文档库 最新最全的文档下载
当前位置:文档库 › 非线性动力学之一瞥_Lorenz系统

非线性动力学之一瞥_Lorenz系统

非线性动力学之一瞥_Lorenz系统
非线性动力学之一瞥_Lorenz系统

非线性动力学

非线性系统之一瞥——Lorenz系统

2013-01-30

0 前言

0.1非线性系统动力学

线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。

非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。研究的对象主要有分叉、混沌和孤立子等。

0.2洛伦兹方程

洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。本文借助洛伦兹系统对非线性进行简单的介绍。洛伦兹方程如下。

方程中,、和都为实参数。实参不同,系统的奇点及数目也是不同的。

1 奇点和稳定性

1.1 奇点

洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。首先,一定是系统的奇点。时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。

下面仅解时的两个非原点奇点。令

方程第一式得,第三式可得,将两式代入第二式得

即,。

1.2 奇点稳定性判别

下面根据Liapunov稳定性判别方法,找出系统在原点处大围渐进稳定的条件,取Liapunov函数。考虑,的情况。则有

将洛伦兹方程

代入上式,可得

变换为二次型,系数矩阵为

已知,,则系数矩阵负定的条件是。所以该系统是大围渐进稳定的条件是,前提是,。

Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。仍以洛伦兹系统为例,求出导算子的特征值。

特征矩阵的行列式(特征方程)为

特征值

显然,当,时,,,要使方程在原点处渐进稳定,必须小于0,因此

两边同时平方可得

因此

显然使得系统在奇点渐进稳定。

1.3中心流形定理

导算子的特征根的实部都不为0,它的Liapunov稳定性可由特征值实部来判定;若导算子的特征根实部有0存在,显然不能通过Liapunov定理判断,可以借助中心流形定理判断。特征根中,零实部特征根对应的特征向量构成的子空间比较特殊,从这个解子空间出发的轨线是周期轨。

前面计算得到,特征值中,,可以使

,此时,即三个特征值分别为

特征向量分别为

洛伦兹系统方程组不是标准形式,先将其化为标准形式,令

由洛伦兹方程中

因此

因为标准形为

因此

代入前一式可得

若只判断奇点的稳定性,只需计算其中心流形

代入变换后的方程组

下面用近似的方法求中心流形,即分别将和表示成幂级数的形式

由条件可以使幂级数化为

代入第一式可得

展开可得

比较和的系数可得

因此

因此

因此中心流上的解满足

因此

1):

时,当时;时,当时。因此时,奇点是稳定的。

2):

时,当时,远离原点;时,当

时,远离原点。因此时,奇点是不稳定的。

图 1.1 Lorenz系统中心流形

2 分叉

2.1 概念

分叉是指在含有参数的系统中,参数值连续地变化到某一值时系统的定性或定量行为发生了质的变化。这种变化包括奇点的数目和稳定性变化、闭轨数目的变化以及同宿轨、异宿轨的出现或消失。

2.2 洛伦兹系统的奇点分叉

通过前面的讨论可以发现,洛伦兹系统随参数的变化奇点的数目和奇点稳定性将发生改变,这就是奇点分叉的实例。

(1)奇点数目的改变:

前面计算奇点数目时发现,奇点的数目与无关,而与和有关。若,时有三个奇点和;时就有一个奇点。若,恰与之相反。若,也只能有一个奇点。

(2)奇点稳定性的变化

因为有三个参数,奇点不唯一且变化,所以讨论起来比较麻烦。下面以奇点为例分析。特征值为

显然,从负变为正时,从正变为负,奇点一定从不稳定变为稳定。但是时,出现了零特征根的情形,在这一点是否稳定需要通过中心流形来判断,方法同前面讨论时的一样。

(3)hopf分叉

Hopf分叉是指导算子的特征值沿复平面的上方或下方(即不是通过实轴)穿过虚轴。下面试讨论洛伦兹系统在处的Hopf分叉。

对于,显然是实数,变化经过实轴穿过虚轴,显然不是Hopf分叉。只有和有可能不经过实轴。不经过实轴时,,实部的变化与有关。令,得,时实部大于0。

图 2.1 的正负

分情况讨论(如图 2.1):

