文档库 最新最全的文档下载
当前位置:文档库 › 岩石单轴压缩、拉伸、巴西劈裂数值实验模拟

岩石单轴压缩、拉伸、巴西劈裂数值实验模拟

岩石单轴压缩、拉伸、巴西劈裂数值实验模拟
岩石单轴压缩、拉伸、巴西劈裂数值实验模拟

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

巴西劈裂实验实验方案【内容详细】

巴西劈裂实验 一、实验目的 岩石抗拉强度是指岩石承拉伸条件下能够承受的最大应力值。由于巴西劈裂法实验简单,所测得的抗拉强度与直接拉伸法测得的抗拉强度很接近,故常用此法测定岩石抗拉强度。 二、实验原理 劈裂法的基本原理是基于圆盘受对径压缩的弹性理论解。试件破坏时作用在试件中心的最大拉应力为: dt P σπ2t 式中:σt —试件中心的最大拉应力,即为抗拉强度,MPa P —试件破坏时的极限压力,N ; d 、t —承压圆盘的直径和厚度,mm ; 图1 劈裂试验加载和应力分布示意图 三、试样制备 1.试样可用钻孔岩芯或岩块,在取样和试样制备过程中,不允许人为裂隙出现。

2.试样规格:采用直径为50mm,高为25mm~50mm(高度为直径的0.5~1.0倍)的标准圆柱体。试样尺寸的允许变化范围不宜超过5%。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许使用非标准试样,但高径比必须满足标准试样的要求。 3.试样数量:试样个数视所要求的受力方向或含水状态而定,一般每种岩石同一状态下,试样数量不少于5块。 4.含水状态:采用自然状态,试样制成后放在底部有水的干燥器内1~2d,以保持一定的湿度,但试样不得接触水面。 5.试样制备精度:整个厚度上,直径最大误差不应超过0.1mm。两端不平行度不宜超过 0.1mm。端面应垂直于试样轴线,最大偏差不应超过0.25度。 四、实验设备 圆柱体试样、游标卡尺、劈裂夹具、钢丝垫条(用直径为2.0mm~3.0mm钢丝)、液压材料试验机。 五、实验步骤 1.测定前核对岩石名称和试样编号,并对试样的颜色、颗粒、层理、裂隙、风化程度、含水状态等进行描述。 2.用游标卡尺测量试样尺寸,保留两位小数。 3.将试样放置在劈裂夹具内,再用V型夹具及两侧夹持螺钉固定好试样。 4.把劈裂夹具放入试验机的上、下承压板之间,使试样中心线和试验机的中心线在一条直线上。 5.开动试验机,松开劈裂夹具两侧夹持螺钉,然后以0.3 ~0.5 MPa/s的加载速度均匀加载,直至破坏。 6.记录破坏载荷,破坏类型描述。 注意事项: 1.试样上、下两根垫条应与试样中心面位于同一平面内,以免产生偏心载荷。 2.破坏面必须通过上、下两加荷载线,若只产生局部破坏,须重新实验。

浅析岩石单轴压缩变形试验的影响因素

浅析岩石单轴压缩变形试验的影响因素 在实际工作中,由于对岩石力学性质评论是公路、铁路等工程地质勘察不可或缺的要素,因此采取岩石单轴压缩试验这种最通用的试验方法,研究岩石变形,成为岩石力学问题的重要内容之一,这也对实际工程施工原料选择起到一定的参考作用。这个问题的研究由于操作起來比较方便,理论基础比较明显,所以被广泛应用于工程实践和各种科研工作中。作者试图按照这个理论的思路,简单分析岩石单轴压缩变形试验的影响因素,进而为相关科研和实际工程施工提供一些有参考价值的东西。 标签:岩石;单轴压缩变形;影响 引言 岩石单轴压缩变形试验是检验岩石抗压承载力的一种试验,属于物理试验的范畴。文章中提出的试验模型主要是用花岗岩、泥岩两种规则形状的岩石作为试样,用单轴荷载来进行压力作用,来测定其纵向和横向的变形量,进而形成相应的应力—应变曲线,得出弹性模量及泊松比。作者以花岗岩和泥岩两种岩石为试验样本,采取弹性模量试验对两种岩石的受力变形等情况进行对比和分析,来具体总结影响岩石压缩变形试验的主要因素有哪些。 1 弹性模量的概念及其取值方法 1.1 弹性模量的概念 弹性理论是以应力、应变的线性关系为基础的一种理论,其中应力与应变之比就是弹性模量,从力学角度来看它表示岩石材料的坚硬程度,更具体地来说是指岩石材料在压缩或拉伸时,材料对弹性变形的抵抗能力,这是在本类试验中应用的重要基础理论和概念。 1.2 岩石弹性模量的取值方法 根据国际岩石力学学会实验室和现场试验标准化委员会的《岩石力学试验建议方法》,岩石弹性模量的取值方法主要是割线弹性模量及泊松比的取值方法,以抗压强度50%时的变形量为基础,在纵向应力—应变曲线上的原点与应力相应于极限抗压强度50%处的应力点的连线,其斜率为割线模量,横向应变与纵向应变的比值就是泊松比。一般来说,在实际工作中,大多数岩石这个应力水平下仍处于弹性范围内,很少出现细微裂缝扩展乃至断裂破碎等现象。 2 影响岩石弹性模量的主要因素 2.1 构成岩石的矿物及岩石物理性质的影响

