耐水、耐碱、耐化学品性能和粘接性能,因此广泛地用作胶粘剂、涂料成膜剂以及日用化工、化学电源、功能膜、医用高分子、纳米材料以及水处理等方面。但是丙烯酸酯乳液存在着低温变脆、高温变黏失强、易回黏等缺点,限制了它的应用范围和使用价值。近年来,随着聚合技术的不断完善和发展,以及人们对环保产品的重视,丙烯酸酯乳液的改性受到了人们的广泛关注。一般来说,主要从两个方面对丙烯酸酯乳液进行改性:一是引入新的功能性单体;二是采用新的乳液聚合技术。 1.有机硅改性 丙烯酸酯聚合物具有优良的成膜性、粘接性、保光性、耐候性、耐腐烛性和柔韧性。但其本身是热塑性的,线性分子上又缺少交联点,难以形成三维网状交联胶膜,因此其耐水性、耐沾污性差,低温易变脆、高温易发黏。而有机硅树脂中的Si-O 键能(450kJ/mol)远大于C-C键能(351kJ/mol),内旋转能垒低,分子摩尔体积大,表面能小,具有良好的耐紫外光、耐候性、耐沾污性和耐化学介质性等特性。用有机桂改性丙烯酸酯乳液,可以综合二者的优点,改善丙稀酸酯乳液"热黏冷脆"、耐候、耐水等性能,将其应用范围扩大至胶粘剂、外墙涂料、皮革涂饰剂、织物整理剂和印花等领域。 有机硅改性聚丙稀酸酯分为物理改性和化学改性两种方法。其中,用有机硅氧烷对丙烯酸酯类乳液进行物理改性的方法通常有两种:一是有机硅氧烷单体作为粘附力促进剂和偶联剂直接加入到丙烯酸酯类乳液中进行改性;二是先将有机硅氧烷制成有机乳液,再将它与丙烯酸酯类乳液冷拼共混进行改性。化学改性法是基于聚硅氧烷和聚丙烯酸酯之间的化学反应,从而将有机硅分子和聚丙烯酸酯有机

聚丙烯抗冲改性的研究进展

聚丙烯抗冲改性的研究进展 [摘要] 综述了近年来有关反应器内抗冲改性聚丙烯研究的最新进展, 介绍了反应器内抗冲改性聚丙烯的生产工艺及多区循环流反应器在丙烯多段聚合中的应用; 介绍了反应器内抗冲改性聚丙烯的形态、结构与性能的关系; 介绍了 反应器内抗冲改性聚丙烯的研究方法及增韧机理。 [关键词] 聚丙烯; 抗冲改性; 共聚物; 结构与性能. 聚丙烯( PP)质轻、价廉, 具有良好的加工性能,应用范围广。PP的很多应用领域要求它具有较好的韧性。均聚PP在低温时变脆, 抗冲改性PP是通过在均聚PP中加入橡胶相制备的。以提高PP抗冲强度为目的的改性大多采用物理共混方法, 将PP和两种或两种以上的其它聚合物以机械共混方法进行混合, 可以得到一种宏观上均匀的聚合物共混物,在一定程度上提高共混物的性能。一方面, 以这种混合方式得到的PP与改性成分达不到真正均匀分布的状态, 故不能显提高共混物的冲击强度; 另一方面, 由于增加了共混工艺, 提高了生产抗冲改性PP的成本。因此, 研究人员想在聚合过程中完成共混工艺, 在反应器内直接合成抗冲改性的PP, 这样不仅可以简化工艺、降低生产成本, 而且还可以使PP和改性成分的混合程度达到亚微观状态, 从而有效地改善PP的抗冲性能。 本文对反应器内抗冲改性PP的生产工艺、形态结构、研究方法、增韧机理等方面的最新进展进行了综述。 1 应器内抗冲改性PP的生产工艺 反应器内抗冲改性PP的生产建立在第四代球形M gC l2 负载Z ieg ler- N atta 催化剂的基础上[ 1 ] 。第四代球形M gC l2 负载Z ieg ler- N a tta 催化剂具有以下特点[ 2] : ( 1)比表面积大; ( 2)孔隙率高, 孔径分布均匀; ( 3)活性中心在催化剂上分布均匀; ( 4)催化剂既具有一定的强度, 又能被聚合物增长时产生 的压力将内部结构破碎成较小颗粒, 并均匀地分布在膨胀着的聚合物内部; ( 5)单体可以自由地扩散到催化剂内部而发生聚合。由于聚合过程中的复制效应, 均聚过程中生成的丙烯均聚物复制了催化剂的某些特点, 如呈规则的球形、具有较高的孔隙率、活性中心在聚合物粒子内部分布均匀等。 反应器内抗冲改性PP 的生产一般采用两步法: 第一步先合成丙烯均聚物, 形成高立构规整度的聚合物, 为最终产品提供足够强的刚性, 这一步一般采用液相本体聚合或气相聚合工艺; 第二步合成乙丙共聚物(橡胶相), 为最终产品提供韧性, 共聚阶段一般采用气相共聚工艺; 最终产品的机械性 能实际上是刚性和韧性的平衡。气相共聚是反应器内抗冲改性PP 合成的关键步骤, 特殊的催化剂结构形态使本体聚合阶段获得的PP粒子具有较高的流动性和多孔性, 完全可以满足气相共聚的要求。合适的气相共聚工艺可以自由地调控共聚物的含量、组成及分子结构。气相共聚也保证了共聚物能均匀地分散在已形成的PP均聚物基体中, 这样既可以得到较高的橡胶相含量, 又不致使橡胶相过

