文档库 最新最全的文档下载
当前位置:文档库 › 弦振动实验-报告

弦振动实验-报告

弦振动实验-报告
弦振动实验-报告

弦振动实验-报告

实验报告

班级姓名学号

日期室温气压成绩教师

实验名称弦振动研究

【实验目的】

1.了解波在弦上的传播及驻波形成的条件

2.测量不同弦长和不同张力情况下的共振频率

3.测量弦线的线密度

4.测量弦振动时波的传播速度

【实验仪器】

弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台

【实验原理】

驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。

当入射波沿着拉紧的弦传播,波动方程为

()λ

πx

=2

y-

cos

A

ft

当波到达端点时会反射回来,波动方程为

()λ

πx

cos

=2

y+

A

ft

式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为

ft x A y y y πλπ2cos 2cos 22

1=+= 这就是驻波的波函数,称为驻波方程。式中,λπx

A 2cos 2是各点的振幅 ,它只与x 有关,即各点

的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ

πx A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λπx A ,可得波节的位置坐标为

()

412λ

+±=k x Λ2,1,0=k 令12cos 2=λπx A ,可得波腹的位置坐标为

k x ±= Λ

2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。

在本试验中,由于弦的两端是固定的,故两端

点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。

既有 2λ

n L = 或 n L

2=λ Λ2,1,0=n

式中,L 为弦长;λ为驻波波长;n 为半波数(波腹数)。

另外,根据波动离乱,假设弦柔性很好,波在

弦上的传播速度v 取决于线密度和弦的张力T ,其关系式为

μ

T v = 又根据波速、频率与波长的普遍关系式λf v =,

可得

μ

λT f v == 可得横波传播速度 n L f v 2=

如果已知张力和频率,由式可得线密度 22???? ??=Lf n T μ

如果已知线密度和频率,可得张力

22??? ??=n Lf T μ

如果已知线密度和张力,由式可得频率

μT

L n f 2=

【实验内容】

一、 实验前准备

1.选择一条弦,将弦的带有铜圆柱的一端固定在张力杆的U型槽中,把带孔的一端套到调整螺旋杆上圆柱螺母上。

2.把两块劈尖(支撑板)放在弦下相距为L的两点上(它们决定弦的长度),注意窄的一端朝标尺,弯脚朝外;放置好驱动线圈和接收线圈,接好导线。

3.在张力杆上挂上砝码(质量可选),然后旋动调节螺杆,使张力杆水平(这样才能从挂的物块质量精确地确定弦的张力)。因为杠杆的原理,通过在不同位置悬挂质量已知的物块,从而获得成比例的、已知的张力,该比例是由杠杆的尺寸决定的。

二、实验内容

1.张力、线密度一定时,测不同弦长时的共振频率,并观察驻波现象和驻波波形。

(1)放置两个劈尖至合适的间距并记录距离,在张力杠杆上挂上一定质量的砝码记录。量

及放置位置(注意,总质量还应加上挂钩的

质量)。旋动调节螺杆,使张力杠杆处于水

平状态,把驱动线圈放在离劈尖大约5~10cm

处,把接收线圈放在弦的中心位置。提示:

为了避免接收传感器和驱动传感器之间的

电磁干扰,在实验过程中应保证两者之间的

距离至少有10cm。

(2)将驱动信号的频率调至最小,以便于调节信号幅度。

(3)慢慢升高驱动信号的频率,观察示波器接收到的波形的改变。注意:频率调节过程不

能太快,因为弦线形成驻波需要一定的能量

积累时间,太快则来不及形成驻波。如果不

能观察到波形,则调大信号源的输出幅度;