岩石单轴压缩实验

实验名称:岩石单轴压缩实验 一实验目的: 1.了解RFPA软件,熟悉软件界面,了解软件用途。 2.掌握软件RFPA的原理及使用方法。 3.了解岩石在外界压力的作用下的破碎情况。 4.掌握RFPA软件模拟岩石单轴压缩的过程。 二实验步骤: 1、熟悉RFPA软件界面,了解软件个部分的作用。见图1-1: 图1-1 2、运用软件进行相关试验 (1)试验模型 试样模型尺寸100mm×50mm ,网个划分为100×100个基元。采用平面应力问题,整个加载过程通过位移加载方式。力学性质参数如下表: 表2-1

(2)网格划分和参数赋值 网格的划分以及其他参数的赋值见下图2-1,2-2: 图2-1 岩石试件及参数设定值 图2-2 岩石试件参数设定 (3)边界条件和控制条件的选定 点击主面板上的控制键Boundary conditions,进行设置边界条件,其具体数据如

图2-3: 图2-3 加载力的数值设置 打开主面板上的Built,选择Control Information进行完成这个实验的步骤设置,具体数据如图2-4: 图2-4 加载步数设定 (4)计算过程以及结果分析 压缩破裂过程见图2-5:

图2-5压缩破裂过程

结果曲线分析,N-S曲线见图2-6 图2-6N-S曲线 从数值试验得到的载荷-位移全过程曲线再现了如下基本的岩石力学性质 ○1.线性变形阶段。在加载的初期,载荷-位移曲线几乎是线性的。 ○2.非线性变形阶段。当载荷达到试件最大承载能力的50%左右时,试件的变形开始偏离线性,部分基元破坏。 ○3.软化阶段。当达到最大载荷之后,使试件进一步变形的载荷越来越小,进入弱化阶段,直至试件产生宏观破坏。 三实验结论及体会 试验数值表明,试件在破坏过程中,开始出现许多小裂纹,再进一步加载的条件下,试件中突发性地出现了由一系列小张裂纹汇集成的一个剪切带。载荷的宏观破裂带是由宏观剪切应力带中的大量细观拉伸微破裂汇聚形成的。同时,试件的宏观破坏并非发生在试件达到峰值应力的瞬间,而是在试件所受的载荷达到峰值应力以后的某个应力降之后。这个结果表明,岩石介质在达到最大承载能力之后,仍具有一定的承载能力。

测定岩石的单轴抗压强度

实验5 测定岩石的单轴抗压强度 一、基本原理 岩石的单轴抗压强度是指岩石试样在单向受压至破坏时,单位面积上所承受的最大压应力: (MPa) 一般简称抗压强度。根据岩石的含水状态不同,又有干抗压强度和饱和抗压强度之分。 岩石的单轴抗压强度,常采用在压力机上直接压坏标准试样测得,也可与岩石单轴压缩变形试验同时进行,或用其它方法间接求得。 二、仪器设备 1、制样设备:钻岩机、切石机及磨片机; 2、测量平台、卡尺、放大镜等; 3、烘箱、干燥箱; 4、水槽、煮沸设备或真空抽气设备; 5、压力机。 三、操作步骤 1、试样制备 试样规格:一般采用直径5cm、高10cm的园柱体,以及断面边长为5厘米,高为10厘米的方柱体,每组试样必须制备3块。 试样制备精度要求同实验四: 2、试样描述 试验前应对试样进行描述,内容同实验四。 3、试样烘干或饱和处理 根据试验要求需对试样进行烘干或饱和处理。 烘干试样:在105~110℃温度下烘干24h。