时,要求

时,要求

时,,因此不存在Hopf分叉。

图 2.2 分叉类型3 混沌吸引子

用数值方法计算出的lorenz吸引子

图 3.1 ,,

图 3.2 和(红色),,

图 3.2 ,(红色)和(黄色),

C语言代码

#include "stdafx.h"

#include "stdafx.h"

#define N 4001

void main()

{

double sigma,mu,beta,delta;

double x[N],y[N],z[N];

int i;

sigma=10;

mu=28;

beta=8/3;

delta=0.01;

x[0]=1;

y[0]=0;

z[0]=0;

for(i=1;i<=N-1;i++)

{

x[i]=x[i-1]+delta*sigma*(-x[i-1]+y[i-1]);

y[i]=y[i-1]+delta*(-x[i-1]*z[i-1]-y[i-1]+mu*x[i-1]);

z[i]=z[i-1]+delta*(x[i-1]*y[i-1]-beta*z[i-1]);

}

FILE*out=fopen("lorenz.csv","w");

for(i=0;i<=N-1;i++)

{

fprintf(out,"%f,",x[i]);

}

fprintf(out,"\n");

for(i=0;i<=N-1;i++)

{

fprintf(out,"%f,",y[i]);

}

fprintf(out,"\n");

for(i=0;i<=N-1;i++)

{

fprintf(out,"%f,",z[i]);

}

fprintf(out,"\n");

fclose(out);

}

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

非线性动力学之一瞥_Lorenz系统

非线性动力学 非线性系统之一瞥——Lorenz系统 2013-01-30

0 前言 0.1非线性系统动力学 线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。 非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。研究的对象主要有分叉、混沌和孤立子等。 0.2洛伦兹方程 洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。本文借助洛伦兹系统对非线性进行简单的介绍。洛伦兹方程如下。 方程中,、和都为实参数。实参不同,系统的奇点及数目也是不同的。

1 奇点和稳定性 1.1 奇点 洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。首先,一定是系统的奇点。时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。 下面仅解时的两个非原点奇点。令 方程第一式得,第三式可得,将两式代入第二式得 即,。 1.2 奇点稳定性判别 下面根据Liapunov稳定性判别方法,找出系统在原点处大围渐进稳定的条件,取Liapunov函数。考虑,的情况。则有 将洛伦兹方程 代入上式,可得 变换为二次型,系数矩阵为

已知,,则系数矩阵负定的条件是。所以该系统是大围渐进稳定的条件是,前提是,。 Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。仍以洛伦兹系统为例,求出导算子的特征值。 特征矩阵的行列式(特征方程)为 特征值 显然,当,时,,,要使方程在原点处渐进稳定,必须小于0,因此 两边同时平方可得 因此