如果弦线的振幅太大,造成弦线敲击传感

器,则应减小信号源输出幅度;适当调节示

波器的通道增益,以观察到合适的波形大小

为准。一般一个波腹时,信号源输出为2~3V,即可观察到明显的驻波波形,同时观察弦

线,应当有明显的振幅。当弦的振动幅度最

大时,示波器接收到的波形振幅最大,这时

的频率就是共振频率,记录这一频率。(4)再增加输出频率,可以连续找出几个共振频率。注意:接收线圈如果位于波节处,则

示波器上无法测量到波形,所以驱动线圈和

接收线圈此时应适当移动位置,以观察到最

大的波形幅度。当驻波的频率较高,弦线上

形成几个波腹、波节时,弦线的振幅会较小,眼睛不易观察到。这时把接收线圈移向右边

劈尖,再逐步向左移动,同时观察示波器(注

意波形是如何是如何变化的),找出并记下

波腹和波节的个数。

(5)改变弦长重复步骤3、4;记录相关数据2.在弦长和线密度一定时,测量不同张力的共振频率。

(1)选择一根弦线和合适的砝码质量,放置两个劈尖至一定的间距,例如60cm,调节驱动

频率,使弦线产生稳定的驻波。

(2)记录相关的线密度、弦长、张力、波腹数等参数。

(3)改变砝码的质量和挂钩的质量,调节驱动频率,使弦线产生稳定的驻波。记录相关数

3.张力和弦长一定,改变线密度,测量共振频率和弦线的线密度。

(1)放置两个劈尖至合适的间距,选择一定的张力,调节驱动频率,使弦线产生稳定的驻

波。

(2)记录相关的弦长和张力等参数。

(3)换用不同的弦线,改变驱动频率,使弦线产生同样波腹数的稳定驻波,记录相关的数据。

(4)

【数据记录及处理】

张力一定时不同弦长的共振频率

张力/N 弦长

/cm

波腹

数/n

波长

/cm

共振

频率

/Hz

传播

速度

/m/s

12.2560

1120130.1162.1

2 55

1110145.5160.0

5 50

1100160.1160.1

0 45

190179.7161.7

3 40

180200.2160.1

6

弦的线密度=4.6×10-4 kg/m 作波长与共振频率的关系图。

图表标题

50

100

150

200

250

050

100150波长/cm 共振频率/H z 共振频率/Hz 线性 (共振频率/Hz)

弦长一定时不同张力的共振频率

弦长/cm

力/N

共振基

频/Hz

传播速

度/ms-1

弦线线密度

/gm-1

60 12.25 135.1 162.12 0.476

9.8 118.1 141.72 0.49

7.35 102.8 123.36 0.48

4.9 83.79 100.55 0.48

2.45 59.84 71.81 0.48 作张力与共振频率的关系图,

弦振动实验报告

弦振动的研究 '、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密p、弦长L和弦的张力T的关系,并进行测 量。 、、实验仪器 弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺 、实验原理 为了研究问题的方便,认为波动是从A 点发出的,沿弦线朝E端方向传播,称为入射波,再由E端反射沿弦线朝A端传播,称为反射 波。入射波与反射波在同一条弦线上沿相反方向传 播时将相互干涉,移动劈尖E 到适合位置?弦线上 的波就形成驻波。这时, 弦线上的波被分成几段形 成波节和波腹。驻波形成如图(2)所示。 设图中的两列波是沿X轴相向方向传 播的振幅相等、频率相同振动方向一致的简谐波。向右传播的用细实线表示,向 图(2)左传播的用细虚线 表示,它们的合成驻波用粗 实线表示。由图可见,两个 波腹间的距离都是等于半 个波长,这可从波动方程推

导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “0”,且在X二0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y i = Acos2 (ft —x/ ) Y2 = Acos[2 (ft + x/ "+ ] 式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。两波 叠加后的合成波为驻波,其方程为: Y i + 丫2 = 2Acos[2 (x/ ) + /2]Acos2 ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动, 它们的振幅为丨2A cos[2 (x/ )+ /2] | ,与时间无关t,只与质点的位置 x有关。 由于波节处振幅为零,即:丨cos[2 (x/ ) + /2] | =0 2 (x/ ) + /2 = (2k+1) / 2 (k=0. 2. 3. …) 可得波节的位置为: x = k /2 ②而相邻两波节之间的距离为: X k+1 —X k = (k + 1) 12—k / 2 = / 2③又因为波腹处的质点振幅为最大,即I cos[2 (x/ ) + /2] | =1