自由浸水法饱和试样:将试样放入水槽,先注水至试样高度的1/4处,以后每隔2h分别注水至试样高度的1/2和3/4处,6h后全部浸没试样,试样在水中自由吸水48h。 煮沸法饱和试样:煮沸容器内的水面始终高于试样,煮沸时间不少于6h。 真空抽气法饱和试样:饱和容器内的水面始终高于试样,真空压力表读数宜为100kPa,直至无气泡逸出为止,但总抽气时间不应少于4h。 4、测量试样尺寸 按试验二量积法中的要求,量测试样断面的边长,求取其断面面积(A)。 5、安装试样、加荷 将试样置于试验机承压板中心,调整有球形座,使之均匀受载,然后以每秒0.5~1.0MPa的加载速度加荷,直至试样破坏,记下破坏荷载(P)。 6、描述试样破坏后的形态,并记录有关情况。 7、按下式计算岩石的单轴抗压强度 式中:σC――岩石的单轴抗压强度(MPa); P――破坏荷载(N); A――垂直于加荷方向试样断面积(mm2)。 计算值取3位有效数字。 四、试验报告内容 1、整理记录表(格式如下表) 月日 2、试样描述资料。 3、思考题:

岩体力学实验

岩体力学实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.J216型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1.试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mnh< 50 mnh< 100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2.加工精度: a平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5- 1 所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b直径偏差:试样两端的直径偏差不得大于0.2mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

3. 试样数量:每种状态下试样的数量一般不少于 3个。 4. 含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内 1?2 d ,以保持一定的湿度,但试样不得接触水面 四?电阻应变片的粘贴 1. 阻值检查:要求电阻丝平直,间距均匀,无黄斑,电 阻值 一般选用120欧姆,测量片和补偿片的电阻差值不超 过 0.5 ◎ 2. 位置确定:纵向、横向电阻应变片粘贴在试样中部, 纵 向、横向应变片排列采用T ”形,尽可能避开裂隙,节理 等弱面。 3. 粘贴工艺:试样表面清洗处理 -涂胶一贴电阻应变片 -固化 处理一焊接导线一防潮处理。 五?实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风 化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方 向测量直径计算平均值。 缝隙 图5-2试样轴向偏差度检测示意图 图5-3电阻应变片粘贴

巴西劈裂实验实验方案

巴西劈裂实验实验方案 Document number:BGCG-0857-BTDO-0089-2022

巴西劈裂实验 一、实验目的 岩石抗拉强度是指岩石承拉伸条件下能够承受的最大应力值。由于巴西劈裂法实验简单,所测得的抗拉强度与直接拉伸法测得的抗拉强度很接近,故常用此法测定岩石抗拉强度。 二、实验原理 劈裂法的基本原理是基于圆盘受对径压缩的弹性理论解。试件破坏时作用在试件中心的最大拉应力为: dt P σ π 2 t 式中:σt—试件中心的最大拉应力,即为抗拉强度,MPa P —试件破坏时的极限压力,N; d、t—承压圆盘的直径和厚度,mm; 图1 劈裂试验加载和应力分布示意图

三、试样制备 1.试样可用钻孔岩芯或岩块,在取样和试样制备过程中,不允许人为 裂隙出现。 2.试样规格:采用直径为50mm,高为25mm~50mm(高度为直径的~倍)的标准圆柱体。试样尺寸的允许变化范围不宜超过5%。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许使用非标准试样,但高径比必须满足标准试样的要求。 3.试样数量:试样个数视所要求的受力方向或含水状态而定,一般每种岩石同一状态下,试样数量不少于5块。 4.含水状态:采用自然状态,试样制成后放在底部有水的干燥器内1~2d,以保持一定的湿度,但试样不得接触水面。 5.试样制备精度:整个厚度上,直径最大误差不应超过。两端不平行度不宜超过。端面应垂直于试样轴线,最大偏差不应超过度。 四、实验设备 圆柱体试样、游标卡尺、劈裂夹具、钢丝垫条(用直径为~钢丝)、液压材料试验机。 五、实验步骤 1.测定前核对岩石名称和试样编号,并对试样的颜色、颗粒、层理、裂隙、风化程度、含水状态等进行描述。 2.用游标卡尺测量试样尺寸,保留两位小数。 3.将试样放置在劈裂夹具内,再用V型夹具及两侧夹持螺钉固定好试

