文档库 最新最全的文档下载
当前位置:文档库 › 外文翻译(基于DSP高速无刷直流电机控制使用直流环节电压控制)

外文翻译(基于DSP高速无刷直流电机控制使用直流环节电压控制)

外文翻译(基于DSP高速无刷直流电机控制使用直流环节电压控制)
外文翻译(基于DSP高速无刷直流电机控制使用直流环节电压控制)

毕业设计/论文

外文文献翻译

院系机电与自动化学院

专业班级电气工程及其自动化0801 姓名黄欢

原文出处中国土木水利水电工程学刊

评分

指导教师蔡红娟

华中科技大学武昌分校

2012 年6月22日

基于DSP高速无刷直流电机控制使用直流环节电压控制

金李康-华

李明博伍中妍

电气工程部门

韩国先进的科学技术学院

韩国大田

一个基于DSP高速度传感器控制无刷直流电机(无刷直流)汽车使用直流环节电压控制方案被提出了。无刷直流电机的运行在一个高速度范围、驱动系统可以有一个比较轻体积小,在同一输出等级。在现有的无传感器控制方案,通常采用PWM(脉宽调制)技术作为一个速度控制。然而,由于PWM技术和变频变换不能履行独立,明显的变换延迟存在于高速地区。另一方面,使用的直流母线电压控制方案,变频器操作与方波120°传导速度控制是通过调节斩波直流环节逆变器的输入电压实现。利用这项技术,因为电压控制和变换就可以实现独立,延迟不存在运算可以交换甚至在一个高速地区。此外,以有一个波形相位目前类似的矩形波和终端电压更有效率的处理在位置检测电路。实际应用变换议题延迟的一个高速度的无传感器控制进行了讨论。整个控制系统的实施应用DSP芯片的无刷直流电机TMS320C240和有效性的比较验证了仿真和实验。

关键词无刷直流电机、无传感器控制、DSP控制。

1.介绍

在许多工业领域,需要安装一个轴传感器可能会大幅度增加推动成本以及复杂的电机配置[1]。特别是,为电动机建在一个完全密封压缩机、轴传感器是难以运用由于传感器可靠性降低高温需要额外的导线。此外,这些传感器,尤其是霍尔传感器,温度敏感,限制了电机运行大约75℃以下[1]。一个绝对速度传感器通常限于大约6000转速与旋转需要一个特殊的外部电路。同时,传感器的精度也会受到安装的准确

性。要克服这些弊端,无位置传感器无刷直流电机控制技术提出了一个[1 ~ 5]。有两类位置检测方案,即,该方法利用电机的反电势[2],该方法基于检测间隔进行随心所欲的二极管[3]。

在现有的无传感器控制方案、PWM技术技术通常用于一个速度控制。然而,由于PWM技术和变频变换不能履行独立,明显的变换延迟的一个高速度可能存在的区域。最近,以提高驱动器E的效率,并提供所需的电流波形,一个传感器控制计划使用准电流源逆变器已提出[6]。这样的电路装置被称为一个变量直流环节逆变器[7]。在该方案中,逆变频率控制供应电流有三相矩形脉冲宽度120度及马达速度控制电压调节采用降压斩波器作为降压转换器。然而,一些优势的直流母线电压超过传统的两相PWM在高转速传感器控制计划控制计划都没有得到解决。

本文提出了一种基于DSP高速无刷直流电机无位置传感器控制使用直流环节电压控制方案。无刷直流电机推在一个重量轻在相同的额定功率。控制高速无刷直流电机无转轴侦测元件传感器、基于DSP开发利用TMS320C240控制器。使用直流母线电压控制计划,逆变器的操作与方波120度传导间隔和速度控制是通过调节斩波直流环节逆变器的输入电压来实现。利用这项技术,因为电压控制和变换就可以实现独立,如运算可以交换延迟传统PWM方法二段式激励是不存在的。甚至在一个高速地区,将讨论在以后的部分。转子位置信息利用反电动势检测电压从终端电机和逆变器的开关顺序的[2]。反电动势的感觉到用于集成电路和比较得到变换信号。检测变换信号用于申请适当的下一个序列,得到了转速逆变器在DSP。计算速度的数字控制,控制算法和控制器的输出应用到斩波器。实际应用议题变换时延的激励方案二段式PWM 高速进行了论述,并对直流环节电压的优势控制方案在高速度传感器控制提及。整个控制系统的实施应用DSP芯片的无刷直流电机TMS320C240和有效性的比较验证了仿真和实验。

2、无刷直流电机的无传感器控制

一个无刷直流电机本文认为由永磁体安装对转子表面和三相集中而流离失所的定子120度。定子电流励磁方案段提供的地方只有两三个阶段都很兴奋在任何紧急的时间和一阶段在120年期间进行[8]。这激励方案不需要死亡的时间电力设备的发

动的软铁转子,即使它没有持续的扭矩。永磁类型都有径向非磁化转子。这种类型在展,可以有效进行非全相利用得到的转子位置信息。转子位置信息通常得到间接检测方法利用电机反电动势无刷电机无位置传感器控制[1 _4]。在文献[2]的基础上,从转子位置估计的整合反电动势波形。该方法是众所周知的提供等优点减少开关噪声灵敏度和自动调节的开关瞬间不相移30度。因此,该检测方案本文采用。速度的信息可从衍生工具检测信号的位置。自从变换信号输入DSP每隔60度期内,时钟在DSP 台TC数量和计数的期间是一个60度,机械转子速度可计算转速如下:

在P是大量的增长极。

3、传感器存在的问题的速度控制方案

在现有的无传感器控制方案,二段式激励技术是PWM(脉宽调制)通常用于一个速度控制。基于此方法执行PWM(脉宽调制),脉宽调制方案的经典歌曲了单极和双相性精神交换的方法。在单极开关的方法,PWM技术是叠加在那两人中的一个主动开关在国家,而其他开关仍在状态。另一方面一方面,在双极切换方法,这两个积极执行PWM 开关在同一时间内。自从单极开关有一个优势的减少开关损耗,这个方案是首选的[4]。此外,基于位置的脉宽调制叠加,单极开关的方法是分类为持续的阶段,将相位调制,上下开关开关脉宽调制,脉宽调制。在PWM调制方式进行的阶段,每一个开关被执行PWM技术在第一个60度程度的活跃时间和保留在国家的期间第二个60度区在间,去相PWM调制方式,反之亦然[3,4]。在上面的开关PWM调制方式、PWM(脉宽调制)被执行的时候,只有在上部之一两个活跃的开关,在较低的开关PWM调制方式,反之亦然。根据基于其使用的PWM调制方式,该控制技术可能导致减刑延迟或者一个不规则的开关频率的电力设备在高速度传感器控制。

图1显示PWM开关周期和PWM方案2相励磁整流在瞬间之间的关系。在图1,T 年代和f年代表示PWM技术转换期间和频率,分别。图1(一)说明情况理想的变换。作为古雷中可以看出,如果运算可以交换的瞬间同步,与去年底PWM开关期间, 可以得到一个理想的换相逆变器序列的变化没有任何延迟。然而,由于运算可以交换即时

以同步进行,与去年底目前PWM周期开始下一个逆变器顺序图1(b),这是一般使用方法。这个结果在一个不受欢迎的变换延迟和最大的价值——这次延误PWM技术转换期间来。如果开关频率被选择作为16千赫,最高价值的变换将是62.5秒的延迟。尽管这些减刑延迟可以忽略一个速度范围,它具有重大影响的相电流响应和驱动器的性能在高速度。

例如,当一个两极电动机转速为50000转/分,60度间隔200?秒。这就可以减少运算可以交换延迟增加PWM开关频率。然而事实上,这些开关频率不能增加无极限,因为增加的开关损耗。同时,开关频率的商用电力设备是少于20 kHz。因此,为了避免不良变换延迟,接下来的逆变器应用序列一旦变换信号中断发生。那么,现在的PWM 周期必须终止和新型PWM周期的同步变换中断信号必须开始了。在上部和下部开关PWM(脉宽调制)方案,这可能会得到一个不规则的开关频率大大高于f年代高职条件下如图1(c)。在持续的和持续相PWM方案,这种不规则的开关频率不会发生以来阶段执行PWM不断改变每60度间隔。因此,对正在进行的和持续的PWM方法在图1(c)计划阶段,可以是一个很高的速度传感器控制的首选方式。不过,仍然有一个问题。在高速度,只有少数的PWM脉冲可以用于速度控制在60度间隔。因为一个60度区间的两极成为200秒内每秒电机?50000转/分,如果开关频率被选择作为16千赫,一定数量的PWM脉冲在60ˉ仅为3.2,导致不平等的PWM脉冲数3或4在60度间隔。除非解决脉冲宽度相当高,这可能导致速度脉动在稳态和降解精度的位置信号的检测。这个问题比较严重的地区以更高的速度,可以有效克服,通过控制电压和频率直流环节电压独立的控制方案。

图1 PWM 开关周期之间的关系和运算可以交换即时:(a)理想的变换,变换(b)的情况下延迟和(c)不规则的情况下切换频率。

Electric Power Components and Systems, 30:889–900, 2002

Copyright ? c 2002 Taylor & Francis

1532-5008/ 02 $12.00 + .00

DO I: 10.1080/ 15325000290085190

DSP-Based High-Speed Sensorless

Control for a Brushless DC Motor Using a

DC Link Voltage Control

KYEONG-HWA KIM

MYUNG-JOONG YOUN

Department of Electrical Engineering

Korea Advanced Institute of Science and Technology

Taejon, Korea

A DSP-based high speed sensorless control for a brushless DC (BLDC) motor using a DC link voltage control scheme is presented. By operating the BLDC motor in a high speed range, the drive system can have a small size and be light weight at the same output rating. In the existing sensorless control schemes, the PW M technique is generally used as a speed control. However, since the PWM and inverter commutation cannot be performed independently, a significant commutation delay may exist in a high-speed region. On the other hand, using the DC link voltage control scheme, the inverter is operated with the squarewave of 120 °conduction and the speed control is achieved by regulating the DC link input voltage of the inverter through the chopper. By using this technique,since the voltage control and commutation can be achieved independently, a commutating delay does not exist even in a high speed region. Also, the phase current can have a waveform similar to the rectangular wave and the terminal voltage is more e -cient to deal with in the position detection circuits. The practical implementation issues concerning the commutation delay in a high speed sensorless control are discussed. The whole control system is implemented on a BLDC motor using DSP TMS320C240 and the e?ectiveness is veried through the comparative simulations and experiments.

Keywords brushless DC motor, sensorless control, DSP control

1.Introduction

In many industrial elds, the installation of a shaft sensor may signi cantly increase the drive cost as well as complicate the motor configuration [1]. In particular, for a motor built in a completely sealed compressor, a shaft sensor is difficult to apply due to the degradation of the sensor reliability in high temperature and the need for extra lead wires. Furthermore, these sensors, particularly Hall sensors, are temperature sensitive, limiting the operation of the motor to below about 75°C [1]. An absolute sensor is generally speed limited to about 6000 rpm and a resolver needs a special external circuit. Also, the sensor accuracy may be affected by the accuracy of the mounting. To overcome these drawbacks, sensorless control techniques for a BLDC motor have been proposed [1_5]. There are two categories of position detection schemes, namely, the method using the back EMF of the motor [2] and themethod based on the detection of the conducting interval of free-wheeling diodes [3].

In the existing sensorless control schemes, the PWM technique is generally used for a speed control. However, since the PWM and inverter commutation cannot be performed independently, a signi cant commutation delay may exist in a high speed region. Recently, to improve the drive effciency and provide the desired current waveform, a sensorless control scheme using a quasi-current source inverter has been proposed [6]. Such a circuit arrangement is known as a variable DC link inverter [7].In this scheme, the inverter frequency is controlled to supply three-phase rectangular current with a pulse width of 120°and the motor voltage for the speed control is regulated by using a step-down chopper acting as a buck converter. However, some advantages of the DC-link voltage control scheme over the conventional 2-phase PWM scheme in the high speed sensorless control have not been addressed.