转子系统非线性振动研究进展

转子系统非线性振动研究进展 3 陈安华 刘德顺 朱萍玉 (湘潭矿业学院振动、冲击与诊断研究所,湖南湘潭,411201)摘 要 由于机械运转速度的不断提高和新型材料、新型结构的推广应用,旋转机械的非线性动力学行 为日显突出和重要1基于线性系统原理的转子动力学理论与方法难以对实践中出现的丰富的非线性动 力学现象作出准确的描述、阐释和预测1近年来,随着非线性科学研究的深入和渗透,转子系统非线性 振动已成为应用力学和机械工程领域的研究热点之一1从有利于建立旋转机械振动状态集与故障集之 间的映射关系出发,综述了近年来转子系统非线性振动研究的主要进展,总结了转子系统中出现的典型 非线性动力现象及其产生机理,目的在于丰富旋转机械故障诊断知识库1参551 关键词 转子 非线性振动 故障诊断 稳定性 分岔 分类号 TH17,TH113 第一作者简介 陈安华 男 35岁 博士 副教授 机械动力学与机械故障诊断 0 引言 自从Jeffcott H H (1919)以来,基于线性系统理论的转子动力学获得了很大的发展,涉及的主要问题(不平衡响应计算、临界转速确定、运转稳定性、参数辨识以及转子平衡)至今在理论上已较为成熟,在实践中也获得了成功的应用,并且拓展了新的应用领域,如机械故障诊断技术等1随着机械运转速度的日益提高和新型材料、新型结构的推广应用,旋转机械中出现的复杂的非线性动力学行为日益引起关注1导致转子系统非线性的主要因素有:轴和支承材料本身的非线性应力应变关系[1,2],滚动轴承刚度[3,4,5,6,7],滑动轴承和挤压油膜阻尼器的油膜力[8,9,10,11],间隙和碰摩[12,13,14,15,16,17],裂纹[18,19,20],参数(质量或刚度)时变[21,22,23]等1由于这些因素不可避免地存在,准确描述转子系统真实动力学行为的微分方程是非线性的1在不少实际问题的处理中,合理的线性化自然能显著地减少分析与计算工作量,降低理论上和技术上的难度,且所得结果与对真实系统的观测基本相符,因而基于线性系统理论的转子动力学得到了充分的发展和广泛的应用,并显示出强大的生命力1然而,当真实转子系统的非线性较为显著时,如果仍采用近似的线性化模型和线性系统的分析方法,将不可避免地“过滤”掉许多系统固有的非线性动力学现象,如稳态响应对初始条件的依赖性、解的多样性与稳定性、振动状态突变、超谐波次谐波共振、混沌振动以及系统长期性态(吸引子)对参数的依赖性等,其主观分析结果与真实系统的客观动力学行为之间必然存在不可忽视的定性和定量上的差异1在大型旋转机械状态监测与故障诊断实践中,人们时常面临转子动力学传统理论难以作出准确阐释的异常振动现象,这就说明,开展转子系统非线性振动的研究,不仅是转子动力学学科自身不断深化的必然结果,更是源于工业实践的迫切需求1 收稿日期:1999-02-24 3国家自然科学基金资助项目(编号:59875073)本文责任编辑:王窈惠 第14卷第2期 1999年 6月湘潭矿业学院学报J.XIAN GTAN MIN.INST.Vol.14No.2J un. 1999

非线性动力学练习题

2013 “非线性振动” 练习题 1、简述绘制相轨线的原理及其作用。 2、用小参数摄动法求 )1(220<<=+εεωx x x x 的一阶近似解。 3、 用多尺度法或均值法求 (第三章16) )1(320<<=+εεωx x x 的一阶近似解。 4、 用多尺度法求周期激励范德波尔方程 0)0(,)0(,cos )1(220220=-+=+-=+x F A x t F x x x x ω ωωεω 的非共振解。 5、 设运动微分方程为 )1(cos 220<<+-=+εωεωt F x x x 试求0ωω≈的主共振解。 6、 简述非线性单自由度保守系统自由振动的主要特点及与线性系 统的区别。 7、 简述非线性单自由度系统在简谐激励下的强迫振动特点。 8、 简述自激振动产生的主要原因及其特点。 9、 以两自由度非线性系统为例,简述非线性多自由度系统振动的 主要特点。 10、 简述分岔和混沌的概念。(考试从中选取5题)