岩石抗拉试验劈裂法测试技术的探讨

- 15 - 岩石抗拉试验劈裂法测试技术的探讨 黄珍彬 (广西水文地质工程地质队,广西 柳州545000) 摘 要:岩石的抗拉强度是岩石的重要力学性质指标,在工程上,将劈裂法试验规定为测定岩石抗拉强度的必做试验。文章在论述抗拉强度的定义及其影响因素、劈裂法及其试验影响因素的基础上,分析了运用劈裂法测定岩石抗拉强度试验的过程,即试验设备、试验操作步骤、试验数据工程处理及试验结果。试验表明,运用劈裂法来测定岩石抗拉强度的试验结果是可行、可靠的。 关键词:岩石试验;抗拉强度;劈裂法;测试 中图分类号:TU455 文献标识码:A 文章编号:1000-8136(2011)21-0015-02 岩石的抗拉强度是岩石的重要力学性质指标,也是岩石结构设计安全与稳定性分析的一个控制参数。近年来,随着中国经济建设的迅猛发展,大型桥梁、隧道、水坝及高层建筑等工程越来越多,在工程建设中经常会遇到岩石,其抗拉强度力学性能指标是设计、检验、控制和评判质量的重要依据。一般测定岩石抗拉强度试验方法有很多,大致可分为直接拉伸法和间接法两大类,但由于直接拉伸试验受夹持条件等限制,因此,岩石的抗拉强度一般采用间接拉伸法(劈裂法)来测定。因此,文章就岩石抗拉试验劈裂法测试技术展开探讨,以供参考。 1 抗拉强度的定义及其影响因素 1.1 岩石的抗拉强度是指岩石在单向受拉条件下,受拉面上能承受的最大拉应力 Dh P πσ21= 式中,σ1:岩石抗拉强度,MPa ; D :圆柱体试件的直径或立方体试件高度,mm ; P :试件破坏时的荷载,N ; h :圆柱体试件厚度或立方体试件厚度,mm 。 1.2 影响岩石抗拉强度的主要因素 岩石是一种复杂的力学介质,其变形特征和强度特征不仅取决于应力状态,而且与岩石的矿物组成、岩石结构构造、含水率和温度等密切相关,且其试验结果还与试验方法有关,如试件大小、尺寸比例、加荷速率等。 2 劈裂法及其试验影响因素 2.1 劈裂试验 劈裂试验亦称巴西试验(Brazilian test ),这种方法起源于南美洲,是目前国内外测定岩石抗拉强度应用最广泛的试验方法。劈裂试验是在圆柱体(亦称圆盘)试样的直径方向上施加径向线性载荷,使试样沿直径破坏的试验。 2.2 试验测试中的影响因素 在室内试验测试中,影响劈裂试验结果的影响因素一般有:试样的试验状态、受力方向、样品形状和尺寸、垫条的材料和尺寸等。 2.2.1 试样试验状态 由于受各工程环境条件的影响,不同工程对试样试验状态要求不同,所产生的抗拉强度也不同。一般,室内试样的试验状态有干燥状态、天然状态和饱和状态。对结构坚硬致密的试样,结果变化不大;但对于结构软弱易碎的试样,结果就有较大的变化。 2.2.2 试样受力方向 岩石抗拉强度常表现有明显的各向异性,特别是在许多变质岩和沉积岩中表现更为突出。一般情况,当拉力垂直于软弱面时,抗拉强度最低;拉力平行软弱面时,抗拉强度最高。由于岩石抗拉强度明显的各向异性,因此劈裂法试验就具有一定的方向性。 2.2.3 试件形状和尺寸的影响 (1)一般,岩石抗拉强度劈裂法测试时以圆断面为基础。但也有研究报道,在一对集中力的作用下,正方形平面中心的最大拉应力与圆板中心的最大拉应力相近。因此,在测试时也可采用正方形试样。 (2)尺寸越大,强度越低(微裂纹概率随尺寸而增大)。 2.2.4 关于垫条材料和尺寸的选择 在采用劈裂法进行试验时,垫条材料和尺寸的选择十分重要,其测试结果会随垫条材料、尺寸的不同有所差异。目前,由于尚难判定各垫条材料和尺寸选择的优缺点,因此根据国内外许多学者在各种不同条件下的研究成果以及我们积累的试验资料显示,在采用劈裂法进行试验时,对于坚硬和较坚硬的岩石选用直径为1 mm 的钢丝作垫条,对于软弱和较软弱的岩石选用垫条宽度与试样直径之比为0.08~0.1的胶木条作垫条。 参考文献 1 黄天泽、黄金陵.汽车车身结构与设计[M ].北京:机械工业 出版社,2004 2 《营运客车类型划分及等级评定》(JT/T 325-2004) Bus Interior Design Shang Fang Abstract: This article describes the composition of the bus interior, choice of materials and processes as well as some experience skills. Ensure that the bus interior to provide security and comfort, and try to make it user -friendly design, a pleasure to watch. Key words: bus interior; materials and processes; user -friendly design

