文档库 最新最全的文档下载
当前位置:文档库 › ASTM D3427-2007润滑油空气释放值测定

ASTM D3427-2007润滑油空气释放值测定

ASTM D3427-2007润滑油空气释放值测定
ASTM D3427-2007润滑油空气释放值测定

Designation:D3427–

07

Designation313–01

An American National Standard

Standard Test Method for

Air Release Properties of Petroleum Oils1

This standard is issued under the?xed designation D3427;the number immediately following the designation indicates the year of

original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A

superscript epsilon(e)indicates an editorial change since the last revision or reapproval.

1.Scope*

1.1This test method covers the ability of turbine,hydraulic, and gear oils to separate entrained air.

N OTE1—This test method was developed for mineral based oils.It may be used for some synthetic?uids;however,the precision statement applies only to petroleum oils.

1.2This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

2.Referenced Documents

2.1ASTM Standards:2

D1193Speci?cation for Reagent Water

D1401Test Method for Water Separability of Petroleum Oils and Synthetic Fluids

E1Speci?cation for ASTM Liquid-in-Glass Thermometers 2.2DIN Standard:3

DIN51381

3.Terminology

3.1De?nitions of Terms Speci?c to This Standard:

3.1.1air release time,n—the number of minutes needed for air entrained in the oil to reduce in volume to0.2%under the conditions of this test and at the speci?ed temperature.

4.Summary of Test Method

4.1Compressed air is blown through the test oil,which has been heated to a temperature of25,50,or75°C.After the air ?ow is stopped,the time required for the air entrained in the oil to reduce in volume to0.2%is recorded as the air release time. N OTE2—By agreement between the customer and the laboratory,the oil may be heated at other temperatures.However,the precision at these different temperatures is not known at present.

5.Signi?cance and Use

5.1Agitation of lubricating oil with air in equipment,such as bearings,couplings,gears,pumps,and oil return lines,may produce a dispersion of?nely divided air bubbles in the oil.If the residence time in the reservoir is too short to allow the air bubbles to rise to the oil surface,a mixture of air and oil will circulate through the lubricating oil system.This may result in an inability to maintain oil pressure(particularly with centrifu-gal pumps),incomplete oil?lms in bearings and gears,and poor hydraulic system performance or failure.

5.2This test method measures the time for the entrained air content to fall to the relatively low value of0.2%volume under a standardized set of test conditions and hence permits the comparison of the ability of oils to separate entrained air under conditions where a separation time is available.The signi?cance of this test method has not been fully established. However,entrained air can cause sponginess and lack of sensitivity of the control of turbine and hydraulic systems.This test may not be suitable for ranking oils in applications where residence times are short and gas contents are high.

6.Apparatus

6.1A schematic diagram of the apparatus is shown in Fig.1. The component parts are described as follows:

6.1.1Test Vessel,made of borosilicate glass as shown in Fig. 2,consisting of a jacketed sample tube?tted with an air inlet capillary,baffle plate,and air outlet tube.The two parts of each test vessel should be marked and preferably used as a pair. Interchanged parts may be used so long as the resultant test vessel conforms to the stated dimensions.

6.1.2Pressure Gage,covering the range from0to35kPa, with divisions at least every2kPa,and an accuracy of1.5kPa.

6.1.3Thermometers:

1This test method is under the jurisdiction of ASTM Committee D02on

Petroleum Products and Lubricants and is the direct responsibility of Subcommittee

D02.C0.02on Corrosion and Water/Air Separability.

Current edition approved Nov.1,2007.Published December2007.Originally

approved https://www.wendangku.net/doc/1a8704271.html,st previous edition approved in2006as D3427–06.

Adopted as a joint ASTM/IP standard in2006.

2For referenced ASTM standards,visit the ASTM website,https://www.wendangku.net/doc/1a8704271.html,,or

contact ASTM Customer Service at service@https://www.wendangku.net/doc/1a8704271.html,.For Annual Book of ASTM

Standards volume information,refer to the standard’s Document Summary page on

the ASTM website.

3Available from Beuth Verlag GmbH,Burggrafenstrasse6,1000Berlin30,

Germany.

*A Summary of Changes section appears at the end of this standard. Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

6.1.3.1Air Thermometer ,for measuring compressed air temperature.ASTM Precision Thermometer having a range from ?20to 102°C,graduated in 0.2°C and conforming to the requirements for Thermometer 12C as prescribed in Speci?-cation E 1is suitable.A temperature sensor of at least equiva-lent performance is also suitable.Care shall be taken to avoid restricting the air path with the thermometer bulb or any adapter used.

6.1.3.2Sample Thermometer ,for measuring the tempera-ture of the sample during preparation and trial runs.ASTM Precision Thermometer having a range from –20to 102°C,graduated in 0.2°C and conforming to the requirements for Thermometer 12C as prescribed in Speci?cation E 1is suit-able.A temperature sensor of at least equivalent performance is also suitable.

6.1.4Heater ,to bring the compressed air up to measure-ment temperature.A coil of copper tubing immersed in the circulating bath (see 6.1.5)is suitable at 25°C,but additional heating is necessary at 50and 75°C.This can be obtained by an additional bath,or by using a separate steam or electric heat exchanger.The temperature of the air shall be measured by a thermometer located as close as possible to the testing vessel and meeting the speci?cations shown in 6.1.3.

N OTE 3—The application of thermal insulation to the pipework carry-ing the heated compressed air is recommended.

6.1.5Circulating Bath ,approximately 10-L capacity with a rate of ?ow of 10L/min and capable of maintaining the test cell at a temperature of 25,50,or 75°C within 60.1°C.

N OTE 4—Use of water in the bath has been found to minimize electrostatic effects.

N OTE 5—The application of thermal insulation to the pipework carry-ing the heated bath ?uid is recommended.

(Warning —The use of glass vessels with glass host ?ttings for circulating 75°C (167°F)bath medium is potentially

dangerous.Back pressure in excess of a gage pressure of 70kPa (10psi)can be generated when the bath medium is pumped at the required rate;this can cause fracture of the glass or slippage of the hose https://www.wendangku.net/doc/1a8704271.html,e of a pressure relief valve set at 70kPa (10psi)is recommended.In addition,use of a safety shield is recommended.)

6.2Balance ,capable of measuring density,accurate to 0.5kg/m 3.

6.3Sinker ,having a round or tapered bottom of 5or 10-mL displacement,80.061.5-mm length.If the sinker contains a thermometer,it shall be usable between 25and 75°C.

6.4Oven ,capable of heating samples to 10°C above the test temperature.

6.5Timer ,readable to 0.1min,with an accuracy of better than 0.1%.

6.6Pump ,with a nonpulsating output and capable of maintaining an air ?ow of 40L/min at a pressure of 20kPa (optional,see

7.4).

7.Materials

7.1Purity of Reagents —Reagent grade chemicals shall be used in all tests.Unless otherwise indicated,it is intended that all reagents conform to the speci?cations of the Committee on Analytical Reagents of the American Chemical Society where such speci?cations are available.4Other grades may be used,provided it is ?rst ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

7.2Purity of Water —Reagent water as de?ned by Type II of Speci?cation D 1193.

7.3Acetone ,minimum reagent grade.(Warning —Flammable.Health hazard.)