1、简述绘制相轨线的原理及其作用。 答:绘制相轨迹线的原理如下: 将系统的动力学方程... +(x,)=0x f x 转化为以状态变量表示的状态方程组 ..==-(x,y) y x y f (1) 在利用上式消去微分dt,得到y x 和的关系式 ,=-dy f dx y (x y ) (2) 这个式子所确定的平面(x,y )上的各点的向量场,就构成了相轨迹族。 绘制相轨迹线的方法有两种,第一是等倾线法。等倾线法的原理如下,令方程(2)右边等于常数C ,得到(x,y)相平面内以C 为参数的曲线族 (x,y)+Cy=0f (3) (3)称作相轨迹的等倾线族,族内每一曲线上的所有点所对应的由方程(2)确定的向量场都指向同一方向。 第二种方法是李纳法。其原理如下: 适当选择单位使弹簧的系数为1,设单位质量的阻尼力为-(y)?,则有f(x,y)=x+(y)?。相轨迹微分方程为 +(y)=-dy x dx y ? (4) 在平面上做辅助曲线=-(y)x ? 。此辅助曲线即上述零斜率等倾线,过某个相点 P (x,y )作x 轴的平行线与辅助曲线交与R 点,再过R 点作y 轴的平行线与x 轴交于S 点,连接PS ,将向量PS → 逆时针旋转90度后的方向就是方程(4)确定的相轨迹切线方向。 相轨迹线可以帮助我们定性地了解系统在不同初始条件下的运动全貌。当系统是强非线性振动的时候,近似解析法(如小参数摄动法,多尺度法)不再适用,此时可以采用相轨迹法来研究。(相轨迹线的作用) 非线性动力学主要研究非线性振动系统周期振动规律(振幅,频率,相位的变化规律)和周期解的稳定条件。其研究内容主要有:保守系统中的稳定性及轨道扩散问题;振动的定性理论;非线性振动的近似解析方法;非线性振动中混沌的控制和同步问题;随机振动系统和参数振动系统问题等。

机械设计基础第十四章 机械系统动力学

第十四章 机械系统动力学 14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。 2222 2121221 12323121 13212 1 13222 12311212213121313 ( )()()()1()()()( )()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωω ωωωω ωω ωωωωνω=+++=-= += +=+-=++++++解: 14-12、机器主轴的角速度值1()rad ?从降到时2()rad ?,飞轮放出的功 (m)W N ,求飞轮的转动惯量。 max min 122 2 121 ()2 2F F Wy M d J W J ?ν??ωωωω==-=-? 解: 14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ?=, 3 H 1 2 3 2 1 H O 1 O 2

不均匀系数0.02δ=,曲柄长度0.5OA l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。 (a) W v 与时间关系图 (b )、能量指示图 a 2 24()2 3015m Wy=25N m 25 6.28250.02 c va OA vc OA OA va F W W F l F l l F N Mva N J kg m νν=∏?∏=∏+==∏= =?解:稳定运动循环过程 14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。作用在轮 2 上的阻力距地变化为: 2r 22r 020M M M ??≤≤∏==∏≤≤∏=当时,常数;当时,,两轮对各自中心的转动惯量为12J J 、。轮的平均角速度值为m ω。若不均匀系数为δ,则:(1)画出以轮1为等效构件的等效力矩曲线M ν?-;(2)求出最大盈亏功;(3)求飞轮的转动惯量F J 。 图14-24 习题14-17图 40Nm 15∏ 12.5∏ 22.5∏ 15Nm ∏ 2∏ 2.5∏ 4∏ 25∏ 1 1 z 2 z 2 r M 2 M ∏ 2∏ 2?