岩石巴西圆盘混合断裂力学特征及空间效应研究

收稿日期: 基金项目:国家重点基础研究发展计划(973)项目(2015CB057903)(National Key Basic Research and Development Program of China (973 Program; 2015CB057903); 国家自然科学基金资助项目(51079092)( National Natural Science Foundation of China (51079092)) 作者简介:李列列,男,1983年生,博士研究生。主要从事岩土工程数值模拟方面的研究工作。E-mail:13370912@https://www.wendangku.net/doc/1710355912.html,. 通讯作者:卓莉,女,1986 年生,工学博士,实验师,主要从事岩石力学试验与数值计算研究。E-mail :zhuoli0405@https://www.wendangku.net/doc/1710355912.html, 岩石巴西圆盘混合断裂力学特征及空间效应研究 李列列1,2, 卓 莉1,2*,邵江3,肖明砾1,2,谢红强1,2 (1.四川大学 水利水电学院,四川 成都 610065;2.四川大学 水力学与山区河流开发保护国家重点实验室,四川成都 610065;3.四川省交通运 输厅公路规划勘察设计研究,四川 成都 610065) 摘要:针对I II -型混合断裂的力学特征进行研究,选用单节理直切槽巴西圆盘做为室内试验的研究对象。采用位移伺服方式对巴西圆盘进行加载,并对荷载和位移进行监测。根据室内试验得出的峰值应力和混合型断裂韧度相关理论,计算出对应的断裂韧度值。选用能模拟裂隙演化的离散元软件PFC3D 对室内试验进行模拟,在加载方式上选用更为合理的点墙加载方式,以代替传统的墙体加载方式。根据不同加载角β直切槽巴西圆盘室内试验结果,对数值模拟试验的试件细观参数进行标定,分别从宏观和细观上分析直切槽巴西圆盘的力学特性,PFC3D 数值试验破坏过程中展现出与巴西圆盘试验一致的细观特征。研究结果表明:当0 075β≤≤时,断裂韧度差值I II K K -与加载角β呈线性关系;根据试验结果建立荷载峰值与加载角β 的关系表达式,可预测不同加载角β下的荷载峰值;三维数值模拟分析结果显示裂隙尖端拉压临界角大于二维经典理论的结果,误差范围在4%~7%之间,且拉压临界角具用显著的空间特征,由圆盘边面到跨中截面逐渐增加,增加幅度为0.7°;随着加载角β的增加,直切槽周围最大张拉应力点由尖端向圆盘中心偏移,且偏移速率单调增加,全截面由受压逐渐转变为受拉;不同断裂形式的空间效应存在差异,II 型断裂的空间效应最小,巴西劈裂最显著。采用PFC3D 数值软件可以对直切槽巴西圆盘进行三维分析,弥补了三维理论的不足。 关键词: 直切槽巴西圆盘(CSTBD ) 混合韧度(I II -) 加载角 空间效应 中图分类号:TU457 文献标志码: Mechanical Characteristics and Spatial Effect Research of Rocks Using Brazilian Disk Under Mixed Mode Loading LI Lie-lie 1,2 , Zhuo Li 1,2* ,Shao Jiang 3,XIAO Ming-li 1,2, Xie Hong-qiang 1,2 ( 1. College of Water Resources & Hydropower, Sichuan Univ, Chengdu, Sichuan 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering ,Sichuan Univ, Chengdu, Sichuan 610065, China ;3.Sichuan Provincial Transport Department Highway Planning,Survey,Design And Research Institute, Chengdu, Sichuan 610065, China) Abstract : Focusing on the mixed mode fracture(I II -),We choose the cracked straight through brazilian disc(CSTBD) for the research to investigate the mechanical characteristics of mixed mode fracture,Adopting the displacement servo for the loading,we monitor the loading and displacement.Base on the peak loading and classcial theory of mixed mode fracture,we calculate the result of mixed mode fracture toughness.we choose PFC3D to simulate the evolution of crack and adopt the point loading to replace the traditional way. On the basis of the experimental result of cracked straight through brazilian disk test under different angle β,by testing whether it is consistent for the outcomes of laboratory experiment and numerical simulation ,microcosmic parameters are confirmed. By analyzing the mixed-mode brazilian disk under microcosmic and macrocosmic perspectives, the microcosmic characteristics of PFC3D are coincident with the Brazilian disk destructive processes.The outcome shows that : when the value of βis between 00and 750,there is a linear relation between I II K K -and β;according to the experimental results ,fitting equation between peak load values and βcan be established to predict the peak load values with different β;according to three-dimensional simulations,it comes to a result that the critical values of tensile and press transition angle on crack tips are greater in three dimensional space than that in two dimensional space ,the error range is between 4% and 7%,in addition that the critical angle has significant spatial effect and gradually increases from surface to mid-span section. As βaugments ,the maximum tensile stress point around fracture is moving from the crack tip towards the center of brazilian disk and the rate monotonously increased with the increase of loading angle .The three-dimensional analytical results denotes that the spatial effect of three fracture modes are