7.4Air,Compressed ,dry and free from moisture,particu-lates,and oil.Air from a cylinder or a nonpulsating pump may be used.(Warning —Compressed gas under high pressure.)7.5Cleaning Reagent ,Cleaning either in hot Nochromix 5(Warning —Corrosive health hazard oxidizer),or a 24-h soak at room temperature in Micro 6solution.

N OTE 6—Previously,chrome sulfuric acid was used in this procedure.Other test methods (for example,Test Method D 1401)have demonstrated acceptable,statistically equivalent results when Nochromix or Micro is used to replace sulfuric chromic acid for cleaning.

7.6n-Heptane ,reagent grade.(Warning —Flammable.Harmful if inhaled.)

4

Reagent Chemicals,American Chemical Society Speci?cations ,American Chemical Society,Washington,DC.For suggestions on the testing of reagents not listed by the American Chemical Society,see Analar Standards for Laboratory Chemicals,BDH Ltd.,Poole,Dorset,U.K.,and the United States Pharmacopeia and National Formulary,U.S.Pharmacopeial Convention,Inc.(USPC),Rockville,MD.5

The sole source of supply of Nochromix known to the committee at this time is Godax Laboratories,Inc.,720-B Erie Ave.,Takoma Park,MD 20912.If you are aware of alternative suppliers,please provide this information to ASTM Interna-tional Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,1which you may attend.6

The sole source of supply of Micro known to the committee at this time is International Products Corp.,P.O.Box 70,Burlington,NJ 08016.If you are aware of alternative suppliers,please provide this information to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,1which you may

attend.

FIG.1Apparatus for the Determination of Air Release

Time

N OTE 7—Other alternate solvents,such as toluene,etc.,may be used in place of n -heptane.

8.Preparation of Apparatus

8.1Clean the interior of the test vessel,including the air inlet and sinker,and all other glassware coming in contact with the sample,before each determination in the following manner:

8.1.1Rinse away the oil residue with n -heptane (Warning —see 7.6)and acetone (Warning —see 7.3)and dry by air blowing.

8.1.2Clean the apparatus by immersing in cleaning reagent in order to remove completely any traces of silicone.8.1.3Rinse with reagent

water.

FIG.2Test

Vessel

8.1.4Rinse with acetone(Warning—see7.3)and dry with clean compressed air(Warning—see7.4).

N OTE8—Oil misting occurs during blowing.The test vessel should be in a hood,or the air outlet tube should be connected to a vent that removes the vapors.

9.Procedure

9.1Assemble the test apparatus as shown in Fig.1.Set the compressed air temperature to within0.2°C of the desired test temperature.Set the circulating bath to give a specimen temperature within0.1°C of the desired test temperature.The required bath temperature setting and time for the specimen to equilibrate can be established for an equipment setup by making trial runs with a thermometer in the oil specimen.For oils with a viscosity at40°C of less than9.0cSt,the test temperature shall be25°C.For oils with a viscosity at40°C between9.0and90cSt,the test temperature shall be50°C.Oils having a viscosity at40°C greater than90cSt shall be tested at 75°C.

9.2Warm approximately200mL of the oil to be tested in an oven set at a temperature of10°C higher than the test temperature.Allow the sample to reach the test temperature. This may take about20min.

9.3Pour18065mL of the heated sample into the test vessel.

9.4Allow the sample to equilibrate to the desired test temperature,using the heating-up time previously established (see9.1)or by directly measuring the temperature.

9.5Warm the sinker of the balance to the test temperature in an air bath,such as a glass cylinder?tted with a suitable cover situated in the circulating bath.When the sinker has reached the test temperature,immerse it in the sample,taking care that no air bubbles cling to it.Attach the sinker to the beam of the density balance by means of the platinum wire so that the bottom of the sinker is1062mm from the bottom of the test vessel.

N OTE9—The sinker can take approximately20min to reach50°C or35 min to reach75°C.

9.6Allow the density reading to stabilize,read the density from the balance to the nearest0.1kg/m3,and record it as the initial density.

9.7Return the sinker to the air bath and replace it with the air inlet tube as shown in Fig.2.After5min,start the supply of air at a gage pressure of20kPa at the required temperature. Maintain the pressure and temperature of the air(25,50,and 75°C)by readjustments,if necessary.

9.8After760.1min,shut off the air and immediately start the timer.Quickly remove the inlet tube from the test vessel, and immerse the sinker in the oil/air dispersion.Attach the wire to the beam and maintain a distance of1062mm between the bottom of the sinker and the bottom of the test vessel.

N OTE10—In the case of certain oils,which form a considerable volume of oil/air dispersion,the top of the sinker can initially be in foam,and hence,density readings at this time can be in error.

9.9Record the time,to the nearest0.1min,for the density to return to the target of99.8%of the initial density(d0).If the time is greater than30min,discontinue the test.

N OTE11—The test may be run for a longer period of time by agreement between the laboratory and the customer.

N OTE12—For some applications,the shape of the air release time curve may be required.This can be implemented by recording the density at intervals,as required.

9.10Certain oils may lose light components during the air saturation,thus changing their effective density.This will be noted if the time for the density to return to the initial?gure is instantaneous.Where air release value information is required for such oils,an air releasing time curve may be drawn.If the loss causes any part of the sinker to be exposed,discontinue the test and repeat,using a sample that is10mL larger than previously used.

10.Calculation of Density

10.1Density:

Density of sample~kg/m3!5(1) @Weight of sinker in air~kg!–Weight of sinker in sample~kg!#

V olume of sinker~m3!

N OTE13—A10mL sinker has a volume of10310-6m3.

10.2Target Density:

Initial density~d0!30.998.(2) 10.3If the tare key of the balance is pressed while the sinker is being weighed in air so that the reading is zeroed,then the following may be used:

Density of sample~kg/m3!5

Weight of sinker in sample~kg!

V olume of sinker~m3!

(3)

N OTE14—Some instruments automatically make the above calcula-tions.

10.4The volume of the sinker may be determined by weighing it in air,then in water.The difference in weight(kg) 310–3=volume in m3.

11.Reporting

11.1Report the air release time,as recorded in9.9,and the test temperature in°C.

12.Precision and Bias7

N OTE15—The program was run by six laboratories,using?ve samples of unused steam turbine oils and base stocks with air used as the entrained gas.Five samples were tested at one temperature and four at another. Since some reports were incomplete,this resulted in48pairs of replicated data.

12.1Precision—The precision of this test method as deter-mined by statistical examination of interlaboratory results is as follows:

N OTE16—The precision statement was developed using 1.1.1-trichloroethane and chrome sulfuric acid in the cleaning procedure. 12.1.1Repeatability—The difference between two test re-sults,obtained by the same operator with the same apparatus under constant operating conditions on identical test material,

7Supporting data(the results of the cooperative test program,from which these values have been derived)have been?led at ASTM International Headquarters and may be obtained by requesting Research Report RR:

D02–1014.

would in the long run,in the normal and correct operation of the test method,exceed the following values only in one case in twenty:

0.5times the square root of their mean

(4)

12.1.2Reproducibility —The difference between two single and independent results obtained by different operators work-ing in different laboratories on identical test material would,in the long run,in the normal and correct operation of the test method,exceed the following values only in one case in twenty:

1.3times the square root of their mean

(5)

12.2The closely related test method DIN 51381reports precision in another format.For ready comparison,the above statement is shown in DIN terms in Table 1.