非线性转子 动力学

航空发动机非线性转子碰磨研究 XXX (XXXX 机械工程上海200072) 摘要:综述了国内外非线性转子动力学的研究现状,讨论了非线性转子动力学研究中的7个主要问题,并引述了大量相应的国内外文献,包括:非线性转子动力学研究的一般方法;求解非线性转子动力学问题的数值积分方法;大型转子-轴承系统高维非线性动力学问题的降维求解;基于微分流形的动力系统理论方法;转子非线性动力学行为的机理研究和实验研究;高速转子-轴承系统的非线性动力学设计,最后讨论了非线性转子动力学研究中存在的问题及展望。 关键词:非线性;高速转子;数值积分法 The research for Aeroengine nonlinear rotor WANG Qing-long (Shanghai university mechainal engineering 20072 shanghai) Abstract: Reviewed the research status of nonlinear rotor dynamics both at home and abroad, discusses the seven main in the study of nonlinear rotor dynamics. To questions, and cited a large number of relevant literature both at home and abroad, include: common methods of nonlinear rotor dynamics; To solve the non-linear. Rotor dynamics problems of numerical integral method; Rotor - bearing system of large dimension reduction solution for high dimensional nonlinear dynamics; In the theory of differential dynamic system of the manifold method; Rotor nonlinear dynamics behavior of mechanism research and experiment research; High speed rotor shaft. Bearing system of the nonlinear dynamics design, and finally discusses the problems of nonlinear rotor dynamics research and prospects. Key words: nonlinear; High speed rotor; The numerical integral method. 由于旋转机械系统中各种异常振动的存在,常常引发灾难性的事故。过去研究转子-轴承-基础系统大多采用基于线性转子动力学理论。例如传统转子动力学对转子-轴承系统稳定性问题的研究,一般采用8个线性化的刚度与阻尼特性系数的油膜力模型。对于大型旋转机械中存在的油膜力、密封力、不均匀蒸汽间隙力等严重的非线性激励源,由于数学模型不够完善,以致系统中存在的许多由非线性因素引起的多种复杂动力学行为尚没有彻底搞清,不能满足现代工程设计的需要,迫切需要建立转子-轴承系统的非线性动力学理论,揭示系统存在的各种非线性动力学行为,提出转子-轴承系统的非线性动力学设计方法,研究旋转机械中存在的各种实际问题,这对提高旋转机械运行的稳定性、安全性、可靠性具有重要的现实意义和实际工程背景。 随着非线性动力学理论的发展,非线性转子动力学理论和方法也受到了关注,大量的研究成果使转子动力学面貌一新。但现有的非线性动力学理论和方法在解决高维动力系统方面还存在困难,而工程实际中的转子-轴承-基础系统是一个复杂的高维系统,从而吸引了更多的研究者从事这方面的研究,特别是现代非线性动力学理论在转子动力学中的应用,已成为当今国

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

机械动力学考试答案

图4 机器安装示意图 88、一个质量20Kg 的机器,按图4所示方式安装。若弹簧的总刚度 为17KN/m ,总阻尼为300m s N ?。试求初始条mm x 250=,s mm x 3000= 时的振动响应。 88、解:由0=++kx x c x m 代入数据后得 08501501017300203=++=?++x x x x x x (8分) 其中,152=a ,8502=n ω,计算阻尼比和固有圆频率 17.2826.012.291126.02 .295.722=-?=-=<===ζωωωζn d n a (4分) 将初始条件代入 00020020arctan )(ax x x ax x x A d d +=++= ω?ω (4分) 得: o d d ax x x mm ax x x A 3.555.25.730017.2825arctan arctan )(4.30)17.2825.7300(25)(0002220020?+?=+==?++=++= ω?ω(2分)

则系统的振动响应为 4. 305.7+ =-t x t(2分)e sin( 28 ) 96 .0 . 17

1. “机械动力学”主要研究哪些内容,请以任一机器为对象举例说明研究内容及其相互关系。 答:机械动力学是研究机械在力的作用下的运动和机械在运动中产生的力,并从力与运动的相互作用的角度进行机械设计和改进的科学。动力学主要研究内容概括起来有:1,共振分析;2,振动分析与动载荷计算;3,计算机与现代测试技术的运用;4,减震与隔振。柴油机上的发动机,发动机不平衡时会产生很强的地面波,从而产生噪声,而承受震动的结构,发动机底座,会由于振动引起的交变应力而导致材料的疲劳失效,而且振动会加剧机械零部件的磨损,如轴承和齿轮的磨损等,并使机械中的紧固件如螺母等变松。在加工时还会导致零件加工质量变差。通过对共振的研究和分析,使机械的运转频率避免共振区,避免机械共振事故的发生,通过振动分析与动载荷计算可以求出在外力作用下机械的真实运动,运用计算机和现代测试技术对机械的运行状态进行检测,以及故障诊断,模态分析以及动态分析,现实中机器运转时由于各种激励因素的存在,不可避免发生振动,为了减小振动,通常在机器底部加装弹簧,橡胶等隔振材料。 2.简述在刚性运动前提下,如何进行运动构件的真实运动分析求解(请列出步骤)? 答:首先建立等效力学模型,将复杂的机械系统简化为一个构件,即等效构件,根据质点系动能定理,将作用于机械系统上的所有外力和外力矩、所有构件的质量和转动惯量,都向等效构件转化;其次计算等效构件上的等效量(包括等效力矩,等效力,等效质量,等效转动惯量);再次建立等效构件的运动方程式,有两种形式,能量形式和力矩形式;最后通过方程式求出等效构件的角速度函数和角加速度函数,这样便可以求出机械系统的真实运动规律。 3.在弹性运动假设下,有哪些弹性动力学建模方法,各有什么特点?请解释“瞬时刚化” 的概念。) 答:弹性动力学模型有集中参数模型和有限元模型。集中参数模型建立起的运动方程为常微分方程,但是由于质量简化过多,模型粗糙,精度比较差;有限元建立的运动方程也为常微分方程,但相较集中参数模型精确,适应性广,可以模拟复杂形状的构件,运算模型统一。瞬时刚化:机构在运动到循环中的某一位置时,可将机构的形状和作用在其上的载荷瞬时冻结起来,从而可瞬时的将机构看做一个刚体结构。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