含夹层巴西劈裂实验方案

含夹层巴西劈裂实验方案 一、试验内容 1、把无夹层完整巴西盘在荷载作用下破坏规律和力-位移关系曲线作为对照组,并含夹层巴西盘进行对比。 2、考虑加载速率、试件尺寸、夹层灰砂比对巴西劈裂实验影响,并对破坏规律和力-位移关系曲线进行分析。 3、将ABAQUS仿真模拟得出的力-位移曲线和试验得出的力-位移曲线进行对比。 二、巴西静态劈裂拉伸实验 静态劈裂拉伸实验所采用的试件与确定混凝土强度等级的试件相同(立方体或圆柱体),通过上下压板与试件之间各垫以圆弧型钢垫条及垫层对试件中心施加压力。

由弹性力学分析可知,在试件的垂直中面上除加力点附近的局部区域外,将产生均匀的水平拉应力,当此拉应力增大到混凝土抗拉强度时,试件将沿垂直中面裂为两半。 如图所示增加荷载直到劈裂沿着垂直方向的直径开始,对任意作用在圆柱体上的压缩荷载P ,圆柱体垂直直径方向上,附近的单元 受到垂直方向的压应力为:()?? ????-=1-22 z D z D LD P z πσ 以及水平方向的拉应力为:LD P y πσ2= 式中 P —垂直总荷载 D —圆柱体的直径 L —圆柱体的长度 查阅文献可知,试件尺寸愈小,劈裂强度愈高。此外,垫条的大小、形状和材料对劈裂实验结果均有影响,加大垫条的截面尺寸,可提高试件的劈裂强度。

三、试件制作 基本砂浆灰砂比1:1,编号为C。采用42.5普通硅酸盐水泥。夹层砂浆取四种不同配灰砂比1:0 、1:0.5 、1:1(无夹层)、1:2 ,编号分别为A、B、C(无夹层)、D、。夹层与直径通长设置,宽度为5mm。 首先按照不同的配比制作成100mm×100mm×100mm立方体,在标准条件下,养护达到28天龄期后,采用钻孔取芯的方法取芯,然后统一在大理石切割机上加工成型。试件尺寸为Φ75mm×75mm的圆柱体和Φ75mm×50mm的圆柱体。 编号夹层灰砂比试件尺寸试件个数 A-1 1:0 Φ75mm×75mm 2 A-2 1:0 Φ75mm×50mm 2 B-1 1:0.5 Φ75mm×75mm 2 B-2 1:0.5 Φ75mm×50mm 2 C-1 1:1 Φ75mm×75mm 2 C-2 1:1 Φ75mm×50mm 2 D-1 1:2 Φ75mm×75mm 2 D-2 1:2 Φ75mm×50mm 2 总计16 分析不同夹层灰砂比和试件尺寸条件下巴西圆盘的力-位移变化曲线。 四、实验设备和数据采集软件

岩石常三轴试验中应变测量技术样本

岩石常规三轴试验中位移和应变测量技术 哑咣嘿

1 岩石常规三轴试验 随着现代化经济进程, 基础设施的完善, 工程建筑的兴盛、新型材料的应用、地质灾害频发、环境保护的倡导。三轴试验已经广泛应用于岩土工程、建筑材料、地质灾害研究与应用等领域。在众多的三轴试验当中, 常规三轴压缩试验是最为基础也是应用最为广泛的试验。特别在岩土工程领域, 岩石三轴试验承担着边坡稳定、巷道(隧道)围岩维护等与岩石品质密切相关的科学研究和工程应用的重任。 1.1 常规三轴压缩试验 三轴压缩试验一般分为常规三轴压缩试验( 又称假三轴压缩试验) 和真三轴压缩试验, 其中前者的试样处于等侧向压力的状态下, 而后者的试样处于三个主应力都不相等的应力组合状态下。一般情况下岩石所处环境中水平方向压力相当, 只有竖直方向上存在较大差异, 本文所讨论的是常规三轴压缩试验。 常规三轴试验用圆柱或棱柱试件进行测试, 试件放在试验舱中轴线处, 一般使用油实现对试件侧向压力的施加, 用橡胶套将试件与油隔开。轴向应力由穿过三轴室顶部衬套的活塞经过淬火钢制端面帽盖施加于试件之上。经过贴在试件表面的电阻应变片能够测量局部的轴向应变和环向应变[1]。 根据《工程岩体试验方法标准》[2]中的三轴压缩试验为强度