This article presents a DSP-based high speed sensorless control for a BLDC motor

using a DC link voltage control scheme. By driving the BLDC motor at high speed, the overall drive system can have a small size and a light weight at the same power rating. To control the BLDC motor at high speed without a shaft sensor, a DSP-based controller is developed using TMS320C240. Using the DC link voltage control scheme, the inverter is operated with the squarewave of 120°conduction interval and the speed control is achieved by regulating the DC link input voltage of inverter through the chopper. By using this technique, since the voltage control and commutation can be achieved independently, the commutating delay such as in the conventional 2-phase excitation PWM methods does not exist even in a high speed region, which will be discussed in the later section. The rotor position information is detected using the back EMF from the terminal voltages of the motor and the switching sequence of the inverter [2]. The sensed back EMF is used in the integration and comparison circuits to obtain the commutation signals. The detected commutation signals are used to apply the proper next sequence of inverter and obtain the rotational speed within a DSP. The calculated speed is controlled by a digital PI control algorithm and the controller output is applied to the chopper. The practical implementation issues concerning the commutation delay of the 2-phase excitation PWM schemes at high speed are discussed and some advantages of the DC link voltage control scheme in a high speed sensorless control are mentioned. The whole control system is implemented on a BLDC motor using DSP TMS320C240 and the e?ectiveness is veri ed through the comparative simulations and experiments.

2. Sensorless Control of BLDC Motor

A BLDC motor considered in this paper consists of permanent magnets mounted on the rotor surface and three-phase concentrated stator windings displaced by 120° . The stator currents are supplied by the 2-phase excitation scheme where only two of the three phases are excited at any instant of time and one phase is conducted during 120° period [8]. This excitation scheme does not require dead time of the power devices, and furthermore, the unconducting open-phase can be usefully utilized to obtain the rotor

position information. The rotor position information are generally obtained from the indirect detection method using the motor back EMF [1_4]. In [2], the rotor position has been estimated from the integration of the back EMF waveform. This method is known to provide the advantages such as the reduced switching noise sensitivity and automatic adjustment of the switching instants without the phase shift of 30°degrees. Thus, this detection scheme is employed in this paper. The speed information can be obtained from the derivative of the detected position signals. Since the commutation signals are fed into a DSP every 60°period, if the counter clock in DSP is TC and the number of count during 60 degrees is a, the mechanical rotor speed can be computed in rpm as follows:

where P is the number of poles.

3. Problems of Existing Sensorless Speed Control Schemes

In the existing sensorless control schemes, the 2-phase excitation PWM technique is generally employed for a speed control. Based on the method executing the PWM,PWM schemes can be classified as the unipolar and bipolar switching methods.In the unipolar switching method, the PWM is superimposed on one of the two active switches in on state, while the other switch remains on state. On the other hand, in the bipolar switching method, the two active switches execute the PWM at the same time. Since the unipolar switching has an advantage of the reduced switching loss, this scheme is generally preferred [4]. Also, based on the position that the PWM is superimposed on, the unipolar switching method is classi ed as the on-going phase PWM, off-going phase PWM, upper switch PWM, and lower switch PWM schemes. In the on-going phase PWM scheme, each switch executes the PWM during the rst 60ˉ degrees of active interval and is held in on state during the second 60°interval, and in the off-going phase PWM scheme, vice versa [3, 4].In the upper switch PWM scheme, the PWM is executed only on the upper one of two active switches, and in the lower switch PWM scheme, vice versa. Depending on the

used PWM scheme, this control technique may cause a commutation delay or an irregular switching frequency of the power devices in a high speed sensorless control.

Figure 1 shows the relation between the PWM switching period and commutating instant in the 2-phase excitation PWM scheme. In Figure 1, Ts and fs denote the PWM switching period and frequency, respectively. Figure 1(a) shows a case of the ideal commutation. As can be seen in the gure, if the commutating instant is synchronized with the end of the PWM switching period, an ideal commutation can be obtained without any delay in the inverter sequence change. However,since the commutating instant depends on the rotor position, it does not usually coincide with the end of the PWM period. In this case, the commutation can be performed synchronized with the end of the present PWM period to start a next inverter sequence as Figure 1(b) , which is the normally used method. This results in an undesirable commutation delay and the maximum value of this delay becomes the PWM switching period. If the switching frequency is chosen as 16 kHz,the maximum value of the commutation delay will be 62.5 ·sec. Even though this commutation delay can be neglected for a medium speed range, it has significant in uences on the phase current response and drive performance at high speed since the 60-degree interval that the commutation arises in is relatively small.

For example, when a 2-pole motor is rotating at 50,000 rpm, 60-degree interval becomes 200 ·sec. This commutating delay can be reduced by increasing the PWM switching frequency. In practice, however, the switching frequency cannot be increased without limit because of the increased switching loss. Also, the switching frequency of commercially available power devices is less than 20 kHz. Thus, to avoid an undesirable commutation delay, the next inverter sequence has to be applied as soon as the commutation signal interrupt occurs. Then, the present PWM period has to be terminated and the new PWM period synchronized with the commutation interrupt signal must be started. In the upper and lower switch PWM schemes,this may yield an irregular switching frequency much larger than f s under a high duty condition as shown in Figure 1(c) . In the on-going and off-going phase PWM schemes, this irregular switching frequency does not

occur since the phase executing the PWM is continually changed every 60°interval. Thus, the on-going and off-going phase PWM schemes with the method in Figure 1(c) can be a preferred way for a high speed sensorless control. Nevertheless, there is still a problem. At high speed, only a few PWM pulses can be used for the speed control during a 60°interval. Since a 60°interval of a 2-pole motor becomes 200 · sec at 50,000 rpm,if the switching frequency is chosen as 16 kHz, the number of PWM pulses during 60ˉ is only 3.2, which results in an unequal number of PWM pulses 3 or 4 during a 60°interval. Unless the resolution of the pulse width is considerably high, this may result in a speed ripple at steady state and degrade the accuracy of the position signal detection. This problem is more serious at a higher speed region and can be effectively overcome by controlling the voltage and frequency independently by the DC link voltage control scheme.