12.3Bias —The procedure in Test Method D 3427for mea-suring air release properties of petroleum oils has no bias

because the value of the air bubble separation time is de?ned only in terms of this test method.There is no known bias relative to the DIN 51381method.

N OTE 17—The above precision was determined only at test tempera-tures of 50°C and 82°C.A new interlaboratory test program is planned.

13.Keywords

13.1air entrainment;air release time;gear oil;hydraulic oil;turbine oil

SUMMARY OF CHANGES

Subcommittee D02.C0has identi?ed the location of selected changes to this standard since the last issue (D 3427–06)that may impact the use of this standard.

(1)Revised 9.2to specify the temperature of heated sample.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.wendangku.net/doc/1a8704271.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every ?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@https://www.wendangku.net/doc/1a8704271.html, (e-mail);or through the ASTM website (https://www.wendangku.net/doc/1a8704271.html,).

TABLE 1Comparison of ASTM and DIN Precision Data

Mean Test Result,min

Repeatability Reproducibility DIN ASTM DIN ASTM Up to 5

10.72 2.1Over 5to 102 1.33 3.6Over 10to 15

3

1.6

4

4.7

润滑油的主要性能指标是什么

润滑油的主要性能指标是什么? 润滑油的主要性能指标是什么? 满意答案 相关答案 运动黏度,闪点,倾点,针入度,从这些数据上判定邮品的api质量等级和sae 黏度等级。一般润滑油外包装上会标示,比如API SM SAE5w40,就表示该油品质量级别是sm,黏度等级是5w30 2010-1-16 16:49 润滑油的主要指标有:粘度、粘度指数、倾点和凝点、闪点和燃点、灰分、残炭值。 1、粘度 粘度就是在一定温度下润滑油流动的速度,它会随着温度的变化而变化。一般国际上采用40℃和100℃时的粘度作为标准。粘度是各种润滑油分类分级的指标,对质量鉴别和确定有决定性意义。 2、粘度指数 粘度指数是表示油品随温度变化这个特性的一个约定量值。粘度指数越高,表示油品的粘度随温度变化越小。 3、倾点和凝点 倾点是在规定的条件下被冷却的试样能流动时的最低温度,凝点是试样在规定的条件下冷却到停止移动时的最高温度,均以℃表示。倾点或凝点是一个条件试验值,并不等于实际使用的流动极限。 4、闪点 润滑油的闪点是润滑油的贮存、运输和使用的一个安全指标,同时也是润滑油的挥发性指标。闪点低的润滑油,挥发性高,容易着火,安全性差,润滑油挥发性高,在工作过程中容易蒸发损失,严重时甚至引起润滑油粘度增大,影响润滑油的使用。重质润滑油的闪点如突然降低,可能发生轻油混入事故。从安全角度考虑,石油产品的安全性是根据其闪点的高低而分类的:闪点在45℃以下的为易燃品,闪点在45℃以上的产品为可燃品。 5、燃点 燃点又叫着火点,是指可燃性液体表面上的蒸汽和空气的混合物与火接触而发生火焰能继续燃烧不少于5s时的温度。可在测定闪点后继续在同一标准仪器中测定。可燃性液体的闪点和燃点表明其发生爆炸或火灾的可能性的大小,对运输、储存和使用的安全有极大关系。 6、润滑油的灰分 润滑油的灰分,是润滑油在规定的条件下完全燃烧后,剩下的残留物(不燃物)。润滑油的灰分主要是由润滑油完全燃烧后生成的金属盐类和金属氧化物所组成。含有添加剂的润滑油的灰分较高。润滑油中灰分的存在,使润滑油在使用中积碳增加,润滑油的灰分过高时,将造成机械零件的磨损。 7、残炭值 润滑油中的沥青质,胶质及多环芳烃的叠合物是形成残炭的主要物质。因此残炭

润滑油常规分析项目.doc

常规分析项目 (1)四球试验机模拟试验:测定润滑油脂的减摩性、抗磨性和极压性。减摩性用摩擦系数“f”表示;抗磨性用磨痕直径“d”表示;极压性用最大无卡咬负荷“PB”和烧结负荷“PD”表示。国内标准试验方法有GB/T12583-90润滑剂承载能力测定法、SH/T0189-92润滑油磨损性能测定法、SH/T0202-92润滑脂四球机极压性测定法、SH/T0204-92润滑脂抗磨性能测定法。国外标准试验方法有ASTMD2783润滑油极压性测定法、ASTMD4172润滑油抗磨性测定法、ASTMD2596润滑脂极压性测定法、ASTMD2266润滑脂抗磨性测定法。 (2)梯姆肯(Timken)试验机模拟试验:评定润滑油脂的抗擦伤能力,用OK值作为评定指标。中国标准试验方法有GB/T11144-89润滑油脂极压性测定法。国外标准试验方法有美国ASTMD2782润滑油极压性测定法、ASTMD2509润滑脂极压性测定法。 (3)法莱克斯(Falex)试验机模拟试验:评定润滑剂的极压性和抗磨性,以试验失效(发生卡咬)时的负荷作为评定指标。中国标准试验方法有SH/T0187-92润滑油极压性测定法、SH/T0188-92润滑油抗磨损性能测定法(V形块)。国外标准试验方法有ASTMD4007测定液体润滑剂极压性标准方法(O型)、ASTMD2670和2714测定液体润滑剂磨损特性标准方法(I型)。 (4)成焦板试验:是用加热的润滑油与高温(310~320℃)铝板短暂接触而结焦的倾向来评定润滑油的热安定性。此方法与Caterpillar1H2和1G2发动机试验有一定的相关性。中国标准试验方法有SH/T0300-92曲轴箱模拟试验方法。国外标准试验方法有美国FTM3462成焦板试验(QZX法)。(5)低温粘度测定法:用来测定发动机油在高剪切速率下、-50~-30℃时的低温粘度。所得结果与发动机的启动性有关。中国标准试验方法有GB/T6538-86发动机油表观粘度测定法(冷启动模拟机法)。国外标准试验方法有美国ASTMD2602发动机润滑油低温下表观粘度测定法(CCS)。 (6)低温泵送性测定法:用来预测发动机油在低剪切速率下、-40~0℃范围内的边界泵送温度。中国标准试验方法有GB/T9171-88发动机油边界泵送温度测定法。国外标准试验方法有美国ASTMD3830发动机润滑油边界泵送温度测定法(MRV)。 (7)剪切安定性测定法(超声波法):以油品的粘度下降率来评定其剪切安定性。中国标准试验方法有SH/T0505-92含聚合物油剪切安定性测定法(超声波剪切法)、SH/T0200-92含聚合物润滑油剪切安定性测定法(齿轮机法)。国外标准试验方法有美国ASTMD2603含聚合物润滑油超声剪切稳定性试验法。 (8)FZG齿轮试验:用于测定钢对钢直齿轮用润滑剂的相对承载能力,以载荷级来表示。中国标准试验方法有SH/T0306-92润滑油承载能力测定法(CL-100齿轮机法)。国外标准试验方法有欧洲CECL-07-A-71、英国IP334和德国DIN51354等。 (9)轮轴承润滑脂漏失量试验:测定轴承中润滑脂的漏失量,模拟润滑脂在汽车轮轴承中的工作性能。中国标准试验方法有SH/T0326润滑脂轴承漏失量试验方法。国外标准试验方法有美国ASTMD1263汽车轮轴承润滑脂漏失量测定法。 (10)润滑脂滚筒试验机模拟试验:测定在滚筒试验机中润滑脂的机械安定性。中国标准试验方法有SH/T0122-92润滑脂滚筒安定性测定法。国外标准试验方法有美国ASTMD1831润滑脂滚筒安定性测定法。 (11)高温轴承试验:评定在高温、高转速条件下润滑脂在轻负荷抗磨轴承中的工作性能。最高适用温度为180℃。中国标准试验方法有SH/T0428-92高温下润滑脂在抗磨轴承中工作性能测定法。国外标准试验方法有美国FS791B331.2高温下润滑脂在抗磨轴承中工作性能测定法。 (12)润滑脂齿轮试验:测定润滑脂的齿轮磨损值,用以表示润滑脂的相对润滑性能。中国标准试验方法有SH/T0427润滑脂齿轮磨损测定法。国外标准试验方法有美国FS791B335.2齿轮磨损测定法。 常见台架试验 (1)汽油发动机台架试验:汽油发动机台架试验结果是确定汽油机油质量等级的依据。