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用 1、聚丙烯在合成树脂生产中占据重要地位,发展极为迅速 聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。表1列出近期投产和正在建设的聚丙烯装置的地点和产能。 表1 近期投产和在建聚丙烯装置

在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。 另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。 1 聚丙烯基本知识 1.1 树脂与塑料的定义和分类 树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。 塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。 热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。 热固性塑料(Thermosetting Plastics):在第一次成型之后,成为不熔、不溶性物料的塑料。

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展 五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。 1 橡胶增韧PP 橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。 1.1 PP/乙丙橡胶共混体系 PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。 李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。通常情况下,EPR的增韧效果优于EPDM。通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。 刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差

开发高性能聚丙烯改性材料

(总第154期> 2004年10月30日 开发高性能聚丙烯改性材料 提升湛江电饭煲地质量档次 湛江市包装材料企业有限公司 涂志刚 市科技专家咨询委员会专家 众所周知,在小家电行业,湛江地电饭煲全国有名,早在八十年代半球地广告就遍布全国大中城市.据统计目前湛江生产地电饭煲市场占有率为30%左右,而且大量出口到东南亚.电饭煲产业地发展也带动了相关配件行业地发展,其中包括电饭煲上用到地大量塑料制件,因此在湛江催生了塑料注塑成型加工行业,通过注塑成型,生产电饭煲上地塑料制件,如外壳、内盖、中环、蒸笼、底座等.电饭煲上用到地塑料材料主要是聚丙烯改性材料,最初,这些改性材料主要从珠三角地区购买,近年来在湛江本地逐步有一些私人小企业开始生产,由于价格低廉,但是技术水平与广州附近地企业相比有较,很快地占有了大部分市场 大差距,产品质量较差,因此最终会使电饭煲地质量受到一定程度地影响,这将成为电饭煲产业链拓展地薄弱环节.由此可见在湛江开发高性能地聚丙烯改性材料,对促进电饭煲产业群地发展具有十分重要地意义.b5E2RGbCAP

一聚丙烯

PP共混改性配方大全精编版

PP共混改性配方大全 聚丙烯是目前用量最大的通用塑料之一,但较高的结晶度也给 PP造成低温韧性差、成型收缩率大和缺口敏感性大等缺点,在一定 程度上限制了其更广泛的应用。共混改性是PP增韧的最有效途径。 它是利用组份之间的相容性或反应共混的原理,将两种或两种以上的聚合物与助剂在一定温度下进行机械共混,最终形成一种宏观上均匀,微观上相分离的新材料。通过对PP的共混故性,可以使其综合性能 大大提高,从而和工程塑料及聚合物合金在众多应用领域里竞争。 PP共混改性使用的主要共混物物及改性效果如下表: PP 接下来就是干货满满的具体改性配方和工艺啦! 1、PP/LDPE共混改性 配方 树脂PP100;相容剂PE-g-MAH5;LDPE20;润滑剂HSt0.3; 加工工艺 将PP与PE、相容剂及助剂按配方比例混合、搅拌、挤出造粒,制成改性材料。挤出机料筒温度为:一段210℃,二段215℃,三段210℃;螺杆长径比为25:1;螺杆转速为120~160r/min。 性能 PP与PE共混,可改善PP的韧性,增大低温下落球冲击强度。按配方比例的共混材料的屈服应力13.6MPa;屈服应变率为12.3%,断裂应力为4.78MPa;断裂应变率为114.6%。