Figure 1. Relation between the PWM switching period and commutating instant:(a) Ideal commutation, (b) Case of commutation delay, and (c) Case of irregular switching frequency.

根据8086的直流电机的控制

目录 一、直流电机控制的设计思路: (2) 二、直流电机控制的硬件框图: (2) 2.1并行I\O口输入、输出 (2) 2.2输出锁存 (3) 2.3电机驱动模块 (4) 2.4仿真模拟图 (5) 三、软件设计 (6) 3.1程序流程图 (6) 3.2程序代码 (7) 四、项目体会 (9)

一、直流电机控制的设计思路: 1)通过按键改变电动机的启动与停止,当启动后再由按键选择工作方式。 2)通过改变pwm的极性从而改变电机的转向,实现正反转。 3)可实现顺、逆旋转的直接切换,不用按下停止后再启动反向运转。 二、直流电机控制的硬件框图: 通过按钮来控制电机的顺、逆时针转,并且可以实现顺、逆旋转直接切换,无需中间停顿。 2.1并行I\O口输入、输出 采用8255A作为信号的输入与输出接口,使用前需设置芯片的控制

字来确定其工作方式,以及端口的使用。本次采用的控制字为90H,即A组工作在方式0,作为输入接口,连接按钮,B组工作在方式0,作为输出接口连接电机驱动模块。 8255AI\O接口使用 2.2输出锁存 使用常见的74HC373芯片来实现输出锁存,由于按钮具有复位功能,当按钮按下后的一瞬间才产生输入,所以需要输出锁存来保持电机的连续运转,本次采用两块74HC373,一块与8255A的A0、A1口连接作为电机运行信号的控制,另一块与3-8译码器74H138相连,接入8255A的片选信号输入端,选中8255A运行。

74H373接口使用 2.3电机驱动模块 通过对IN1、IN2的状态改变来控制L293D芯片的输出,从而实现电机的顺、逆时针转动 电机驱动模块

基于dsp直流电机调速系统的设计_李方圆

128 在当今电气传动领域,由于直流电动机具有极好的运行性能和控制特性,因此在要求速度调节范围宽、响应快的电气传动中,仍广泛采用直流电动机作为执行电机的直流调速系统。直流电动机具有优良的调速特性,调速平滑,方便,易于在大范围内平滑调速,过载能力大,能受频繁的冲击负载,可实现频繁的无级快速起制动和反转,能满足生产过程自动化系统中的许多特殊运行要求[1]。所以直流调速系统至今仍然被广泛地用于自动控制要求较高的各种生产部门,是调速系统的主要形式。近年来,直流电机的控制方式都发生了很大的变化。随着计算机进入控制领域,以及新型功率电子元器件的不断出现,使采用全控型开关功率元器件进行全数字化直流脉宽调速已成为主流。随着电子技术,特别是电子计算机的高速发展,带来了伺控制系统向智能化方向的快速发展。从当前情况看,直流电动机能在大范围内实现精密的速度控制,所以,要求系统调速性能高的场合都在广泛使用直流电机控制系统。目前直流调速系统在传动领域中仍占重要的地位[2]。 本文在认真学习了直流电机调速原理和数字信号处理芯片工作原理的基础上,以TI公司推出的电机控制专用微处理器TMS320F2812数字信号处理器为系统的控制核心,以L298N集成芯片为直流电机驱动电路,运用PWM技术和PI控制算法对数字直流调速系统进行了设计。 1、基本原理 直流电机的主要调速方法 直流电动机转速n的表达式: 式(1) 式(1)中:U为电枢电压; a I 为电枢电流; R 为电枢电路总电阻; e C 为与电机结构有关的电动势常数;n为转速;为励磁磁通。由式(1)可知直流电机的主要调速方法有三种。(1)调压调速—调节电枢电压U,使电机速度在宽广的范围内平滑变化;(2)弱磁调速—改变励磁磁通大小使转速变化,但基于电机铁磁饱和考虑只能在额定速度以上通过弱磁做升速运行,限制了调速范围;(3)串电阻调速—通过增大电枢电阻实现调速,并伴随有巨大的功率损耗、发热和运行效率下降,很少采用。因此,直流电动机主要采用调压调速方式。 本文设计的直流调速系统采用闭环系统。闭环系统要在开环系统的基础上加上转速检测环节,如图2.1所示。目标转速和测速器检测到的电机当前转速相减,结果作为处理器的输入,处理器根据这个结果控制PWM的占空比。当电机的实际转速比目标转速快时,处理器把PWM的占空比调低,电机的转速变慢。当电机的实际转速比目标转速慢时,处理器把PWM的占空比调高,电机的转速变快。如 基于dsp直流电机调速系统的设计 李方圆 李晓 (中北大学信息与通信工程学院 山西太原 030051) 摘要:在工程实践中,有许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的静,动态性能。采用DSP 控制器控制后,整个调速系统实现全数字化,结构简单,可靠性高,操作维护方便,电机稳态运行时转速精度可达到较高水平。直流电机具有调速平滑,调速范围广等优良的调速特性。又由于直流调速系统是自动化专业教学的重点,本设计为学生们提供了一个良好的实验平台,同学们可以通过此平台进行直流电机调速的实验,可以通过改变PI 参数理解PID 算法对直流电机启动和调速性能的影响。 关键词:dsp 直流电机 调速中图分类号:TM33文献标识码:A 文章编号:1007-9416(2012)12-0128-03 The design of Dc motor speed control system based on DSP LI Fang-yuan,lixiao (1North University of China. The College of Information and Communication, Taiyuan 030051, China) Abstract :In engineering practice, There are many production machinery requirements in a certain range for speed smooth adjustment ,and ask to have good static and dynamic performance. After the controlling of DSP controller the speed control system can realize full digital, simple structure, high reliability, convenient operation and maintenance, and the motor steady state operation speed precision can achieve a higher level. And because of dc speed regulating system is the emphasis of the teaching of automation and this design provides students a good experiment platform, so that Students can experiment through the platform for dc motor speed control ,and they can change the parameters of pi to understand the influence of pid algorithm for dc motors ’starting and the performance of speed controlling. Key Words :dsp dc motor speed control 图1 PWM 闭环控制系统组成