技术保证值和功能保证说明

技术保证值和功能保证说明 1设备功能保证测试 功能指标、保证值和考核方法按买方提供的技术资料执行,设备最终考核要能满足在酒钢轧制出合格产品。 合同设备应统统正确的安装到位。 在无载荷/有载荷,单体/联体测试条件下,主要设备功能和技术性能应满足设备操作和性能保证的要求。 由于卖方责任造成的设备损坏或设备性能参数不符合保证值要求的设备,卖方应负责修理或更换。 2设备功能保证措施 2.1合同设备按时交付,产品质量满足外方要求,项目进度满足买方整个工程进度的要求。 2.2卖方在签订合同后一个月内向买方提供以下内容的详细说明与描述: 2.2.1根据设备制造周期及生产工艺按周排出设备制造进度网络图,包括:生产工艺准备周期、材料外采周期、外购件采购周期、加工件生产周期、部件组装周期、总装周期直至出公司前时间。此外,还将列出保证生产周期的领导小组、技术小组、实施小组等的组织结构图。 2.2.2设备制造施工总布置、总进度安排,包括各种场地、吊装设备、拟投入的主要制造加工设备及制造、安装、发运等进度安排。2.2.3工艺设计 工艺设计应包括:技术(图纸)转化、冶炼、铸造、焊接、热处理、探伤、机加工、组装、配管、试运转、包装、运输等。 2.2.4关键设备及其关键部位、分外零部件的制造工艺、保证措施及其加工设备

2.2.5设备制造过程中的质量控制,包括质量保证体系、质量控制关键点的分析与确定及其控制措施、试验与检测、质量检查与签证等。 2.2.6为确保设备制造进度卖方必须采取的措施: 2.2.6.1卖方内部各部门设项目负责人,实行项目负责制。 2.2.6.2卖方每周召开设备制造生产进度平均会。 2.3卖方的生产进度表将明确标注如下的进度节点: 生产准备——完成各项开工准备,第一批铸件、锻件的原材料合同全部签定,各种工机具准备齐全。 外配件、机加工——所有材料及配套件的外购合同都已签定。 零件毛坯出来并进行机械加工。 组装——所有零部件加工完毕,配套件都已到位,并开始组装。 发货——成套设备全部包装发运,并持有铁路(或公路)运单。 2.4本项目工程建设不仅是质量要求高,而且制造周期短,因而按期优质交付是十分严重的环节,卖方将按买方的要求将合同按项目单列,编排大日程、小日程作业计划,按细分的关键件、零部件编排了日计划,并分工负责每天检查落实计划的实施,及时协调解决设备能力、装配场地,运输等问题。在生产管理过程中采用了计算机辅助管理,形成了联网的计算机辅助生产管理系统,能及时反馈信息并处理问题。按照生产的节奏,环环相扣。通过周密的计划管理,保证工程设备的按期交付。 2设备保证期 设备的质量保证期为设备热调试合格后12个月为期。在质量保证期内出现的设备制造质量问题,卖方必须及时无偿予以解决,并承担由此造成的直接经济损失。

溶气气浮除油

溶气气浮除油是通过释放溶于水中的细小而分散的气泡粘附污水中经过混凝剂凝聚的分散油和悬浮物成为漂浮物,从而使油和悬浮物从污水中得到分离。这一过程大体由四个步骤完成:向处理水中投加混凝剂;使污水中微细油粒及悬浮物凝聚成为大的含油絮凝体;溶入空气的水减压释放出大量分散的细微气泡;细微气泡与油及悬浮物组成的絮凝体碰撞粘附;粘附的絮凝体在气泡的带动下,漂浮于处理水的表面,从而完成油和悬浮物与水分离的目的。 1、空气溶解程度 空气溶解于处理水中的量,用空气对水的溶解度来表示,影响溶解度的因素主要是污水的压力和温度。与压力成正比,与温度变化成反比,而溶解速度则与空气和水的接触界面有关。通常用溶解效率来表示空气溶解程度的高低。 2、污水中油珠等物质与气泡黏附的条件 污水中油珠等物质能否与气泡黏附,取决于该物质能够被污水润湿的程度。疏水性物质易于被气泡粘附。对于亲水性物质,必须向水中投加混凝脱稳剂,使其表面改变为疏水性方能与气泡粘附。 3、气泡的分散性与气浮除油效果 在气浮过程中,需要形成大量微细而均匀的气泡,才能作为载体与被浮物质粘附达到气浮分离的目的。微气泡量越多则气泡与被浮物质的接触、粘附机会也越多,有利于提高气浮效果。气泡的分散性是控制气浮效果的主要因素之一。 油田采出水,也称油田污水,一般指从地下采出的含水原油“采出液”经电脱水,分离出的水称为油田污水 一、油田采出水废水处理工艺概述 由于采油方法、原油特性、地质条件的不同,油田采出水的水质差异较大,但其也有共性的成分,例如:①含油量高,一般在1000mg/l以上;②悬浮物含量高,颗粒细小,沉降缓慢;③矿化度高,一般在 1000mg/l 以上,高的达14×104 mg/l,加速了水处理设备的腐蚀;④结垢离子浓度高,含有Ca2+,Mg2+,Ba2+等;⑤COD 浓度高,其中有机成分较多。由油田污水的特点可知,除油是该废水处理的重要环节。原油废水中以浮油、分散油、和乳化油为主。目前多采用两级除油法,即一级重力除油,二级混凝破乳除油。一级重力除油主要设备有立式除油罐、斜板隔油沉淀池及粗粒化除油罐。该级主要用于去除绝大部分浮油及大部分分散油。二级混凝破乳除油加混凝破乳剂(主要有铝盐、铁盐两种无机混凝剂,有机聚合