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒定的位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A 端振动,由A 端振动引起的波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波 在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示 向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位 始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为:

大学物理《弦振动》实验报告文档

2020 大学物理《弦振动》实验报告文 档 Contract Template

大学物理《弦振动》实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 (报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有

惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示: = ρ 1 -------------------------------------------------------① 另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ--------------------------------------------------------② 将②代入①中得γ =λ1 -------------------------------------------------------③ρ1 又有L=nλ/2或λ=2L/n代入③得γ n=2L ------------------------------------------------------④ρ1 四实验内容和步骤

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

驻波实验报告

实验目的: 1、观察弦振动及驻波的形成; 3、在振动源频率不变时,用实验确定驻波波长与张力的关系; 4、在弦线张力不变时,用实验确定驻波波长与振动频率的关系; 4、定量测定某一恒定波源的振动频率; 5、学习对数作图法。 实验仪器: 弦线上驻波实验仪(FD-FEW-II型)包括:可调频率的数显机械振动源、平台、固定滑轮、可动刀口、可动卡口、米尺、弦线、砝码等;分析天平,米尺。 实验原理: 如果有两列波满足:振幅相等、振动方向相同、频率相同、有固定相位差的条件,当它们相向传播时,两列波便产生干涉。一些相隔半波长的点,振动减弱最大,振幅为零,称为波节。两相邻波节的中间一点振幅最大,称为波腹。其它各点的振幅各不相同,但振动步调却完全一致,所以波动就显得没有传播,这种波叫做驻波。驻波相邻波节间的距离等于波长λ的一半。 如果把弦线一端固定在振动簧片上,并将弦线张紧,簧片振动时带动弦线由左向右振动,形成沿弦线传播的横波。若此波前进过程中遇到阻碍,便会反射回来,当弦线两固定端间距为半波长整数倍时,反射波与前进波便形成稳定的驻波。波长λ、频率f和波速V满足关系:V = fλ (1) 又因在张紧的弦线上,波的传播速度V与弦线张力T及弦的线密度μ有如下关系:(2) 比较(1)、(2)式得:(3) 为了用实验证明公式(3)成立,将该式两边取自然对数,得: (4) 若固定频率f及线密度μ,而改变张力T,并测出各相应波长λ ,作ln T -lnλ图,若直线的斜率值近似为,则证明了的关系成立。同理,固定线密度μ及张力T,改变振动频率f,测出各相应波长λ,作ln f - lnλ图,如得一斜率为的直线就验证了。 将公式(3)变形,可得:(5) 实验中测出λ、T、μ的值,利用公式(5)可以定量计算出f的值。 实验时,测得多个(n个)半波长的距离l,可求得波长λ为:(6) 为砝码盘和盘上所挂砝码的总重量;用米尺测出弦线的长度L,用分析天平测其质量,求出弦的线密度(单位长度的质量):(7) 实验内容: 1、验证横波的波长λ与弦线中的张力T 的关系(f不变) 固定波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。每改变一次张力(即增加一次砝码),均要左右移动可动卡口支架⑤的位置,使弦线出现振幅较大而稳定的驻波。将可动刀口支架④移到某一稳定波节点处,用实验平台上的标尺测出④、⑤之间的距离l,数出对应的半波数n,由式(6)算出波长λ。张力T改变6次,每一T下测2次λ,求平均值。作lnλ- ln T图,由图求其斜率。