单片机直流电机控制实训报告

单片机直流电机控制实训报告

基于AT89C51单片机的直流电动机控制器设计 实训报告 专业:弹药工程与爆炸技术 班级:弹药二班 学生姓名:杨宁 指导教师:佟慧艳 能源与水利学院

1 实训目的 通过单片机实训使学生能够掌握利用Keil软件编写单片机程序,学会设计完整的单片机应用系统;依托Protues仿真平台进行单片机电子应用系统设计与仿真,使学生掌握单片机应用系统的设计技能;培养学生运用所学知识分析和解决实际问题的能力以及实际动手能力和查阅资料能力。

2 实训任务及要求 2.1 任务描述 一单片机为控制核心设计一款直流电机电机控制系统,可以实现直流电机的加速、正转、反转等控制方式。 2.2 任务要求 1)用AT89C51单片机实现上述任务要求; 2)在Keil IDE中完成应用程序设计与编译; 3)在Proteus环境中完成电路设计、调试与仿真。

3 系统硬件组成与工作原理 3.1单片机的控制器与最小系统 单片机的最小系统是指有单片机和一些基本的外围电路所组成的一个可以使单片机工作的系统,一般来说,它包括单片机、晶振电路和复位电路(如图一)。 图1 最小系统设计截图 (一)控制器部分分析 AT89C51(如图2)是一种带4K字节FLASH存 储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微 处理器,俗称单片机。 AT89C51提供以下标准功能:4k 字节Flash 闪 速存储器,128字节内部RAM,32 个I/O 口线,两 个16位定时/计数器,一个5向量两级中断结构, 一个全双工串行通信口,片内振荡器及时钟电路。 同时,AT89C51可降至0Hz的静态逻辑操作,并支 持两种软件可选的节电工作模式。空闲方式停止CPU 的工作,但允许RAM,定时/计数器,串行通信口及 中断系统继续工作。掉电方式保存RAM中的内容,

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

直流无刷电机的控制技术

直流无刷电机的控制技术 摘要围绕直流无刷电机控制运用广泛技术——基于DSP的控制系统进行了系统研究,采取模糊控制策略,设计出上位监控系统,数字化、智能化的控制系统提出方案,实践证明了系统的平稳性和快速性满足要求。 关键词直流无刷电机;DSP控制;模糊控制 0引言 数字信号(Digital Signal Processing ,DSP)是涉及很多学科,它广泛被用于很多学科与技术领域。数字信号处理器称为DSP芯片,适用在数字信号处理运算的微处理器,能够快速的在数字信号处理算法上实现。现今,DSP芯片用于运动上的控制、数控机床的控制、航天航空的控制、电力系统上的操作、自动化仪器的控制等各个领域[1],该文主要介绍这种基于DSP芯片控制直流无刷电机智能化控制系统的设计。 1 系统结构设计 系统组成由“PC 上位机、电源单元、TMS320LF2407 DSP芯片、无刷直流电机、检测单元、功率驱动模块、通讯接口”等。(见图1) 1.1 DSP芯片的选择 DSP芯片的选择是很重要的,选对了DSP芯片才能设计出其外围电路和其他电路。DSP芯片的选择要根据实际的应用系统进行确定。DSP芯片由于场合不同选择的也就不同,我们要考虑DSP芯片的运算速度、价格、运算精度、功耗、硬件的资源等。我们根据系统要求,选择TI公司TMS320LF2407芯片。 1.2无刷直流电机 该电机采取1500转/分, 无刷直流电机采用1.78A、27V电压进行供电,电机换向电路主要是由控制和驱动组成,直流无刷电机自身属于机电能量转换部分,该部分由电机电枢、永磁、传感器组成。我们把电机的电轴绕组在定子上、把永磁放在转子上,其目的是为了实现换向。无刷直流电机的工作方式是两相导通的星型3相6状态,这样操作方式是因为转子在旋转定子电流中进行不断换相来保证两个磁场电流方向不发生改变,控制3相定子电流通电顺序与大小控制电机旋转的速度。 1.3功率的驱动模块 TOSHIBA公司采用IPM系列智能型模块,IPM主要集成了检测、控制、逻辑、保护电路这样有效提高了稳定性与可靠性。东芝的高速光耦TLP550(F)是

基于单片机的直流电机控制设计性实验报告

设计题目:直流电机控制电路设计 一设计目得 1掌握单片机用PWM实现直流电机调整得基本方法,掌握直流电机得驱动原理。 2学习模拟控制直流电机正转、反转、加速、减速得实现方法. 二设计要求 用已学得知识配合51单片机设计一个可以正转、反转或变速运动得直流电机控制电路,并用示波器观察其模拟变化状况。 三设计思路及原理 利用单片机对PWM信号得软件实现方法.MCS一51系列典型产品8051具有两个定时计数器。因为PWM信号软件实现得核心就是单片机内部得定时器,所以通过控制定时计数器初值,从而可以实现从8051得任意输出口输出不同占空比得脉冲波形。从而实现对直流电动机得转速控制。 .AT89C51得P1、0—P1、2控制直流电机得快、慢、转向,低电平有效.P3、0为PWM波输出,P3、1为转向控制输出,P3、2为蜂鸣器。PWM控制DC电机转速,晶振为12M,利用定时器控制产生占空比可变得PWM波,按K1键,PWM值增加,则占空比增加,电机转快,按K2键,PWM值减少,则占空比减小,电机转慢,当PWM值增加到最大值255或者最小值1时,蜂鸣器将报警 四实验器材 DVCC试验箱导线若电源等器件