2、PP/HDPE共混改性 配方 树脂PP57.35;抗氧剂10760.2;HDPE40;PEPQ0.2;交联剂叔丁基过氧基异丙苯0.15;加工助剂硬脂酸镁0.1;填充剂硅灰石2; 加工工艺 在常温常压下,将各组分按配方比例在高速混合机中混合10min,然后采用双螺杆挤出机进行熔融共混,挤出造粒。挤出温度150-220℃,螺杆转速为300r/min,经切粒、干燥工序制得PP/HDPE共混改性材料。 性能 拉伸强度34.8MPa,悬臂梁冲击强度49.3J/m。该材料表面消光效果良好,可用于包装、日用品和建筑材料等领域。 3、PP/LLDPE共混改性 配方 树脂PP(EPF30R)60-70;钛酸酯偶联剂(ND2-311)适量;LLDPE15-20;抗氧剂增韧剂POE(8150)5~10;光稳定剂适量;填充剂滑石粉(平均粒径12μm)10~15; 加工工艺 等高速混合机预热至110℃,加入一定量的无机填料,低速搅拌15min后,分三次加入填料质量分数为2%的偶联剂,每次加入偶联剂后,高速搅拌5min,然后放出填料备用。按配方比例准确称取PP、PE、POE、填料和其他助剂,混合后加入双螺杆挤出机料斗中,挤出

聚丙烯改性研究及其在输液瓶瓶盖中的应用

聚丙烯改性研究及其在输液瓶瓶盖中的应用 王以秀,张乃潮,唐雷,朱雪真,刘应福,李忠志 威高集团创新公司 大输液制剂作为常用药之一,临床需求量非常大。作为第一代输液产品玻璃瓶装大输液,由于玻璃瓶包装的生产工艺复杂,需反复清洗使用,易产生玻璃纤维,质量难以控制,存在对人体健康产生不良影响的诸多隐患,且运输成本高、易碎。同时使用后的玻璃瓶不便处理、污染环境,逐步淘汰是必然的趋势。随着人们医疗健康水平和科学技术不断提高,塑料包装大输液已成为当今国际输液包装发展的主流之一。 2006年全国各类输液的用量约为30多亿瓶,塑瓶输液约占20%,瓶盖料的用量将高达2500吨,产值达1亿元;预计未来几年塑瓶输液的需求量将占输液产量的40-50%,将达到15亿瓶,瓶盖料的用量将达6000吨,产值达2亿元。输液用改性聚丙烯瓶盖料目前国内只有几家公司生产,而市场瓶盖料的用量每年以10%的速度递增,面对如此巨大的市场,同时为了保证威高集团洁瑞医用制品有限公司的市场竞争力,我公司决定研制开发输液用改性聚丙烯瓶盖料。 目前,我公司已经大批量生产输液用改性聚丙烯瓶盖料,除了供威高集团药业公司使用,还对外销售。 1 实验部分 1.1主要原料 无规共聚聚丙烯(PP),乙烯—辛烯共聚物(POE),聚乙烯(PE),三元乙丙橡胶(EPDM),乙烯—醋酸乙烯共聚物(EVA)。 以上原料均为商品。 1.2 试验设备 双螺杆挤出机 南京橡塑机械厂制造的SJSH-40双螺杆挤出机组。其螺杆直径Φ为40mm,长/径比为36,各段温度控制在150-220℃。 1.3 性能检测 1.3.1 熔体指数 采用长春长城试验机厂生产的XNK—400Z型熔融指数仪,测试条件为230℃,