均匀弦振动实验报告

实验八 固定均匀弦振动的研究 XY 弦音计是研究固定金属弦振动的实验仪器,带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形及传感器接收的波形,观察拨动的弦在节点处的效应,进行定量实验以验证弦上波的振动。它是传统的电子音叉的升级换代产品。它的优点是无燥声污染,通过函数信号发生器可以方便的调节频率,而这两点正好是电子音叉所不及的。 [实验目的] 1. 了解均匀弦振动的传播规律。 2. 观察行波与反射波互相干涉形成的驻波。 3. 测量弦上横波的传播速度。 4. 通过驻波测量,求出弦的线密度。 [实验仪器] XY 型弦音计、函数信号发生器、示波器、驱动线圈和接收线圈等。 [实验原理] 设有一均匀金属弦线,一端由弦码A 支撑,另一端由 弦码B 支撑。对均匀弦线扰动,引起弦线上质点的振动, 假设波动是由A 端朝B 端方向传播,称为行波,再由B 端 反射沿弦线朝A 端传播,称为反射波。行波与反射波在同 一条弦线上沿相反方向传播时将互相干涉,移动弦码B 到 适当位置。弦线上的波就形成驻波。这时,弦线就被分成 几段,且每段波两端的点始终静止不动,而中间的点振幅 最大。这些始终静止的点称为波节,振幅最大的点称为波 腹。驻波的形成如图4-8-1所示。 设图4-8-1中的两列波是沿x 轴相反方向传播的振幅相等、频率相同的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。由图4-8-1可见,两个波腹间的距离都是等于半个波长,这可以从波动方程推导出来。 下面用简谐表达式对驻波进行定量描述。设沿x 轴正方向传播的波为行波,沿x 轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点,且在x =0处,振动质点向上达最大位移时开始计时,则它们的波动方程为: )(2cos 1λπx ft A y -= )(2cos 2λ πx ft A y += 式中A 为简谐波的振幅,f 为频率,λ为波长,x 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: 图 4-8-1

弦振动研究试验(教材)分析

弦振动研究试验 传统的教学实验多采用音叉计来研究弦的振动与外界条件的关系。采用柔性或半柔性的弦线,能用眼睛观察到弦线的振动情况,一般听不到与振动对应的声音。 本实验在传统的弦振动实验的基础上增加了实验内容,由于采用了钢质弦线,所以能够听到振动产生的声音,从而可研究振动与声音的关系;不仅能做标准的弦振动实验,还能配合示波器进行驻波波形的观察和研究,因为在很多情况下,驻波波形并不是理想的正弦波,直接用眼睛观察是无法分辨的。结合示波器,更可深入研究弦线的非线性振动以及混沌现象。 【实验目的】 1. 了解波在弦上的传播及弦波形成的条件。 2. 测量拉紧弦不同弦长的共振频率。 3. 测量弦线的线密度。 4. 测量弦振动时波的传播速度。 【实验原理】 张紧的弦线4在驱动器3产生的交变磁场中受力。移动劈尖6改变弦长或改变驱动频率,当弦长是驻波半波长的整倍数时,弦线上便会形成驻波。仔细调整,可使弦线形成明显的驻波。此时我们认为驱动器所在处对应的弦为振源,振动向两边传播,在劈尖6处反射后又沿各自相反的方向传播,最终形成稳定的驻波。 图 1

为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从左端劈尖发出的,沿弦线朝右端劈尖方向传播,称为入射波,再由右端劈尖端反射沿弦线朝左端劈尖传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,在适当的条件下,弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图1所示。 设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同、振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,相位差为恒定时,它们就合成驻波用粗实线表示。由图1可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点“O”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2π(ft-x/ λ) Y2=Acos2π(ft+x/ λ) 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos2π(x/ λ)cos2πft ······①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos2π(x / λ) |,只与质点的位置X有关,与时间无关。 由于波节处振幅为零,即|cos2π(x / λ) |=0 2πx / λ=(2k+1) π / 2 ( k=0.1. 2. 3. ······) 可得波节的位置为: X=(2K+1)λ /4 ······②而相邻两波节之间的距离为: X K+1-X K =[2(K+1)+1] λ/4-(2K+1)λ / 4)=λ / 2 ·····③又因为波腹处的质点振幅为最大,即|cos2π(X / λ) | =1 2πX / λ=Kπ ( K=0. 1. 2. 3. ······) 可得波腹的位置为: X=Kλ / 2= 2kλ / 4 ·····④这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。 1