分数阶非线性系统动力学特性及其图像处理应用研究

分数阶非线性系统动力学特性及其图像处理应用研究 非线性动力学在自然学科、社会学科、工程技术等诸多领域有着广泛的应用。而将非线性动力学理论引入图像处理领域,是非线性动力学理论应用的新思路,也是图像处理的新手段。 本文以分数阶非线性动力学和同步控制为理论基础,研究分析了新的非线性动力学特性,探索其与图像处理领域的契合点,在此基础上构建基于非线性动力学特性的图像处理模型。新模型的构建拓宽了非线性理论的应用领域,可为人脑感知系统的内部机制提供新的解释和预测,在图像处理领域和神经动力学方面都具有较好的理论意义和应用前景。 本文的主要工作及创新点包括以下几个方面:(1)基于分数阶蔡氏系统和变形蔡氏系统,构建了复分数阶(时滞)蔡氏系统和分数阶复变形蔡氏系统,利用相图、分岔图、最大Lyapunov指数等定性和定量的手段对两类复系统的动力学行为进行了分析讨论。首先将分数阶微积分定义扩展到复数阶,得到复数阶微积分定义的计算方法,并将其用于复分数阶(时滞)蔡氏系统的仿真。 对于分数阶复变形蔡氏电路系统的研究是将复系统转化为6变量的实系统实现的。在对两类系统的动力学行为分析中,通过改变系统阶次,观察到不同周期窗口、分岔、单涡卷等丰富的动力学行为。 最后讨论了两类复系统动力学行为的异同点及分数阶系统的动力学行为与构建图像处理模型之间的关系。(2)基于分数阶系统稳定性分析理论,研究了分数阶Relaxation振子对于不同外部刺激的稳定域和振荡域,结合相图、分岔图分析得到其产生的振荡为节律振荡;利用节律振荡特性构建图像增强模型,并用实验验证了新模型在图像增强方面的有效性。

首先利用分数阶稳定性理论分析分数阶Relaxation振子在不同外部刺激时其平衡点的稳定性,进而分析其对应的相图、分岔图,确定使分数阶Relaxation 振子产生节律振荡的外部刺激的范围。根据不同外部刺激使系统产生节律振荡的特性,构建了类Gamma曲线(QGC)。 将QGC和其相近模型进行比较,量化指标和直观效果均验证了我们所提模型在图像增强方面有较好的性能。另外,此模型模拟的增强机制也可能是人类视觉系统实现自动适应外界光线条件的机制。 (3)基于分数阶混沌系统的主动控制方法和分时同步策略,实现了单个分数 阶系统与多个分数阶复杂子网络的分时相同步。利用该方案构建了含中枢单元的两层图像目标选择模型,并用实验验证了该模型的可行性。 引入分数阶主动控制策略和分时同步思想,通过线性关系将子网络转化为混合系统,实现了单个混沌系统与子网络(混合系统)间的分时相同步。然后利用该方案构建包括中枢单元和分割单元两层的目标选择模型。 分割层是由相互耦合的分数阶神经元组成,通过相同步实现不同目标物的分割。中枢单元由一个振子构成,通过分时主动控制策略在不同时段与代表不同目标物的混合系统达到相同步,实现目标的选择与转移。 另外,此模型也是对人类视觉系统中目标物选择和转移机制一个很好的解释。 (4)基于分数阶系统的稳定性理论,实现了1+N分数阶复变量节点的复杂网络不 同系数的函数投影同步方案。 将此函数投影同步方案用于构建图像分形特征的识别模型,仿真结果验证了该模型的可行性。首先,构建了1+N节点(复混沌系统)驱动响应复杂网络模型。 根据分数阶系统稳定性理论,设计合理的控制器,实现了分数阶1+N节点复