聚丙烯的共混改性

聚丙烯的共混改性 材料一班历晨 1205101018 摘要:聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规,无规和间 规聚丙烯三种。 甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含 量约为95%,其余为无规或间规聚丙烯。 关键字:聚丙烯共混改性、聚丙烯改性研究、改性制品八大应用 聚丙烯共混改性 PP/EVA共混体系 : 物理共混改性的方法分别制备出乙烯—醋酸乙烯含量为0~20wt%的聚丙烯(PP)/乙烯—醋酸乙烯(EVA)共混切片,以PP为皮层、PP/EVA共混物为芯层,采用熔融纺丝工艺制备出皮芯复合中空纤维。文中通过研究原材料的组成、EVA含量、复合比例、纺丝温度和挤出速率/卷绕速率匹配对熔融纺丝稳定性的影响,确定了最佳熔融纺丝工艺,同时对复合纤维的力学性能进行了测试。采用差示扫描量热分析仪(DSC)、声速仪、宽角X-射线衍射仪(WXRD)和扫描电子显微镜(SEM)等分析与检测手段对PP/EVA共混物及共混纤维进行相关性能测试,并经过浸泡,研究皮芯复合中空纤维对有机小分子物质的吸附性能。结果表明:1、当EVA含量为0~20wt%时,可以顺利的进行共混造粒。PP/EVA共混物的熔融指数随着EVA质量百分含量的增加而明显降低;随着温度的升高,共混物熔融指数在230℃后急剧升高,流动性明显改善;PP/EVA共混体系为热力学不相容体系。2、具有可纺性的PP/EVA共混物,经严格控制纺丝条件,可以纺制成一定直径且粗细均匀的皮芯复合中空纤维。最佳纺丝工艺条件为:EVA含量10wt%,皮芯复合比6/4,纺丝温度230℃,挤出速率39.69g/min,卷绕速率500m/min。3、随EVA含量的增加和拉伸倍数的增大,纤维的纤度和断裂强度单调减小。当EVA含量为10wt%,实际拉伸倍数为3.7时,纤维的纤度为9dtex,断裂强度和断裂伸长分别为3.0cN/dtex、39%。4、皮芯复合中空纤维通过纤维内部EVA中的极性基团吸附有机小分子物质,吸附量主要取决于纤维中EVA的含量。5、乙烯—醋酸乙烯与有机小分子物质的溶解度参数差异决定吸附量,两者的溶解度参数差异越小,吸附量越大,因此皮芯复合中空纤维对丙烯酸甲酯的吸附性能很好,对苯乙烯吸附性较好,对乙酸乙酯和柏树精油的吸附性相对较差。 6、拉伸倍数在0~4倍时,随着拉伸倍数的增加,纤维对有机小分子物质的吸附量降低;随着温度 的升高,纤维对有机小分子物质的吸附量在50℃时出现最大值. PP/TPEE共混体系:聚丙烯(PP)纤维是由等规聚丙烯经纺丝加工制得的纤维,具有质轻、强力高、 弹性好、化学稳定性好、制造成本低、再循环加工简便等特点,被广泛用于无纺布、卫生用品、绳 索等。但由于聚丙烯纤维大分子内不含任何极性基团,结构规整,结晶度高,疏水性强,分子内不 含能与染料发生作用的染座,所以丙纶的染色性能较差,严重影响了其在服用纺织品上的应用。因 此,对聚丙烯进行可染改性,是广大研究工作者一直关注的热点。其中在聚丙烯基体中通过加入含 染座的改性剂进行共混改性,是聚丙烯纤维可染改性的主要方法。但改性剂的添加,会对聚丙烯的 纺丝性能和纤维力学性能带来较大的影响,因此,选择适宜的改性添加剂及如何改善聚丙烯与改性 添加剂的相容性,是共混改性的难点。本文采用共混改性的方法,选用与PP溶解度参数较接近的聚 对苯二甲酸丁二醇酯(PBT)与聚四亚甲基醚二醇(PTMG)的嵌段共聚物(TPEE)作为改性添加剂,分别 以乙烯-辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)、聚丙烯接枝甲基丙烯酸缩水甘油酯 (PP-g-GMA)、乙烯-醋酸乙烯共聚物(EVA)为相容剂,在双螺杆挤出机中按一定共混比例制得共混样 品;利用扫描电镜(SEM)、旋转流变仪、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)、热重分析仪(TG)