润滑油抗乳化性能测定方法

一、方法摘要 在专用分液漏斗中,加人405毫升试样和45毫升蒸馏水。在82℃温度下以一定的速度搅拌5分钟,静置5小时后测量,并记录从油中分离出来的水的体积、乳化液的体积及油中水的百分数。 二、仪器与材料 1仪器 1.1加热浴,浴的大小及深度应至少能浸人两个分液漏斗,并使加热浴液体能浸到分液漏斗500毫升刻度标记处。此加热浴应能保持82±1 ℃,并能牢固地夹住分液漏斗,在油和水混合时,能使分液漏斗的垂直中心线与搅拌器的垂直轴线相吻合。 1.2搅拌器、分液漏斗、离心机,离心管。 水浴:其深度可以使离心管浸到100毫升刻线处,恒温50土1 ℃. 移液管:50毫升。 量筒:50和100毫升。 2.材料 蒸馏水:离子交换水或二次蒸馏水。 3.试剂 3.1清洗容剂三氯乙烷,化学纯(吸人或口服是有害的,能刺激眼睛,高浓度能引起昏厥或死亡)。 3.2甲苯:分析纯。 3.丙酮:化学纯。 3.石油醚:60~90℃,分析纯。 四、准备工作 4.1甲苯饱和洛液的制备 向试验用甲苯中加人1%(体积)的蒸馏水,摇动后放人50±1℃水浴中,15分钟时摇动第二次,再经15分钟摇动第三次,每次摇动30秒,然后置于水浴中静置待用。 分被漏斗的清洗用清洗溶剂清洗,以除去油膜或液膜,接着用丙酮、自来水冲洗净。然后将漏斗浸入铬酸洗液中,取出后先用自来水,后用蒸馏水冲洗千净。 注,可以用石油醚代替肩洗咨剂三氯乙烷,但有争议时,仍应用三氯乙娘作滴洗洛剂。 .搅拌器的清洗反复把搅拌器垂直地浸人清洗洛剂中,并使搅拌器高速运转,以清洗搅拌器,然后将其放入空气干燥筒中进行干燥,使洛剂在使用前挥发。 五、试验步骤 5.1将加热浴中的被体加热至82±1℃,并在整个试验过程中保持此温度。 5.2将在室温下的试样直接倒人分液漏斗至405毫升处,将分液漏斗放人加热浴中,使其温度达到82±1℃,然后在室温下量取45毫升蒸馏水加人分液漏斗中。再将搅拌器浸人分液漏斗,使批拌器底端与漏斗中心线最底部相距25毫米,并使搅拌器垂直轴线与漏斗中心线相吻合。在25~30秒内,慢慢地把搅拌器马达转速升到4500±500转/分,包括起动时间在内共运转5分钟。然后从油-水混合物中提起搅拌器并使其向分液漏斗滴液5分钟。取出搅拌器,进行清洗。 5.3停止搅拌5小时后,从分被漏斗中心线距油-水混合物液面以下51毫米处,用50毫升移液管吸取50毫升试样,排入装有50毫升甲苯饱和容液的离心管中,塞好管塞,充分摇匀后放入50±1℃水浴中10分钟。 5.4将离心管从水浴中取出,放人离心机对称两边的耳轴环内,建立一个平衡状态,使两边重量差不大于0.5克,并以500~800相对离心力的速度离心10分钟。读数并记录每个离心管底部水分的体积。不需搅拌再把离心管重新放人离心机,重复操作直到相邻两次离心后同

ASTM D3427-2007润滑油空气释放值测定

Designation:D3427– 07 Designation313–01 An American National Standard Standard Test Method for Air Release Properties of Petroleum Oils1 This standard is issued under the?xed designation D3427;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval. 1.Scope* 1.1This test method covers the ability of turbine,hydraulic, and gear oils to separate entrained air. N OTE1—This test method was developed for mineral based oils.It may be used for some synthetic?uids;however,the precision statement applies only to petroleum oils. 1.2This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. 2.Referenced Documents 2.1ASTM Standards:2 D1193Speci?cation for Reagent Water D1401Test Method for Water Separability of Petroleum Oils and Synthetic Fluids E1Speci?cation for ASTM Liquid-in-Glass Thermometers 2.2DIN Standard:3 DIN51381 3.Terminology 3.1De?nitions of Terms Speci?c to This Standard: 3.1.1air release time,n—the number of minutes needed for air entrained in the oil to reduce in volume to0.2%under the conditions of this test and at the speci?ed temperature. 4.Summary of Test Method 4.1Compressed air is blown through the test oil,which has been heated to a temperature of25,50,or75°C.After the air ?ow is stopped,the time required for the air entrained in the oil to reduce in volume to0.2%is recorded as the air release time. N OTE2—By agreement between the customer and the laboratory,the oil may be heated at other temperatures.However,the precision at these different temperatures is not known at present. 5.Signi?cance and Use 5.1Agitation of lubricating oil with air in equipment,such as bearings,couplings,gears,pumps,and oil return lines,may produce a dispersion of?nely divided air bubbles in the oil.If the residence time in the reservoir is too short to allow the air bubbles to rise to the oil surface,a mixture of air and oil will circulate through the lubricating oil system.This may result in an inability to maintain oil pressure(particularly with centrifu-gal pumps),incomplete oil?lms in bearings and gears,and poor hydraulic system performance or failure. 5.2This test method measures the time for the entrained air content to fall to the relatively low value of0.2%volume under a standardized set of test conditions and hence permits the comparison of the ability of oils to separate entrained air under conditions where a separation time is available.The signi?cance of this test method has not been fully established. However,entrained air can cause sponginess and lack of sensitivity of the control of turbine and hydraulic systems.This test may not be suitable for ranking oils in applications where residence times are short and gas contents are high. 6.Apparatus 6.1A schematic diagram of the apparatus is shown in Fig.1. The component parts are described as follows: 6.1.1Test Vessel,made of borosilicate glass as shown in Fig. 2,consisting of a jacketed sample tube?tted with an air inlet capillary,baffle plate,and air outlet tube.The two parts of each test vessel should be marked and preferably used as a pair. Interchanged parts may be used so long as the resultant test vessel conforms to the stated dimensions. 6.1.2Pressure Gage,covering the range from0to35kPa, with divisions at least every2kPa,and an accuracy of1.5kPa. 6.1.3Thermometers: 1This test method is under the jurisdiction of ASTM Committee D02on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.C0.02on Corrosion and Water/Air Separability. Current edition approved Nov.1,2007.Published December2007.Originally approved https://www.wendangku.net/doc/1a8704271.html,st previous edition approved in2006as D3427–06. Adopted as a joint ASTM/IP standard in2006. 2For referenced ASTM standards,visit the ASTM website,https://www.wendangku.net/doc/1a8704271.html,,or contact ASTM Customer Service at service@https://www.wendangku.net/doc/1a8704271.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website. 3Available from Beuth Verlag GmbH,Burggrafenstrasse6,1000Berlin30, Germany. *A Summary of Changes section appears at the end of this standard. Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