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

《机械动力学》——期末复习题及答案

《机械动力学》期末复习题及答案1、判断 1.机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。 答案:正确 2.优化平衡就是采用优化的方法获得一个绝对最佳解。 答案:错误 3.惯性力的计算是建立在主动构件作理想运动的假定的基础上的。 答案:正确 4.等效质量和等效转动惯量与机械驱动构件的真实速度无关。 答案:正确 5.作用于等效构件上的等效力(或等效力矩)所作的功等于作用于系统上的外力所作的功。答案: 错误 6.两点动代换后的系统与原有系统在静力学上是完全等效的。 答案:错误 7.对于不存在多余约束和多个自由度的机构,动态静力分析是一个静定问题。 答案:错误 8.摆动力的完全平衡常常会导致机械结构的简单化。 答案:错误 9.机构摆动力完全平衡的条件是:机构运动时,其总质心作变速直线运动。 答案:错误 10.等效质量和等效转动惯量与质量有关。 答案:错误 11.平衡是在运动设计完成之前的一种动力学设计。 答案:错误 12.在动力分析中主要涉及的力是驱动力和生产阻力。 答案:正确 13.当取直线运动的构件作为等效构件时,作用于系统上的全部外力折算到该构件上得到等效力。答案:正确 14.摆动力的平衡一定会导致机械结构的复杂化。 答案:错误 15.机器人操作机是一个多自由度的闭环的空间机构。 答案:错误 16.质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运动学上等效答案:正确 17.弹性动力分析考虑构件的弹性变形。 答案:正确 18.机构摆动力矩完全平衡的条件为机构的质量矩为常数。 答案:错误

19.拉格朗日方程是研究约束系统静力动力学问题的一个普遍的方法。 答案:正确 20.在不含有变速比传动而仅含定速比传动的系统中,传动比为常数。 答案:正确 21.平衡分析着眼于全部消除或部分消除引起震动的激振力。 答案:正确 22.通路定理是用来判断能否实现摆动力完全平衡的理论。 答案:错误 23.无论如何,等效力与机械驱动构件的真实速度无关。 答案:正确 24.综合平衡不仅考虑机构在机座上的平衡,同时也考虑运动副动压力的平衡和输入转矩的平衡。答案:正确 25.速度越快,系统的固有频率越大。 答案:错误 26.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除惯性载荷。 答案:正确 27.优化综合平衡是一个多目标的优化问题,是一种部分平衡。 答案:正确 28.机构摆动力完全平衡的条件为机构的质量矩为常数。 答案:正确 29.当以电动机为原动机时,驱动力矩是速度的函数。 答案:错误 30.为了使得等效构件的运动与机构中该构件的运动一致,要将全部外力等效地折算到该机构上这 一折算是依据功能原理进行的。 答案:正确 2、单选 1.动力学反问题是已知机构的(),求解输入转矩和各运动副反力及其变化规律。 A.运动状态 B.运动状态和工作阻力 C.工作阻力 D.运动状态或工作阻力 答案:B 2.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除()。 A.加速度 B.角加速度 C.惯性载荷 D.重力 答案: C 3.摆动力的完全平衡常常会导致机械结构的()。 A.简单化

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

相关文档
相关文档 最新文档