聚丙烯酸酯压敏胶

聚丙烯酸酯压敏胶 聚丙烯酸酯压敏胶制品 聚丙烯酸酯压敏胶具有不饱和双键的单体在催化剂作用下进行自由基聚合反应制得的丙烯酸酯树脂。聚丙烯酸酯压敏胶具有较好的耐低温、耐高温,可凝挥发物和质量损失率低,并且无有害气体逸出的特性,制成的各类压敏胶带,可方便对薄膜的粘贴。 丙烯酸酯型压敏胶的基体 聚丙烯酸酯压敏胶具有较好的耐低温、耐高温,可凝挥发物和质量损失率低,并且无有害气体逸出的特性,制成的各类压敏胶带,可方便对薄膜的粘贴。聚合时所采用的单体可分为三类: 1、粘性单体. 它是碳原子数为4-12的丙烯酸烷基酯,具有粘性作用,聚合物的玻璃化温度为-20——70°C ,常用的有丙烯酸异辛酯和丙烯酸丁酯等。 2、内聚单体 这是一些玻璃化温度较高的单体,它不仅能提高胶液的内聚力,而且对耐水性、胶接强度、透明性等也明显改善。 3、改性单体 主要是一些带有反应性官能团的含有双急需的单体,如含羧基、羟基、酰胺基等的丙烯酸衍生物。它能与其它单体起交联作用,促进聚合反应,加快聚合速度,提高胶液的稳定性。 表十七列举了上述三种单体的种类及玻璃化温度 表十七丙烯酸酯型压敏胶的单体及玻璃化温度 单体类别单体各称玻璃化温度(°C ) 粘性单体丙烯酸乙酯 -22 丙烯酸丁酯 -55 丙烯酸异辛酯 -70 内聚单体醋酸乙烯酯 22 丙烯腈 97 丙烯酰胺 165

苯乙烯 80 甲基丙烯酸甲酯 105 丙烯酸甲酯 8 改性单体甲基丙烯酸 228 丙烯酸 106 甲基丙烯酸羟乙酯 86 甲基丙烯酸羟丙酯 76 二胺基乙基甲基丙烯酸酯 13 丙烯酸酯型压敏胶的基体总 由上述三类单体聚合物属热塑性树脂,内聚力不够理想,为了进一步提高内聚力和胶接强度,可加入能与改性单体发生化学反应的交联剂,使它们在加热情况下产生交联结构,从而大大改善胶液的性能。表十八列举了改性单体打官能团及其发生反应的交联剂种类。 加入交联剂的压敏胶的耐候性和耐热性大幅度提高,耐油性和耐溶剂性优良,粘附力和内聚力高,透明性好,在长期应力作用下耐蠕变性能也优良。表十九列举了丙烯酸酯型压敏胶的典型配方及其性能。 表十八改性单体的官能团及交联剂种类 官能团改性单体交联剂 -COOH 丙烯酸、甲基丙烯酸、依康酸、马来酸环氧树脂、异氰酸酯、三聚氰胺树脂、尿素树脂、多价金属盐 -CONH2 丙烯酰胺、甲基丙烯酰胺羟甲基化环氧树脂、三聚氰胺树脂、尿素树脂 -CH2ON N-羟甲基丙烯酰胺环氧树脂、异氰酸酯、醚化氨基树脂、含有羧酸基聚合物 -CH2OR N-丁氧基甲基丙烯酰胺环氧树脂、醚化氨基树脂 -OH 丙烯酸羟乙酯、甲基丙烯酸羟丙酯醚化氨基树脂、异氰酸酯 -CH-CH2\O/ 甲基丙烯酸缩水甘油酯酸、酸酐、胺 -C2H4-N/R\R 二甲氨基乙基甲基丙烯酸酯、二乙氨基乙基甲基丙烯酸酯环氧树脂、二异氰酸酯、二元醛 表十九丙烯酸酯型压敏胶的典型配方及其性能 配方性能 1 丙烯酸丁酯 112.5 具有优良的粘附性和很高的内聚力 常态剥离强度14N/2.5cm 老化试验后剥离强度 13.5N/2.5cm