石油产品碱值测定法

石油产品碱值测定法 (高氯酸电位滴定法) ASTM D2896-07a与SH/T0251-93 方法解读 范围 ?ASTM D2896与SH/T0251相同点 ?本标准用高氯酸冰乙酸滴定法测定石油产品的碱值 ?测试步骤分A法和B法 ?可作为碱性组分的有有机碱、无机碱、胺基化合物、弱酸盐(皂盐) 定义 ?碱值—滴定1g溶解在指定溶剂中的样品到方法规定的最佳拐点所需要的高氯酸的量,用等当量的KOH的mg数表示 方法概要 ?试样溶解于无水氯苯和冰乙酸混合物中,以高氯酸冰乙酸标准滴定溶液为滴定剂,以玻璃电极为指示电极,甘汞电极为参比电极进行电位滴定,用电位滴定曲线的电位突跃判断终点 ?A法和B法 ?在正滴定模式下没有拐点,改用乙酸钠滴定溶液返滴定 意义和用途 ?新的和用过的石油产品由于加入添加剂可能含有碱性组分,可用酸滴定的方法测定这些组分的相对含量。碱值是测定油品中碱性物质的量,与测试条件有关。有时在使用油的监控中用于测定润滑剂的降解,但是报废指标必须凭经验确定。 仪器 ?电位滴定仪 ?电极 ?搅拌器—机械或电动的,可调速及带螺旋桨、耐化学腐蚀材料的桨叶。 使用电动搅拌器必须接地。 ?滴定管—10或20ml,0.05ml分度,校准至±0.02ml或具有相似精度的自动滴定管?滴定烧杯 试剂与材料 ?水-ASTMD2896符合D1193第Ⅲ类水的要求 SH/T0251符合GB/T6682中三级水的要求 ?冰乙酸—分析纯 ?乙酸酐—分析纯 ?氯苯—分析纯 ?高氯酸—分析纯 ?石油醚—分析纯(用于SH/T0251方法) ?苯二甲酸氢钾—基准试剂 ?滴定溶剂—一体积冰乙酸加到二体积氯苯中,混合均匀 ?0.1mol/l高氯酸冰乙酸溶液的配制 将8.5ml 70%-72%的高氯酸(10.2ml 60%-62%高氯酸)与500ml冰乙酸和30ml(35ml 60%-62%高氯酸)乙酸酐混合,用冰乙酸稀释到1L,静止24小时

(完整版)软件质量测试与保证参考答案最后整理

选择题6 填空题10 (名词解释 4 简答7 综合题1)涉及标准内容的不考括号内为以下内容 第1章 2.简述软件危机的表现形式和诱发原因,并谈谈软件危机和软件错误的区别。 答:软件危机是指计算机软件开发与维护过程中所遇到的一系列严重问题。其表现形式为:软件价格高、软件工作量难于估计、软件质量低、软件修改与维护困难、软件的供需差在不断扩大、软件的开发与维护过程往往失去控制。 诱发软件错误的原因:需求定义的不完善、客户与开发者间不良沟通、对软件需求的故意偏离、逻辑设计的错误、编码错误、不符合文档编制和编码规定、测试过程的不完善、规程的错误、文档编制错误。 3. 影响软件质量的因素有哪些? 答:正确性、健壮性、效率、完整性、风险、可用性、可移植性、可再用性、互运行性、可理解性、可维修性、灵活性、可测试性。 第2章 3. 软件质量保证标准分为哪几类以及它的分类准则是什么? 答:软件质量保证标准分为质量管理标准和项目过程标准。 软件质量保证标的分类是从关注单位、关注重点、标准的目的和标准的目标这几个方面着手的。 第3章 1. 为什么软件质量会有成本呢? 答:软件产品的质量成本,或更准确地说,软件质量的投资,根源于确保开发产品符合早已确认的需求。而软件产品投资的性质和规模由多种不同因素决定,其中包括:项目预算、开发产品的类型、使用的技术、消费者提出的需求及该合同能否提供具有在标准和规章限定框架内的特别内容的政府合同、内部开发环境、开发团队所拥有的领域知识、可重复过程和测量与开发者日常工作结合的程度。 2. 软件质量成本分析的输入的数据需求是通过什么途径获得的? 答:在执行质量成本度量的任务时,必须保证相关数据可观察或可测量。这些数据可以是通过以下几个方面得到:直接观测得到的;通过分析得到的;由顾客提供的;从其他任务的执行情况中收集的;其他项目的输出结果;由项目本身的物理特性要求的。 第4章 1. 审查过程的辅助目标有哪些? 答:(1)提供从需求到设计的可跟踪性。(2)为下一阶段的开发提供正确的技术基础。(3)提高编程的质量。(4)提高交付产品的质量。(5)获得较低的生命周期花费。(6)增加测试过程的有效性。(7)提供程序可维护性的一个重要保证。(8)鼓励采用带有进入、退出准则的软件管理方法。 第5章 (空) 第6章 1. 瀑布模型将软件生命周期的各项活动规定唯一古代顺序连接的若干阶段工作,形如瀑布流水,最终得到软件产品,其有什么优缺点? 答:优点:(1)强调开发的阶段性。(2)强调早期计划及需求调查。(3)强调产品测试。 缺点:(1)依赖于早期进行的惟一一次需求调查,不能适应需求的变化。 (2)由于是单一流程,开发中的经验教训不能反馈应用于本产品的过程。 (3)风险往往迟至后期的开发阶段才显露,因而失去及早纠正的机会。 2. 螺旋模型有什么优缺点? 答:优点:(1)强调严格的全过程风险管理。(2)强调各开发阶段的质量。(3)提供机会检讨项目是否有价值继续下去。 缺点:引入非常严格的风险识别,风险分析,和风险控制,这对风险管理的技能水平提出了很高的要求。这需要人员,资金,和时间的投入。 3. 开发原型化系统一般由几个阶段? 答:(1)确定用户需求(2)开发原始模型。(3)征求用户对初始原型的改进意见。(4)修改原型。

汽轮机润滑油相关指标及讲解

汽轮机油指标: 美国航空航天工业联合会(AIA)1984年1月发布的NAS1638标准

倾点 倾点是用来衡量润滑油等低温流动性的常规指标,同一油品的倾点比凝点略高几度,过去常用凝点,国际通用倾点。 倾点或凝点偏高,油品的低温流动性就差。人们可以根据油品倾点的高低,考虑在低温条件下运输、储存、收发时应该采取的措施,也可以用来评估某些油品的低温使用性能。 但评估多级内燃机油、车辆齿轮油的低温性能时,应以低温动力粘度、边界泵送温度、成沟点为主要参数。 物理意义;倾点是反映油品低温流动性的好坏的参数之一,倾点越低,油品的低温流动性越好。 检测标准:GB/T3535-2006,该标准与ISO 3016-1994等效 燃料油倾点的定义 燃料油有一个技术指标叫做倾点[1],单位是℃。一般来讲所谓的燃料油倾点就是指它能够流动的最低温度。 我们都知道,燃料油随着温度的降低,流动性会越来越差,甚至达到某一温度时它就会凝固而失去流动性。通常讲,燃料油在低温度下的流动性有两个影响因素:一个燃料油的粘度随温度下降会增高;另外一个是燃料油中原来呈液态的石蜡在温度下降到一定程度后会以固体的结晶形式出现。所以我们平时说的倾点有时也称之为“含蜡倾点”。根据定义描述我们可以看出,倾点越高,自然温度下该燃料油的流动性就越差。我们在实际中也可以通过添加适量的倾点下降剂来改善燃料油倾点。由于燃料油很多都是要经过长途运送才能达到目的地,所以说倾点也是非常重要的一个技术指标。