弦振动实验-报告

弦振动实验-报告

实验报告 班级姓名学号 日期室温气压成绩教师 实验名称弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件 2.测量不同弦长和不同张力情况下的共振频率 3.测量弦线的线密度 4.测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λ πx =2 y- cos A ft 当波到达端点时会反射回来,波动方程为 ()λ πx cos =2 y+ A ft

式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλπ2cos 2cos 22 1=+= 这就是驻波的波函数,称为驻波方程。式中,λπx A 2cos 2是各点的振幅 ,它只与x 有关,即各点 的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λπx A ,可得波节的位置坐标为 () 412λ +±=k x Λ2,1,0=k 令12cos 2=λπx A ,可得波腹的位置坐标为 2λ k x ±= Λ 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端 点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 既有 2λ n L = 或 n L 2=λ Λ2,1,0=n

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一. 实验目的 1. 观察弦上形成的驻波 2. 学习用双踪示波器观察弦振动的波形 3. 验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二. 实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。论和实验证明,波在弦上传播的速度可由下式表示: ρ 1 另外一方面,波的传播速度v 和波长λ及频率γ之间的关系是:

v= λ γ -- ② 将②代入①中得 γ =λ1 -- ③ρ 1 又有L=n* λ/2或λ =2*L/n 代入③得γ n=2L --- ④ρ 1 四实验内容和步骤 1. 研究γ和n 的关系 ①选择 5 根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm ,置驱动线圈距离一个弦码大约5.00cm 的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。 ③将1kg 砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必

要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则 T=2mg;若砝码挂在第三个槽,则T=3mg??. )④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1 时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5 时的共振频率,做γn 图线,导出γ和n 的关系。 2. 研究γ和T 的关系保持L=60.00cm,ρ 1 保持不变,将1kg 的砝码依次挂在第1、2、3、4、5 槽内,测出n=1 时的各共振频率。计算lg r 和lgT,以lg2 为纵轴,lgT 为横轴作图,由此导出r 和T 的关系。 3. 验证驻波公式 根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式 1、弦长l1 、波腹数n 的 五数据记录及处理

弦振动实验报告

实验13 弦振动得研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动就是产生波动得根源,波动就是振动得传播。均匀弦振动得传播,实际上就是两个振幅相同得相干波在同一直线上沿相反方向传播得叠加,在一定条件下可形成驻波。本实验验证了弦线上横波得传播规律:横波得波长与弦线中得张力得平方根成正比,而与其线密度(单位长度得质量)得平方根成反比、 一、 实验目得 1、 观察弦振动所形成得驻波。 2、 研究弦振动得驻波波长与张力得关系、 3. 掌握用驻波法测定音叉频率得方法。 二。 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三。 实验原理 1、 两列波得振幅、振动方向与频率都相同,且有恒定得位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊得干涉现象——形成驻波、如图3—13—1所示。在音叉一臂得末端系一根水平弦线,弦线得另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A 端振动引起得波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续得入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉、当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波得波节;而有些点振动最强,称为驻波得波腹。 2、 图3—13-2所示为驻波形成得波形示意图。在图中画出了两 列波在T=0,T/4,T/2时刻得波形,细实线表示向右传播得波,虚线表示 向左传播得波,粗实线表示合成波。如取入射波与反射波得振动相位 始终相同得点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们得波动方程分别为:

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

清华弦振动实验报告

竭诚为您提供优质文档/双击可除清华弦振动实验报告 篇一:弦振动试验实验报告 弦振动试验 一、实验目的 1.观察在弦线上形成的驻波 2.用弦驻波法测量张紧弦线上驻波的波长 3.研究弦线上张力与弦线上驻波波长之间的关系; 4.研究均匀弦线横波的传播速度与张力、弦线密度之间的关系 二、数据处理 1.在张力一定的条件下(加9个砝码),求波的传播速度 2.求横波的波长与弦线中的张力的关系 1 2 lgλ lgT

由以上可知,波长的对数和张力的对数成线性关,且相关的线性方程是:Y=0.0035x+1034543. 3 篇二:大学物理实验报告-弦振动 华南理工大学实验报告 课程名称:大学物理实验 理学院系数学专业创新班姓名任惠霞 实验名称弦振动20XX.9.6指导老师 (报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 xY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小

段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示:??= ρ ??1 -------------------------------------------------------① 另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ --------------------------------------------------------② 将②代入①中得γ =λ 1 ?? -------------------------------------------------------③ρ1 又有L=n*λ/2或λ=2*L/n代入③得γ n=2L

弦振动实验_报告

弦振动的研究报告 班级:工程力学二班 学号:120107020045 姓名:康昕程

实 验 报 告 【实验目的】 1. 了解波在弦上的传播及驻波形成的条件 2. 测量不同弦长和不同张力情况下的共振频率 3. 测量弦线的线密度 4. 测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λπx ft A y -=2cos 当波到达端点时会反射回来,波动方程为 ()λπx ft A y +=2cos 式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλ π 2cos 2cos 221=+= 这就是驻波的波函数,称为驻波方程。式中,λ π x A 2cos 2是各点的振幅 ,它只与x 有关, 即各点的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ π x A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λ π x A ,可得波节的位置坐标为 ()4 12λ +±=k x 2,1,0=k 令12cos 2=λ π x A ,可得波腹的位置坐标为 2 λ k x ±= 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。

弦振动实验报告

弦振动实验报告

一. 实验目的 1. 观察弦振动形成的驻波并用实验确定弦振动时共振频率与实验参数的关 系; 2. 学习用一元线性回归和对数作图法处理数据; 3. 学习检查和消除系统误差的方法。 二. 实验原理 一根柔软均匀的弦线两端被拉紧时,加以初始激励(如打击)之后,弦不再受外加激励,将以一定的频率自由振动,在弦上将产生驻波。自由振动的频率称为固有频率。如果对弦外加连续周期性激励,当外激励频率与弦的固有频率相近时,弦上将产生稳定的较大振幅的驻波,说明该振动系统可以吸收频率相同的外部作用的能量而产生并维持自身的振动,外加激励强迫的振动称为受迫振动。当外激励频率等于固有频率时振幅最大将出现共振,共振是受迫振动中激励频率任何微小变化都会使响应(振幅)减小的情形。最小的固有频率称为基频率。实验还发现:当外激励频率为弦基频的2倍、3倍或其他整数倍时,弦上将形成不同的驻波。这种能以一系列频率与外部周期激励发生共振的情形,在宏观体系(如机械、桥梁、天体)和微观体系(如原子、分子)中都存在。弦振动能形成简单而且典型的共振。 弦振动的物理本质是力学的弹性振动,即弦上各质元在弹性力作用下,沿垂直于弦的方向振动,形成驻波。(驻波的一般定义是:同频率的同类自由行波相互干涉形成的空间分布固定的周期波,其特征是它的波节、半波节或波腹在空间的位置固定不变)。弦振动的驻波可以这样简化分析,看作是两列频率和振幅相同而传播方向相反的行波叠加而成。在弦上,由外激励所产生振动以波的形式沿弦传播,经固定点反射后相干叠加而形成驻波。固定点处的合位移为零,反射波有半波损失,即其相位与入射波的相位之差为π,在此处形成波节。在距波节λ/4处,入射波与反射波相位相同,此处合位移最大,即振幅最大,形成波腹。相邻的波节或波腹之间的距离为半个波长。两关固定的弦能以其固有频率的整数倍振动,因此弦振动的波长应满足: ()...3,2,1 2== N N L λ