聚丙烯及其改性材料简介

目录 一聚丙烯 (2) 1.1 聚丙烯的性能 (2) (1)优点 (2) (2)缺点 (2) 1.2 聚丙烯链的立体结构 (2) 1.3 聚丙烯的晶体结构 (3) 二聚丙烯改性 (3) 三聚丙烯填充与增强改性新材料 (4) 3.1 聚丙烯填充改性性能特点及发展趋势 (4) 3.2 常用填充材料 (5) 1、碳酸钙 (5) 2、滑石粉 (5) 3、高岭土 (5) 3.3 聚丙烯的增强改性 (5) 3.4 聚丙烯填充与增强改性新材料 (6) 1、碳酸钙与滑石粉填充改性聚丙烯 (6) 2、玻璃微珠改性聚丙烯新材料 (6) 3、云母填充改性PP (6) 4、玻璃纤维增强聚丙烯新材料 (7)

一聚丙烯 1.1 聚丙烯的性能 (1)优点 1)聚丙烯密度为0.90~0.91g/cm3,是通用塑料中最轻的一种; 2)具有优良的耐热性,长期使用温度可高达100~120℃,无载荷时使用温度可达150℃,是通用塑料中唯一能在水中煮沸,并能经受135℃的消毒温度的品种; 3)聚丙烯是一种非极性塑料,具有优良的化学稳定性,并且结晶度越高,化学稳定性越好,室温下只有强氧化性酸(如发烟硫酸、硝酸)对它有腐蚀作用。吸水性很小,吸水率不到0.01%; 4)力学强度、刚性和耐应力开裂都超过高密度聚乙烯,而且有突出的延伸性和抗弯曲疲劳性能; 5)电绝缘性能优良,特别是高频绝缘性好,击穿电压强度也高,加上吸水率低,可用于120℃的无线电、电视的耐热绝缘材料; 6)综合性能优异,易加工、生产成本低。 (2)缺点 1)聚丙烯的耐低温性能不如聚乙烯,脆化温度约为-30~-10℃,低温甚至室温下的抗冲击性能不佳,低温易脆; 2)在成型和使用中易受光、热、氧的作用而老化; 3)熔点较低、热变形温度低、抗蠕变性差、尺寸稳定性不好。 1.2 聚丙烯链的立体结构 丙烯用齐格勒-纳塔催化剂聚合后,所得聚合物的X射线构型有等规、间规和无规三种。在PP生产过程中,尽管采用不同的催化剂和不同的操作条件,但工业PP产品主要是等规PP(含有少量的无规物和间规物)。

聚丙烯酸酯在涂料中的应用

聚丙烯酸酯在涂料中的应用 专业:高分子材料与工程 班级: B090108 学号: B09010826 姓名:王梦梦

聚丙烯酸酯在涂料中的应用 摘要 目前,在整个涂料工业中,丙烯酸树脂涂料已经成为类型最多、综合性能最全、通用性最强的一类合成树脂涂料。与其他高分子树脂涂料相比,丙烯酸酯树脂涂料具有许多突出的优点:色浅、透明度高;耐光、耐候、户外曝晒耐久性好;在紫外线照射不易分解或变黄,长期使用仍可保持原有的光彩和色泽;耐热性及耐腐蚀性好等。丙烯酸树脂涂料已广泛用于汽车装饰和维修、家用电器、钢制家具、铝制品、卷材、机械、仪表电器、建筑、木材、造纸、胶黏剂和皮革等生产领域。本文主要介绍了丙烯酸树脂涂料的特性、发展情况及生产方法,并着重阐述了其在各方面的应用情况。 关键词:丙烯酸树脂,涂料,合成,应用 前言 丙烯酸单体和树脂的研究最早始于1805年,但由于当时条件的限制,直到1927年才由Rohm & Haas公司应用于工业化生产,而真正在涂料上的应用则是在1950年以后。以丙烯酸树脂为主要成膜物质的合成树脂涂料,在1950年由美国杜邦公司首先制成热塑性丙烯酸树脂涂料,应用于汽车涂装。1952年,加拿大工业公司获得了生产热固性丙烯酸树脂涂料的专利。发展到现在,丙烯酸树脂及涂料已成为和醇酸树脂及涂料齐名的涂料树脂。这类涂料不仅具有色浅、透明度高、光亮丰满、耐候、保色、保光、附着力强、耐腐蚀、坚硬、柔韧等特点,且可通过选择单体、调整配比、改变制备方法及改变拼用树脂,配制出一系列丙烯酸树脂涂料。丙烯酸树脂涂料既有优越的装饰性能,又有良好的保护性能,既可制成溶剂型涂料,又可制成水性涂料,还可制成无溶剂型涂料。因此,丙烯酸酯树脂涂料已成为目前最受关注、最受青睐的一大类涂料。 目前,丙烯酸酯涂料已广泛应用于飞机、汽车、机床、仪表、家用电器、高级木器及缝纫机、自行车等轻工产品的防护和装饰性涂装。 一、丙烯酸树脂涂料综述 1.1 丙烯酸树脂涂料的定义 以丙烯酸酯、甲基丙烯酸酯及苯乙烯等乙烯基类单体为主要原料合成的共聚物称为聚丙烯酸酯,也称丙烯酸树脂,以其为成膜基料的涂料称作丙烯酸树脂涂料。 1.2 丙烯酸树脂涂料的特性及用途 该类涂料具有色浅、保色、保光、耐候、耐腐蚀和耐污染等优点,使用温度