PROTUES仿真软件KRIL软件 五实验流程与程序 #include 〈 reg51、h > sbitK1 =P1^0;增加键 sbit K2 =P1^1 ; 减少键 sbit K3 =P1^2;转向选择键 sbit PWMUOT =P3^0; PWM波输出?? sbitturn_around =P3^1 ;?转向控制输出 sbit BEEP =P3^2 ;蜂鸣器 unsigned int PWM; void Beep(void); void delay(unsigned int n); void main(void) { TMOD=0x11;//设置T0、T1为方式1,(16位定时器) TH0=0 ; 65536us延时常数{t=(65536—TH)/fose/12} ?TL0=0; TH1=PWM; //脉宽调节,高8位 ? TL1=0; EA=1;? //开总中断 ET0=1; //开T0中断? ET1=1;??//开T1中断

直流电机PLC控制实验

实验四直流电机PLC控制实验一、实验目的 1.掌握PLC的基本工作原理 2.掌握PID控制原理 3.掌握PLC控制直流电机方法 4.掌握直流电机的调速方法 二、实验器材 1.计算机控制技术实验装置一台 2.CP1H编程电缆一条 3.PC机一台 三、实验内容 根据输入,实现PLC对直流电机的调速PID控制。1、输入功能 (1)功能操作,按钮1 1.1、按钮1按下一次,显示SV(设定点值)。 1.2、按钮1按下两次,显示速度设定值。 1.3、按钮1按下三次,设定P值,显示。 1.4、按钮1按下四次,显示P值。 1.5、按钮1按下五次,设定I值,显示。 1.6、按钮1按下六次,显示I值。 1.7、按钮1按下七次,设定D值,显示。 1.8、按钮1按下八次,显示D值。

1.9、按钮1按下九次,显示At(PID 自调整增益) 1.10、按钮1按下十次,自整定显示 1.11、按钮1按下十一次,复位 (2)增加按钮2,数值增加 (3)减小按钮3,数值减小 (4)确定按钮4,操作确定 2、PWM脉冲输出,接输出101.00。 3、直流电机测速,光耦,接高速脉冲输入。 4、LED显示,根据按钮输入,显示设定值/测量值/加减量。 四、实验原理 1.直流无刷电机PWM调速原理 PWM的意思是脉宽调节,也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高.如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%,那么输出全部电压。 PWM的占空比决定输出到直流电机的平均电压,所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节。在使用PWM控制的直流无刷电动机中,PWM控制有两种方式:(1)使用PWM信号,控制三极管的导通时间,导通的时间越长,那么

直流电机原理与控制方法

专业资料 电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。 2 直流电动机基本结构与工作原理 2.1 直流电机结构

如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所 示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定

基于DSP的直流电机控制系统

基于D S P的直流电机控 制系统 The Standardization Office was revised on the afternoon of December 13, 2020

太原科技大学课程设计报告直流电机的控制 设计人:成凤强 专业:电子信息工程 班级:电子131502 学号: 0204 指导教师:张雄 二零一六年十二月

第一章设计目的及要求 (3) 一、设计目的 (3) 二、设计要求 (3) 第一章设计原理与方案 (3) 一、设计原理 (3) 二、控制原理 (7) 第三章硬件设计 (8) 一、ICETEK DSP教学实验箱简介 (8) 第四章软件设计 (17) 一、程序编制 (17) 二、实验程序流程图 (17) 第五章系统调试 (19) 一、实验准备 (19) 二、实验程序 (20)

第六章结论分析 (20)

第一章设计目的及要求 一、设计目的 1.学习用C语言编制中断程序,控制VC5416 DSP的通用I/O管脚产生不同占空比的PWM信号。 2.学习VC5416DSP的通用I/O管脚的控制方法。 3.学习直流电机的控制原理和控制方法。 二、设计要求 开始运行程序后,电机以中等速度转动(占空比=60,转速=2)。 在小键盘上按数字‘1’一‘5’键将分别控制电机从低速到高速转动(转速==1 ^-5) 。在小键盘上按数字‘0’键将控制电机停止转动。在小键盘上按‘+’或‘一’键切换电机的转动方向。 第一章设计原理与方案 一、设计原理 第一步TMS 初始化。 第二步PWM调速。 第三步键盘控制 DSP的McBSP引脚:通过设置McBSP的工作方式和状态,可以实现将它们当成通用I/O引脚使用。 2.直流电机控制:直流电动机是最早出现的电动机,也是最早能实现调速的电动机。近年来,直流电动机的结构和控制方式都发生了很大的变化。随着计算机进入控制领域,以及新型的电力电了功率元器件的不断出现,使采用全控型的开关功率元件进行脉宽调制((Pulse Width Modulation,简称PWM)控制方式已成为绝对主流。 3.PWM调压调速原理

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

直流电机原理与控制方法

电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将 直流电能转换成机械能(直流 电动机)或将机械能转换成直 流电能(直流发电机)的旋转 电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。

2 直流电动机基本结构与工作原理 2.1 直流电机结构 如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所

示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电动机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 发电机的原理则是电机的逆过程:原动机提供转矩,利用法拉第电磁感应产生直流电流。 如下图,比较清晰的说明了直流电动机的原理。 3直流电机重要特性 如下图,更加清晰的揭示了直流电机电流电压与转速转矩之间的关系。 我们可以得到直流电机的四个基本方程:

DSP无刷直流电动机驱动控制程序

2.4 无刷直流电动机驱动控制程序 //########################################################################## ###/// //无刷电机控制源程序 //TMS320F2812 // //########################################################################## ### //===================================================================== //头文件调用 //===================================================================== #include "DSP28_Device.h" #include "math.h" #include "float.h" //===================================================================== //常量附值 //===================================================================== #define Idc_max 3000 //电流给定最大值 #define Idc_min 0 //电流给定最小值 //===================================================================== //标志位 //===================================================================== char Iab_Data=0; struct Flag_Bits { // bits description