闪点 闪点是可燃性液体贮存、运输和使用的一个安全指标,同时也是可燃性液体的挥发性指标。闪点低的可燃性液体,挥发性高,容易着火,安全性较差。 石油产品,闪点在45℃以下的为易燃品,如汽油、煤油;闪点在45℃以上 的为可燃品,如柴油、润滑油。挥发性高的润滑油在工作过程中容易蒸发损失,严重时甚至引起润滑油粘度增大,影响润滑油的使用。 一般要求可燃性液体的闪点比使用温度高20~30℃,以保证使用安全和减 少挥发损失。 影响因素 闪点的高低,取决于可燃性液体的密度,液面的气压,或可燃性液体中是否混入轻质组分和轻质组分的含量多少。可燃性液体使用过程中若闪点突然降低,可能发生轻油混油事故或水解(对某些合成油而言),必须引起注意。 可燃液体的闪点随其浓度的变化而变化。 闪点的高低与油的分子组成及油面上压力有关,压力高,闪点高。 闪点是防止油发生火灾的一项重要指标。在敞口容器中,油的加热温度应低 于闪点10℃;在压力容器中加热则无此限制。 当可燃性液体液面上挥发出的燃气与空气的混合物浓度增大时,遇到明火可形成连续燃烧(持续时间不小于5秒)的最低温度称为燃点。燃点高于闪点。 从防火角度考虑,希望油的闪点、燃点高些,两者的差值大些。而从燃烧角度考虑,则希望闪点、燃点低些,两者的差值也尽量小些。 化合物闪点查询方式: 化工空间网可以按照名称、简称、CAS号查询化合物闪点。[1] 临界点 临界点是指石油产品在规定条件下,加热到它的蒸汽与火焰接触发生瞬间闪火时的最低温度。油品越轻,闪点越低。 当油面上油气与空气的混合物浓度增大时,遇到明火可形成连续燃烧(持续时间不小于5秒)的最低温度称为燃点。燃点高于闪点。 危险等级 油品的危险等级是根据闪点来划分的,闪点在45℃以下的叫易燃品;45℃ 以上的为可燃品。从闪点可判断油品组成的轻重,鉴定油品发生火灾的危险性。安全性质 闪点是表示石油产品蒸发倾向和安全性质的项目,闪点越高越安全。在储存 使用中禁止将油品加热到它的闪点,加热的最高温度,一般应低于闪点20~30℃。

关于抗燃油使用过程中常见问题的看法-科聚亚公司

关于抗燃油使用过程中常见问题的看法 一:运行过程中出现泡沫特性和空气释放值的超标,上述现象日益普遍日益严重,其主要原因来自于矿物油的污染。 1.加错油 2.返厂维修油动机时用了矿物油 3.伺服阀及其他零部件受到污染 二:电阻率指标不合格 1.测试误差 2.油质污染及老化 三:空气释放值不合格 1.油质污染 2.测试方法不正确 四:油质发黑 1.电加热 2.离子交换及真空脱水 3.油质老化 五:ICL(AKZO)产品与科聚亚(大湖)产品的比较及鉴别

科聚亚46SJ、以化集团抗燃油和中国新标准 新磷酸酯抗燃油质量标准比较表 说明: 1、46SJ各项指标测试方法和中国电力行业的测试方法一致;出厂标准完全符合中国标准; 2、PLUS的自然温度测试方法ASTM E659‐78和中国的方法DL/T 706不同,按PLUS的方法测试的温度要高于中国方法40~50℃;同样是测试温度,PLUS的燃点和闪点的检测方法是ASTM D‐92; 3、PLUS 的比重是在16℃时检测的,而中国的要求是20℃; 4、在电阻率这个指标中,PLUS没有说明检测结果是在什么温度下测试的;

科聚亚抗燃油46SJ与以化集团抗燃油材料对比 科聚亚抗燃油 以化集团抗燃油 以化集团抗燃油 产品名称 Reolube Turbofluid 46SJ抗燃油 Fyrquel EHC Fyrquel EHC PLUS 化学名称 三二甲苯基磷酸酯 混合物 混合物 化学成分 三二甲苯基磷酸酯 100% 三二甲苯基磷酸酯40%-50% 特丁基二苯基磷酸酯15%-21% 二特丁基苯基磷酸酯15%-21% 三特丁基苯基磷酸酯5%-9% 三苯基磷酸酯7.5%-15% 二特丁基苯基磷酸酯10%-30% 三特丁基苯基磷酸酯0%-10% 特丁基二苯基磷酸酯65%-85% 三苯基磷酸酯0%-4%

润滑油检测和更换标准

润滑油检测和更换标准 一.设备中使用的润滑油应定期检测 是对设备的润滑故障采取早期预防和对已发生的润滑故障采取科学的处置对策,分析润滑故障的表现形式和原因、对润滑故障进行监测和诊断。及时换油且应推行定期查,按状态维修或换油的办法,与维修体制一样,变定时为按状态(按质)换油,加强定期的检查和测试是十分必要的。 二.油品检测指标的相关说明 1.理化指标检测:比如粘度、水分、酸值、抗乳化、闪点、机杂、腐蚀、抗氧化稳定性等等,与标准对比即可。 [粘度]:粘度增加可能是基于油品的氧化,不溶物含量增高,高粘度油品或水分的渗入。粘度降低可能是基于低粘度油品,水,冷剂或燃料的渗入;或是油品内高分子聚合物 受剪切力而产生变化。 [闪点]:闪点降低显示油品被燃物所稀释,或是油品过高温度而裂化。 [不溶物]:戊烷不溶物显示油品里固体物质的总含量,包含有机物和无机物。甲苯能溶解大部分的有机物质,故此甲苯不溶物只包含污垢沙粒,磨损金属微粒及未燃烧碳屑。 戊烷与甲苯不溶物的差额代表胶质及氧化物的含量。通常戊烷不溶物超越某一限额 时才量度甲苯不溶物。 [颜色]:在极短时期内油品颜色变深显示油品被污染或开始被氧化。 [水分]:油品中有水显示系统穿漏或空气中的水分凝结。水分会引起腐蚀和氧化,亦会使油品乳化。故此应以离心法,隔滤法或真空处理清除。 [酸性及碱性]:酸碱度(pH)—pH增高代表渗入了碱性油品。pH降低代表油品开始变酸。[总酸值(TAN)]:油品的总酸值是量度因氧化而产生酸性物质的指标。 [总碱值(TBN)]:总碱值增高,可能是被另一种含碱量高的油品污染所造成。总碱值降低,可能是因为高碱度添加剂的损耗,用于中和酸性的燃烧及氧化产物,或被渗入的水分冲走。金属元素分析用于验明污染情况,证实添加剂的含量及显示机件的磨损状 2磨屑检测: 光谱仪,分析油中金属磨粒的化学元素含量,对比使用时间和油中金属含量的增加速度,分析设备摩擦副中的磨损情况。特定是不需要对油样进行预处理,重复性好,自动化程度高,分析速度快,读数准确。但是在判断磨损类型、预报故障部位等方面存在困难。