高熔体强度聚丙烯的研究解析

高熔体强度聚丙烯的研究简介概述1 PP Mont-ecati年由意大利蒙特卡迪尼(万。195710~50聚丙烯(PP),分子量一般为)公司实现工业化生产。聚丙烯为白色蜡状材料,外观与聚乙烯相近,但密度比聚ni℃左右,热性能好,在通用树脂中是唯一能在水165乙烯小,透明度大些,软化点在℃,具有优异的介电性能。溶解性-10~20130℃下消毒的品种,脆点中煮沸,并能在相近。作为一种通用塑料,聚丙烯具有较好的综合性能,聚丙烯的成PE能及渗透性与型收缩率较聚乙烯小,具有良好的耐应力开裂性。因而被广泛应用于制造薄膜、电绝缘体、容器、包装品等,还可用作机械零件如法兰、接头、汽车零部件、管道等,聚丙烯还可以拉丝成纤维。在近年来所举的通用塑料工程塑料化技术中,聚丙烯作为首机械强度和硬度较低以及成PP也存在低温脆性、选材料不断地引起了人们的重视。但型收缩率大、易老化、而热性差等缺点。因此在应用范围上,尤其是作为结构材料和年代中期国内外就采用化学或物理改性方工程塑料应用受到很大的限制。为此,从70的缺口冲击强度和低温韧性方面进PP进行了大量的研究开发特别是针对提高法对PP行了多种增强增韧改性研究开发。常见的改性方法有共聚改性、共混改性和添加成核剂等。 1.1 PP生产方法和种类 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,生产技术、工艺也趋于多样化,已经基本上形成了淤浆法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局。中国的大型聚丙烯生产装置以引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。由最初的浆液工艺发展到目前广泛使用的液相本体法和气相法,液相本体法因其不使用稀释剂、流程短、能耗低,现已显示出后来居上的优势。 (1)淤浆法:在稀释剂(如己烷)中聚合,是最早工业化的方法; (2)液相本体法:在70℃和3MPa的条件下,在液体丙烯中聚合; (3)气相法:在丙烯呈气态条件下聚合。 - 2 - )和间规IPP根据甲基排列位置聚丙烯可分为等规聚丙烯()、无规聚丙烯(APP 聚丙烯(SPP)三种。甲基无秩序的排列在分子主链的两甲基排列在分子主链的同一侧称等规聚丙烯,侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的,其余为无规或间规聚丙烯。工业产品以等规聚丙烯树脂中,等规结构含量约为95%物为主要成分。通常为半透明无色固体,无臭无毒,由于结构规整而高度结晶化,故熔点可高达167℃,耐热、耐腐蚀,制品可用蒸汽消毒,密度小,是最轻的通用塑料。 PP的特点1.2 ℃)、低透明度、低光泽度、低刚性,冲击强100PP材料有较低的热变形温度(℃。由于结晶度较高,这种材料150度随着乙烯含量的增加而增大,维卡软化温度为不存在环境应力开裂问题,无毒、无味、密度小、的表面刚度和抗划痕特性很好。PP℃左右使用。具有良好的介强度、刚度、硬度、耐热性均优于低压聚乙烯,可在100电性能和高频绝缘性且不受湿度影响,但低温时变脆,不耐磨、易老化。