直流电机转速控制的matlab实验

2012/2013学年第一学期《精密测控与系统》期末大型作业 日期:2012 年11 月 题目与要求: 直流电机转速控制问题,直流电动机物理模型如下图所示。

电动机产生的转矩与电枢电流成正比,即:t t T K i =,电枢绕组的反电动势与转速成正比,即:e d e K dt θ=,牛顿第二定律:2 2d T J dt θ=,其中J 为电机轴上的转动惯 量。 已知:转动惯量:2 2 0.01kg.m /s J =,机械系统摩擦系数:0.1N.m.s b =,电动机力矩 系数:0.01N.m/A e t K K ==,电阻:1R =Ω ,电感:0.5H L =。假设电机转动系统刚 性,输入量为直流电压V ,输出量为电机转速θ 。 问题1:建立该系统的时域数学模型。 问题2:给出该系统的传递函数,用Matlab 计算该系统的阶跃响应曲线,给出阶 跃响应的特征参数。 问题3:建立该系统的状态空间表达式,用Matlab 计算该系统的阶跃响应曲线。 问题4:加入速度反馈及PID 控制器环节,使系统性能达到: (a ) 建立时间<2s; (b ) 超调量<5%; (c ) 稳态误差<1%. 问题5:采用下图所示的模糊控制系统 系统中的模糊控制器是一个双输入单输出型的控制器,输入变量为转速的误差e 和转速误差的变化率Δe ,输出为直流电压的增量ΔV 。请选用合适的隶属度函数,建立该系统的模糊控制规则库,对电机的转速进行控制使期望转速为1000r/min ,建立时间<2s;超调量<5%;稳态误差e<±1.0%。 问题6:通过这个大型作业,谈谈你对本课程的学习心得和体会,以及对本课程授课方式的建议和改进。 一、建立该系统的时域数学模型

直流电机的控制原理

直流电机的控制原理 直流无刷电机的控制原理:要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下:AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组 →CH、AL一组→CH、BL一组,但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。 当电机转动起来,控制部会再根据驱动器设定的速度

及加/减速率所组成的命令(Command)与hall-sensor信号变化的速度加以比对(或由软件运算)再来决定由下一组(AH、BL或AH、CL或BH、CL或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由PWM 来完成。PWM是决定电机转速快或慢的方式,如何产生这样的PWM才是要达到较精准速度控制的核心。

基于 DSP 的无刷直流电机

工学硕士学位论文 基于DSP的无刷直流电机 控制系统 鲁宗峰 哈尔滨理工大学 2005年3月

国内图书分类号:TM33 工学硕士学位论文 基于DSP的无刷直流电机 控制系统 硕士研究生:鲁宗峰 导师:张春喜 申请学位级别:工学硕士 学科、专业:电力电子与电力传动 所在单位:电气与电子工程 答辩日期:2005年3月 授予学位单位:哈尔滨理工大学

Classified Index:TM33 Dissertation for the Master Degree in Engineering THE CONTROL SYSTEM OF BLDCM BASED ON DSP Candidate:Lu zongfeng Supervisor:Zhang chunxi Academic Degree Applied for:Master of Engineer Specialty:Power Electronics and Electric Power Transmission Date of Oral Examination:March, 2005 University:Harbin University of Science and Technology

哈尔滨理工大学工学硕士学位论文 基于DSP的无刷直流电动机控制系统 摘要 永磁无刷直流电动机控制系统是一种新型的调速系统。该系统具有良好的运行、控制及经济性能,显示出巨大的发展潜力。尤其值得指出的是,我国稀土资源丰富,稀土磁钢生产已达到国际水平,如果充分利用和发挥我国在这方面的优势,大力发展稀土永磁电机,形成无刷直流电动机系列产品,将对提高我国机电产品在国际市场的竞争力,具有战略意义。本文正是基于这一考虑,对无刷直流电动机的控制技术与控制方法进行研究。 我们用美国TI公司专门为电机的数字化控制设计的16 位定点DSP控制器TMS320LF2407A 作为微控制器。它集DSP 的信号高速处理能力及适用于电机控制的优化的外围电路于一体,可以为高性能传动控制提供可靠高效的信号处理与控制硬件。 本文在对永磁无刷直流电动机调速系统的发展及应用综述的基础上,介绍了采用DSP芯片对无刷直流电动机进行换向与转速控制的微机控制系统。文中给出了系统的总体设计方案,分析了无刷直流电机的工作原理和数学模型,提出了驱动电路和控制电路的设计策略。阐述了该系统的基本结构、工作原理、运行特性及其设计方法。文中还对硬件各种功能的控制原理和电路设计以及各软件模块(包括位置信号检测,PWM 波产生,正反转控制,故障保护中断处理等)进行了详细的分析。最后给出了样机运行的实验结果。 关键词无刷直流电动机(BLDCM);DSP控制系统;脉宽调制 - - I

直流电机控制实验指导书

实验一直流电机速度控制与PID参数校正 一、实验目的 1、掌握调整直流伺服驱动器PID参数的方法 2、理解不同转动惯量对系统性能指标的影响 二、实验要求 通过simulink对电机进行仿真,确定合适的PID参数。随后对直流电机进行电流环、速度环、位置环的PID控制,通过改变系统转动惯量,根据期望性能指标整定直流伺服驱动器的电流环、速度环、位置环PID参数,确保理论曲线与实际曲线尽量拟合。进一步地分析直流电机控制精度的影响因素。 三、实验设备 1、直流伺服系统控制平台,GSMT2012; 2、PC、Easy Motion Studio软件; 四、实验原理 转动惯量是刚体转动时惯量的度量,其量值取决于物体的形状、质量分布及转轴的位置。转动惯量在旋转动力学中的质量,所以当系统转动惯量增大后,相同的控制器参数情况下,系统的性能指标一定下降。为保持原有的性能指标,必须重新整定PID参数。 五、实验步骤 1、Easy Motion Studio软件对直流电机进行测试 Easy Motion Studio是针对直流电机控制器进行参数调整的专业软件,它能够实时在线的对电机的参数进行调整,并通过编码器对电机参数进行测试,并通过软件界面观测调试结果,最终成功选择合适的PID参数。首先,对Easy Motion Studio软件进行了解。 点击图标,进入软件界面,选择“Open”,并点击“OK”。如下图所示。

进入软件界面后,在“View”菜单下,选择“Project”即可得到以下界面。 选择在左列的下拉菜单选择“Setup”,并选择“Edit”,在这里对直流电机的参数可以方便地进行调整,并可对调整后的结果进行实时观测。需要注意的是,在这里电机应选择T54。并 选择“Save to User Database”。

直流电机PID控制与仿真.