润滑油性能的测试方法

润滑油性能测试 润滑油的性能与其化学组成相关,取决于它的基础油与添加剂的组成及优化配伍,如何科学地侧试其性能,具有重要意义。实践证明理化性能试验、模拟试验、台架试验,是开发润滑油新品必不可少的步骤。 在生产和销售中则以理化试验作为衡量产品性能的主要尺度。现对润滑油性能及三个测试步骤的内容分述于下。 一、润滑油的性能 现代润滑油必备的基本性能,是要保证机械润滑的最低粘度;粘度随温度变化小的高粘度指数;优良的抗氧化性和耐热性;在便用条件下具有良好的流动性;优 良的抗磨损及润滑性;对氧化产物溶解能力强;对机械无腐蚀和锈蚀;在使用环境 下的低挥发性;良好的抗乳化和抗泡性等。 二、理化性能试验 理化性能试验简单快速,具有代表性,现在常用的理化性能试验项目为: (1)粘度:是液体流动内摩擦阻力的量度,是评价油品流动性的最基本指标,是各种润滑油分类分级,质量鉴别和确定用途的重要指标。馏分相同而化学组成不同的润滑油,其粘度不同。 动力粘度:动力粘度是液体在一定剪切应力下流动时内摩擦力的量度,其值为所加于流动液体的剪切应力和剪切速率之比。国际单位制中以帕.秒表示。在低温下测定的动力粘度,可以表征油品的低温启动性。 运动粘度:是液体在重力作用下流动时内摩擦力的量度,其值为相同温度下液体的动力粘度与其密度之比,国际单位中以米2/秒表示。 (2)粘度指数:是国际广泛采用的控制润滑油粘温性能的质量指标,粘度指数越高,表示油品的粘度随温度变化越小。 (3)倾点和凝点:倾点是在规定的条件下被冷却的试样能流动的最低温度,单位为℃;凝点是试样在规定的条件下冷却至停止移动时的最高温度,单位为℃。倾点和凝点越低,油品的低温性越好。 (4)酸值:中和1克油品中的酸性物质所需的氢氧化钾毫克数称为酸值,单位为毫克KOH/克。酸值是反应油品中所含有机酸的总量,油品氧化越严重,其酸值增值也越大,它是油品质量及其变质的重要指标。 (5)色度:是在规定条件下,油品的颜色最接近某一号标准色板的颜色时所侧得的结果。色度是用来初步鉴别油品精制深度,以及使用过程中氧化变质程度的标志。 (6)闪点:开口闪点是用规定的开口杯闪点测定器所测得的闪点,以℃表示。油品在规定的试验条件下加热,其油蒸气与周围空气形成的混合物,与火焰接触

安全标准和电气安全性能简易测试方法

编号:SM-ZD-82186 安全标准和电气安全性能 简易测试方法 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

安全标准和电气安全性能简易测试 方法 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 一、家用电器的分类 家用电器是指用于家庭和类似家庭使用条件的日常生活用电器。 家电一般按用途大致可划分以下9类产品: 1 空调器具:主要用于调节室内空气温度、湿度以及过滤空气之用,如电风扇、空调器、加湿器、空气清洁器等。 2 制冷器具:利用制冷装置产生低温以冷却和保存食物、饮料,如电冰箱、冰柜等。 3 清洁器具:用于清洁衣物或室内环境,如洗衣机、吸尘器等。 4 熨烫器具:用于熨烫衣服,如电熨斗等。 5 取暖器具:通过电热元件,使电能转换为

热能,供人们取暖,如电加热器、电热毯等。 6 保健器具:用于身体保健的家用小型器具,如电动按摩器、负离子发生器、周林频谱仪等。 7 整容器具:如电吹风、电动剃须刀等。 8 照明器具:如各种室内外照明灯具、整流器、启辉器等。 9 家用电子器具:是指家庭和个人用的电子产品。它不仅门类广,而且品种多。我国主要有以下几类:(1)音响产品,如收录机等;(2)视频产品,如黑白电视机、彩色电视机、录像机、VCD、DVD等;(3)计时产品,如电子手表、电子钟等;(4)计算产品,如计算器、家用计算机等; (5)娱乐产品,如电子玩具、电子乐器、电子游戏机等;(6)其他家用电子产品,如家用通讯产品、电子稳压器、红外遥控器、电子炊具等。 二、家用电器安全标准概述 家用电器产品安全标准,是为了保证人身安全和使用环境不受任何危害而制定的,是家用电器产品在设计、制造时必须遵照执行的标准文件,严格执行标准中的

曝气设计规范

XX建设标准化协会标准 鼓风曝气系统设计规程 Design standard of aeration blowing system CECS 97 : 97 主编单位:XX建筑工程学院 审查单位:XX建设标准化协会工业给水排水委员会 批准日期:1997年12月30日 前言 现标准《鼓风曝气系统设计规程》CECS 97 :97为XX建设标准化协会标准,推荐给有关单位使用。在使用过程中,请将意见及有关资料寄交XX和平街北口中国XX工程公司XX建设标准化协会工业给水排水委员会(邮编:100029),以便修订 时参考。 本规程主编单位:XX建筑工程学院 主要起草人:XX、XX XX建设标准化协会 1997年12月30日 1 总则 1.0.1 为使生物处理曝气系统设计满足工程建设需要,特制定本规程。 1.0.2 本规程包括曝气器、供风管道、风机的选型及机房设计。 1.0.3 本规程适用于新建、扩建、改建的城市污水处理工程或工业污水处理工 程中的生物处理鼓风曝气系统的设计计算。 1.0.4鼓风曝气系统设计除按本规程执行外,尚应符合现行有关的国家标准的规定。

2 术语 2.0.1 曝气器aerator 用于水中充氧兼搅拌的基本器具或设备。 2.0.2 微孔曝气器fine bubble aerator 空气通过多孔介质,在水中产生气泡直径小于3mm的高效曝气器。 2.0.3 中大气泡曝气器middle and large air bubble aerator 空气通过曝气器在水中产生气泡直径大于3mm以上的曝气器。 2.0.4 可张中、微孔曝气器openable middle and fine bubble aerator 空气通过具有弹性材质的微孔曝气器或软管时,其上孔缝张开,停止供气 时孔缝闭合的一种曝气器。 2.0.5 双环伞型曝气器double rings umbrella aerator 一种具有双环类似伞状的,在水中产生中大气泡的曝气器。 2.0.6 曝气器标准状态充氧性能oxygenc transfer performance 指单个曝气器在大气压力为0.1Mpa、水温为20℃时,对清水的充氧性能。 2.0.7 鼓风曝气系统aeration blowing system 指由风机、管路、曝气器、除尘器为主组成的系统。 3鼓风曝气器 3.1 一般规定 3.1.1 根据污水性质、环境要求、管理水平、经济核算,工程设计中可选用鼓 风曝气、机械表面曝气、射流曝气等方式,一般宜选用鼓风曝气式。 3.1.2 选用鼓风曝气系统时曝气器应符合下列要求: 1、在某一特定曝气条件下,既能满足曝气池污水需氧要求,又能达到混 合搅拌,池内无沉淀的要求;

相关文档