聚丙烯(论文

前言 聚丙烯(PP)是五大通用塑料之一,具有密度小、刚性好、强度高、耐挠曲、耐化学腐蚀、绝缘性好等优等。不足之处是低温冲击性能较差、易老化、成型收缩率大。PP 用途相当广泛,可用于包括农业和三大支柱产业(汽车工业、建筑材料、机械电子) 在内的诸多领域。开拓PP在重大产业领域的市场,取代其他塑料,所凭借的因素一是PP 物美价廉、二是PP改性的进展。尽管PP 生产工艺和催化剂历经几代更新,取得了很大的成就,但要用反应器产品直接作为某些目标产品(包括注塑级、纤维级、薄膜级等) 的原料或专用料,有的还需提高它的综合性能。即对反应器后产品作一定的改性。反过来说,PP改性也扩大了自身的应用领域,通过改性,人们可以得到性能好和价廉的PP原料。 按照参加聚合的单体组成,PP可分为均聚物和共聚物两种。均聚物由单一丙烯单体聚合而成,因而具有较高的结晶度、机械强度和耐热性。PP共聚物是聚合时加入少量乙烯单体共聚而成,具有较高的冲击强度。广义上讲,相对于均聚物,共聚物可以说是一种改性产品。目前国内石化厂生产PP以均聚物为主,品种单一,提供PP均聚物的改性方法无疑是有现实意义的。

聚丙烯的改性方法 §1章PP聚合物的改性综述 1.1化学改性 聚丙烯的化学改性是指通过化学方法改变聚丙烯分子链上的原子或原子团的种类及组合方式的改性方法。经化学改性后的聚丙烯, 其分子链结构发生变化, 从而对材料的聚集态结构或织态结构产生影响, 改变材料性能, 因此, 通过化学改性可以得到具有不同应用性能的新材料。 1.1.1聚丙烯的共聚改性 以丙烯单体为主的共聚改性可在一定程度上增进均聚PP的冲击性能、透明性和加工流动性,它是提高PP 韧性, 尤其是低温韧性的最有效的手段之一。将丙烯、乙烯混合在一起聚合, 其聚合物主链中无规则地分布着丙烯和乙烯链段,乙烯则起着阻止聚合物结晶的作用, 当乙烯质量分数达到20%时结晶便很困难, 当质量分数为30%时就完全无定形, 成为无规共聚物, 其特点是结晶度低、透明性好、冲击强度增大等。采用Zieglar 催化剂或茂金属催化剂可以制备立构嵌段聚丙烯( 又称为热塑性弹性聚丙烯,Thermoplastic elastomer)。由于在分子链上同时含有等规和无规两种链段, 因此具有低的初始弹性模量,相对高的拉伸强度, 低的蠕变性能以及高的可逆形变。嵌段共聚物与等规共聚物相比, 低温性能优良, 耐冲击性好; 与等规PP 和各种热塑性高聚物的共混物相比, 刚性降低不大。 Exxon 公司[2 ]采用双茂金属催化剂在单反应器中制备了双峰分布的丙烯- 乙烯共聚物,其加工温度范围大约为26 ℃,比常用的聚丙烯共聚物的加工温度范围(约15 ℃)宽,克服了单峰茂金属聚丙烯树脂加工温度范围窄的缺点,在生产BOPP 薄膜时拉伸更均匀且不易破裂,并可以在低于传统聚丙烯的加工温度下生产性能良好的聚丙烯薄膜。浙江大学合成3种新型非桥联二茚锆茂催的存在下, 与PP在挤出机中熔融共混完成接枝反应(或者与丙烯单体共聚),然后在水的作用下,硅烷水解成硅醇,经缩合脱水而交联。该技术的关键是在接枝反应时必须严格监控,防止PP降解。 1.1.2 聚丙烯的接枝改性

相关文档