试验。由不同侧压条件下的试件轴向破坏荷载计算不同侧压条件下的最大主应力, 并根据最大主应力及相应施加的侧向压力, 在坐标图上绘制莫尔应力圆; 应根据莫尔—库仑强度准则确定岩石在三向应力状态下的抗剪强度参数, 应包括摩擦系数和粘聚力c值。 试验机的发展由早期简单的篮子盛有重物加载到杠杆系统加载再到液压加载, 经历了近5 个世纪。20 世纪30 年代到60 年代, 人们在为增加压力机的刚度而努力, 直到出现了液压伺服技术, 并结合提高试验机的刚度才形成了能够绘制材料全应力-应变曲线较为成熟的技术[3]。 1.2 液压三轴试验机

测定岩石三轴压力条件下的强度与变形参数

测定岩石三轴压力条件下的强度与变形参数 一、基本原理 岩石三轴压力条件下的强度与变形参数主要有:三轴压缩强度、内摩擦角、内聚力以及弹性模量和泊松比。室内三轴压缩实验是将岩石试样放在一密闭容器内,施加三向应力至试件破 坏,在加压过程中同时测定不同荷载下的应变值。绘制( 13 σ-σ)-ε应变关系曲线以及 强度包络线,求的岩石的三轴压缩强度( 1 σ)、内摩擦角(?)、内聚力(c)、以及弹性模量(E)和泊松比(μ)等参数。 根据应力状态的不同,可将三轴压缩实验分为真三轴压缩实验,应力状态为: 1230 σ≠σ≠σ>,及假三轴压缩实验(或称等测压三轴压缩实验)应力状态为 1230 σ>σ=σ>,本实验采用假三轴压缩试验。 二、仪器设备 1、岩石三轴应力试验机,该试验机由如下几部分组成。 (1)三轴应力室(图3——17):由压力室缸体、进油口、传力压杆等组成。要求穿力杆端面光滑平整,平整度应为0.005mm。 (2)轴向加载系统:由主体、电动高压电泵及控制台等组成,要求该系统有足够的吨位,并能连续加荷,另外上、下承压板需互相平行,其中之一配有球面座,轴向荷载约5000kN。(3)侧向加载系统:由控制台、电动油泵、增压器和高压输油管组成,该机最大侧向压力可达150MPa。 如无专门的三轴应力试验机,也可以用普通的压力机,配上符合要求的简易三轴应力室和手摇油泵(侧向加载装置)代替。 2试样制备设备:钻石机、切石机、磨石机等。 3变形量测设备:百分表及表座或电阻应变仪,电阻应变片等。 4烘箱、干燥箱、煮沸设备或真空抽气设备。 5其他:卡尺、乳胶套等。 三、操作步骤 1、试样制备 (1)试样规格:采用直径为5cm、高为10cm或直径为10cm,高为20cm的圆柱体。(2)试样加工精度:试样周边应光滑,沿整个高度上的直径误差不超过0.3mm;试样端面不平整小雨0.2mm,两端面不平整度最大不超过0.05mm;试样端面应垂直于试样轴线,其最大偏差不应超过0.25. (3)试件数量:视实验目的、受力方向和含水状态等要求而定,每种受力方向和含水状态需制备5~7块。 2、试样描述和尺寸量测 描述内容包括:岩石名称、结构构造、矿物成分等岩性特点及试件形态、结构面情况及与加荷方向的关系等。 3、试样处理 (1)按实验要求的含水状态进行含水状态处理,方法同实验4. (2)实验前试件的防油处理,步骤如下:首先,在试件表面涂一层(如聚乙烯醇缩醛胶或类似的胶液);待胶液干后,在试件侧面套上耐油乳胶套,对于试件较多或坚硬裂隙不发育

实验五岩石单轴压缩实验DOC

实验五岩石单轴压缩实验 一. 实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600 型液压材料试验机; 5.JN-16 型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三. 试样的规格、加工精度、数量及含水状态 1.试样规格:采用直径为50 mm高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mnrK 50 mnrK 100 mm的立方体,由于岩石松软不能制取标准试样时, 可采用非标准试样,需在实验结果加以说明

2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于 0.1mm 检测方法如图5-1所示,将 试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动 试样百分表指针的摆动幅度小于10格。 b 直径偏差: 试样两端的直径偏差不得大于 0.2 mm,用游标卡尺检查。 c 轴向偏差: 试样的两端面应垂直于试样轴线。检测方法如图 5-2所示,将试样放 在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。 3. 试样数量:每种状态下试样的数量一般不少于 3个。 4. 含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内 1?2 d ,以保持 一定的湿度,但试样不得接触水面。 纵向、横向应变片排列采用“T”形,尽可能避开裂隙,节 理等弱面。 3. 粘贴工艺:试样表面清洗处理一涂胶一贴电阻应变片一固化处理一焊接导线一防潮 四.电阻应变片 1.阻值 检查- 克电 阻丝平 阻值一般选用 120欧姆, 测量片和补偿片的电阻差值不超过 0.5 Q o 1—百分表2-百分表架3-试样4 1—直角尺2-试样 2.位置确定:纵向、横向电阻应变片粘贴在试样中部, 的粘贴 F 直,间距均匀,无黄斑, 3-水平检测台