长春大学 课程设计说明书 题目名称直流电机速度PID控制与仿真 院(系)电子信息工程学院 专业(班级)自动化13403 学生姓名张华挺 指导教师曹福成 起止日期2016.10.24——2016.11.04

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 直流电机速度PID控制与仿真 摘要:在本次课程设计中重点研究直流电机的工作原理以及直流电机的各种调速方法。在调速控制中,我们包含两个大的部分,一个是直流电机的开环控制,另一个是直流电机的闭环控制,在直流电机的闭环控制中,又分别介绍转速闭环控制和PID闭环控制,并且对直流电机的每个模型进行建模并仿真,观察其动态性能,分析研究直流电机的各个控制的优缺点。 关键词:直流电动机;转速控制;PID控制;Matlab仿真

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ DC Motor Speed PID Control and Simulation Abstract: In this curriculum design, the work principle of DC motor and DC motor speed control methods are studied. In speed control, we include two parts, one is the open loop control of DC motor, the other is a closed loop DC motor control in DC motor closed-loop control, and introduces the speed closed-loop control and PID control, and each model of the DC motor for modeling and simulation to observe the dynamic performance analysis of DC motor control and the advantages and disadvantages of each. Keywords: DC motor; speed control; PID control; Matlab simulation

DSP+PWM控制电机

32位定点DSP, 片上存储器 z FLASH:128K*16-位 z SRAM:18K*16-位 z BOOT ROM:4K*16-位 z OTP ROM: 1K*16-位 片上外设 z PWM:16路 z CAPTURE / QEP:6通道 z SCI:2路 z CAN :1路 z SPI :1路 z McBSP:1路 z AD :2×8路、12-位、80ns转换时间、0~3V量程 z看门狗 z3个外部中断触发 z Flash加密 z供电电压:1.9-V (150M)/1.8VCore, 3.3-V I/O 外部数据总线:XZCS0AND1 、XZCS2 、XZCS6AND7

32位定点DSP,60M主频,便于实现工业控制和电机控制等场合。 片上存储器 z SRAM:6K*16 z FLASH:16K*16 z OTP ROM: 1K*16 片上外设 z EPWM:8路 z HRPWM: 4路,占用EPWM1A/2A/3A/4A z ECAPTURE: 2路 z SPI: 1路 z IIC: 1路 z AD: 2×8路、12-位、267ns转换时间、0~3V量程 z看门狗 z3个外部中断:由外部GPIOA进行触发 z Flash加密 z供电电压:1.8-V Core, 3.3-V I/O

TMS320F28015较TMS320F2812不同 取消了两个事件管理器,将PWM单元和CAP单元独立出来,便于设计人员从单片机向DSP过渡 无外部数据地址总线 ADC单元增加了零点校正 增强的CAP,32位计数器,也可以将CAP管脚设成PWM输出管脚 增强的PWM单元 z8路PWM,EPWMxA和EPWMxB(x为1~4) z EPWMx可以由外部同步信号(EPWMxSYNCI)进行同步控制 z每路EPWMx输出可以由外部信号TZx进行异步触发,如触发为低、高或高阻 z高解析度PWM(HRPWM),可在100 KHz 控制环路中实现16位精度,或在1.5 MHz情况下实现12 位精度,可以为电源等提供更高的输出精度 3个外部中断,任意一个GPIOA(GPIO0~GPIO31)都可以触发,TMS320F2812有3个固定的外部中断引脚 无论在何种主频下内核供电电压1.8V 内核和IO口上电顺序没有严格要求,IO不必先内核上电

基于单片机的直流电机控制设计性实验报告

设计题目:直流电机控制电路设计 一设计目的 1 掌握单片机用PWM实现直流电机调整的基本方法,掌握直流电机的驱动原理。 2 学习模拟控制直流电机正转、反转、加速、减速的实现方法。 二设计要求 用已学的知识配合51单片机设计一个可以正转、反转或变速运动的直流电机控制电路,并用示波器观察其模拟变化状况。 三设计思路及原理 利用单片机对PWM信号的软件实现方法。MCS一51系列典型产品8051具有两个定时计数器。因为PWM信号软件实现的核心是单片机内部的定时器,所以通过控制定时计数器初值,从而可以实现从8051的任意输出口输出不同占空比的脉冲波形。从而实现对直流电动机的转速控制。 。AT89C51的P1.0—P1.2控制直流电机的快、慢、转向,低电平有效。P3.0为PWM波输出,P3.1为转向控制输出,P3.2为蜂鸣器。PWM控制DC电机转速,晶振为12M,利用定时器控制产生占空比可变的PWM波,按K1键,PWM值增加,则占空比增加,电机转快,按K2键,PWM值减少,则占空比减小,电机转慢,当PWM值增加到最大值255或者最小值1时,蜂鸣器将报警 四实验器材

DVCC试验箱导线若电源等器件 PROTUES仿真软件KRIL软件 五实验流程与程序 #include < reg51.h > sbit K1 =P1^0 ; 增加键 sbit K2 =P1^1 ; 减少键 sbit K3 =P1^2 ; 转向选择键 sbit PWMUOT =P3^0 ; PWM波输出 sbit turn_around =P3^1 ; 转向控制输出 sbit BEEP =P3^2 ; 蜂鸣器 unsigned int PWM; void Beep(void); void delay(unsigned int n); void main(void) { TMOD=0x11; //设置T0、T1为方式1,(16位定时器) TH0=0 ; 65536us延时常数{t=(65536-TH)/fose/12} TL0=0; TH1=PWM ; //脉宽调节,高8位 TL1=0; EA=1; //开总中断 ET0=1; //开T0中断

相关文档