弦振动实验报告

弦振动的研 究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的 关系,并进行测量。 实验仪器 弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺 三、实验原理 为了研究问题的方便,认为波动是从 A 点发出的,沿弦线朝B端方向传播,称 为入射波,再由B端反射沿弦线朝A端传 播,称为反射波。入射波与反射波在同 一条弦线上沿相反方向传播时将相互干 涉,移动劈尖B到适合位置.弦线上的 波就形成驻波。这时,弦线上的波被分成 几段形成波节和波腹。驻波形成如图 (2)所示。 设图中的两列波是沿X 轴相向方向传 播的振幅相等、频率相同振动方向一致的 简谐波。向右传播的用细实线表示,向 左传播的用细虚线表示,它们的合成驻波 用粗实线表示。由图可见,两个波腹间的距离都是等于半个波长,这可从波动方程推导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X 轴正方向传播的波为入射波,沿X 轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“ O”,且在X =0 处,振动质点向上达最大位移时开始计时,则它

们的波动方程 分别为: Y1= Acos2 (ft -x/ ) Y2= Acos[2 (ft +x/λ)+ ] 式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1 +Y2=2Acos[2 (x/ )+ /2]Acos2 ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2 (x/ )+ /2] |,与时间无关t,只与质点的位 置x 有关。 由于波节处振幅为零,即:|cos[2 (x/ )+ /2] |=0 2 (x/ )+ /2=(2k+1) / 2 ( k=0. 2. 3. ?) 可得波节的位置为: x=k /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1) /2-k / 2=/ 2 ③ 又因为波腹处的质 点振幅为最大,即|cos[2 (x/ )+ /2] | =1 2 (x/ )+ /2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x =(2k-1) /4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. ?) 由此可得沿弦线传播的横波波长为:

弦振动试验实验报告

弦振动试验 一、实验目的 1.观察在弦线上形成的驻波 2.用弦驻波法测量张紧弦线上驻波的波长 3.研究弦线上张力与弦线上驻波波长之间的关系; 4.研究均匀弦线横波的传播速度与张力、弦线密度之间的关系 二、数据处理 1.在张力一定的条件下(加9个砝码),求波的传播速度 l=80cm T=1.89N n f(HZ) λ=2l/n ν=f λ 速度均值 v(cm/s) 1 29 160 4640 4643.556 2 58 80 4640 3 87 53.33333 4640 4 116 40 4640 5 144 32 4608 6 176 26.6666 7 4693.333 保持弦长l =80cm 不变,改变频率f ,速度的均值为 46.43556m/s f=160Hz T=1.89N n l λ=2l/n ν=f λ 速度均值 v (cm/s ) 1 14 28 4480 4545.778 2 28 28 4480 3 42 28 4480 4 57 28. 5 4560 5 72 28.8 4608 6 87.5 29.1666 7 4666.667 保持频率f =160Hz 不变,改变弦线长度l ,速度的均值 为45.45778m/s 2.求横波的波长与弦线中的张力的关系

f=160Hz M1=100g n l λ=2l/n波长均值λ ̄ 3 34.5 23 22.93333 4 46 23 5 57 22.8 f=160Hz M1=120g n l λ=2l/n波长均值λ ̄ 24.26111 3 36.5 24.3333 3 4 48. 5 24.25 5 60.5 24.2 f=160Hz M1=140g n l λ=2l/n波长均值λ ̄ 3 38.5 25.6666 25.52222 7 4 51 25.5 5 63.5 25.4 f=160Hz M1=160g n l λ=2l/n波长均值λ ̄ 27.32778 3 41 27.3333 3 4 54. 5 27.25 5 68.5 27.4 f=160Hz M1=180g n l λ=2l/n波长均值λ ̄ 3 42 28 28.21667 4 56. 5 28.25 5 71 28.4 f=160Hz M1=200g n l λ=2l/n波长均值λ ̄ 3 43.5 29 28.98333 4 57. 5 28.75 5 73 29.2