岩石三轴强度实验细则

试验五岩石三轴剪切强度试验 (一)目的与意义 测定在有限侧压条件下,岩石根据强度及变形特征,并借助三轴实验,结合抗拉,抗压实验结果,确定岩石的极限应力圆包络线(强度包络线)。 (二)定义是指岩石在三向应力作用下,抵抗破坏的能力。 岩石三轴试验是将岩石样品放在三向应力状态下的压力室内,测其强度和变形,通过试验可确定岩石的强度包络线,并计算出内聚力c 和内摩擦系数。 (三)基本原理 岩石室内三轴实验是在三向应力状态下测定和研究岩石试件强度及变形特征的一种室内实验。本实验是在13δδδ<=条件下进行的,即为常规三轴实验。 (一)设备与材料 1. 实验设备:(1)岩石三轴应力实验机;(2)压力室;(3)油泵; (4)岩石钻样机;(5)岩石切样机;(6)岩石磨平机 2. 实验材料:(1)液压油;(2)游标卡尺;(3)乳胶膜;(4)三角尺; (5)量角器;(6)活扳子;(7)螺丝刀;(8)记号笔; (9)钳子;(10)记录纸;(11)标准岩石样品50×100mm ; (12)胶布;(13)电笔。 三轴试验:1、真三轴:1σ>2σ>3σ; 2、假三轴(常规三轴):1σ>2σ=3σ,等围压。 岩石三轴试验机是在普通压力机上装配成符合技术要求的三轴压力室,压力室必需有保持侧压力稳定的稳压装置。 (二)试验步骤 岩石三轴试验机是在普通压力机上装配成符合技术要求的三轴压力室,压力室必须有保持侧压力稳定的稳压装置。 1.三轴试验样品数量不少于5块,不同围压1块; 加工精度,测量试件尺寸: 1)尺寸:(1)圆柱体试件直径Φ48~54mm ,高100mm ;

(2)试件直径与高度,或边长之比为1:2.00~2.50。 2)精度:(1)、两端面的平行度最大误差不超过0.05mm ; (2)、在试件整个高度上,直径误差不超过0.3mm ; (3)、端面应垂直试件轴,最大偏差不超过0.25度。 2 .测量好试件尺寸后,用耐油橡胶或乳胶质保护套,能有效防止油液与样品接触。然后放入压力室内,打开排气阀,盖上压帽,拧紧,向压力室注油,直至油液达到预定位置。排静压力室空气,关闭排气阀。(如在三轴条件下测其变形,同试验二变形试验)。 3.侧压力(围压)的选择,应考虑下列条件: ①最小侧压力的选择,应根据工程实际情况,并考虑测向压力装置的精度; ②选定的侧压力需使求出的莫尔包络线能明显的反映出所需要的应力区间; ③适当照顾包络线的各个阶段。 我们选择侧压力5、10、15、20、25MPa 。 4.试验开始,以每秒0.05MPa 的加荷速率施加侧向压力和轴向压力,待到加至预定压力值时,使其保持稳定,然后再以每秒0.8-1.0MPa 的加荷速率施加轴向荷载,直至试件破坏,记录破坏时的最大轴向荷载及侧向压力值。 5.试验结束后,取出试样进行描述,量出最大主应力作用面和破坏面之间的夹角。 (六)资料整理: 目前国内外对于三轴试验成果整理的方法不太统一,国际岩石力学学会和现场标准化委员会在岩石力学试验建议方法中曾对资料整理作出规定。考虑到和国际标准化的一致性,采用国际岩石力学学会的建议方法,用下列方法整理资料: 1、按下式计算不同侧向压力下的轴向应力:A P = 1σ×10 (5-1) 式中:1σ——不同侧压力下的应力值 MPa ; P ——破坏时的最大轴向荷载 N 或kN ; A ——试件横截面积 cm 2。 2、根据轴向应力1σ和侧向应力3σ求出岩石的φ,c 值,以)(2 131σσ-为纵坐

实验五岩石单轴压缩实验

实验五岩石单轴压缩实 验 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。

2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。 3.试样数量:每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d,以保持一定的湿度,但试样不得接触水面。 四. 超过 1—百分表 2-百分表架 3-试样 4 2. 部,纵向、横向应变片排列采用“┫”形,尽可能避开裂 隙,节理等弱面。

相关文档
相关文档 最新文档