大学物理实验报告-弦振动

华南理工大学实验报告 课程名称:大学物理实验 理学院系数学专业创新班姓名任惠霞实验名称弦振动实验日期2011.9. 6 指导老师(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。 理论和实验证明,波在弦上传播的速度可由下式表示: ------------------------------------------------------- ① 另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ-------------------------------------------------------- ② 将②代入①中得 ------------------------------------------------------- ③ 又有L=n*λ/2 或λ=2*L/n 代入③得 ------------------------------------------------------ ④

四实验内容和步骤 1.研究和n的关系 ①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。 ③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….) ④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做图线, 导出n的关系 2.研究和T的关系 保持L=60.00cm,保持不变,将1kg的砝码依次挂在第1、2、3、4、5槽内,测出n=1时的各共振频率。计算lg r 和lgT,以lg2为纵轴,lgT为横轴作图,由此导出r和T的关系。 3.验证驻波公式 根据上述实验结果写出弦振动的共振频率与张力T、线密度、弦长l1、波腹数n 的关系,验证驻波公式。 五数据记录及处理 1.实验内容1-2 数据 T=1mg 1=5.972 kg/m n (Hz) 137.2 276.9

弦音实验报告

弦音实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

实验五弦音实验ZCXS—A型吉他型弦音实验仪是弦振动、声学实验教学仪器。通过调节面板上频率调节旋钮,移动支撑弦线劈尖的位置,观察到驻波的形成、听到与频率相对应的声音。 1.工作条件 1-1.电源电压及频率:220V±10%,50Hz±5%。 1-2.功率≤30VA。 1-3.工作温度范围0—40℃。 2.技术指标 2-1. 正弦波输出频率:50--900Hz。 2-2. 正弦波失真度≤1%。 2-3. 显示误差≤。

线,中间两支是用来测定弦线张力,旁边两支用来测定弦线线密度。实验时,弦线3与音频信号源接通。这样,通有正弦交变电流的弦线在磁场中就受到周期性的安培力的激励。根据需要,可以调节频率选择开关和频率微调旋钮,从显示器上读出频率。移动劈尖的位置,可以改变弦线长度,并可适当移动磁钢的位置,使弦振动调整到最佳状态。 根据实验要求:挂有砝码的弦线可用来间接测定弦线线密度或横波在弦线上的传播速度;利用安装在张力调节旋钮上的弦线,可间接测定弦线的张力。 三、实验原理 如图1所示,实验时,将弦线3(钢丝)绕过弦线导轮5与砝码盘10连接,并通过接线柱4接通正弦信号源。在磁场中,通有电流的金属弦线会受到磁场力(称为安培力)的作用,若弦线上接通正弦交变电流时,则它在磁场中所受的与磁场方向和电流方向均为垂直的安培力,也随之发生正弦变化,移动劈尖改变弦长,当弦长是半波长的整倍数时,弦线上便会形成驻波。移动磁钢的位置,将弦线振动调整到最佳状态,使弦线形成明显的驻波。此时我们认为磁钢所在处对应的弦为振源,振动向两边传播,在劈尖与吉它骑码两处反射后又沿各自相反的方向传播,最终形成稳定的驻波。 考察与张力调节旋钮相连时的弦线3时,可调节张力调节旋钮改变张力,使驻波的长度产生变化。 为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从骑码端发出的,沿弦线朝劈尖端方向传播,称为入射波,再由劈尖端反射沿弦线朝骑码端传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,移动劈尖到适合位置.弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图2所示。

弦振动实验报告

弦振动实验报告Last revision on 21 December 2020

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 二、实验仪器 三、A 于半个波长,这可从波动方程推导出来。

下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y1=Acos2(ft-x/ ) Y2=Acos[2 (ft+x/λ)+ ]式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0 2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。

相关文档