文档库 最新最全的文档下载
当前位置:文档库 › 韦达定理

韦达定理

韦达定理
韦达定理

一、教学目标

1.掌握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;

2.通过根与系数的教学,进一步培养学生分析、观察、归纳的能力和推理论证的能力;

3.通过本节课的教学,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。

教学重点和难点:

二、重点·难点·疑点及解决办法

1.教学重点:根与系数的关系及其推导。

2.教学难点:正确理解根与系数的关系。

3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系。

4.解决办法;在实数范围内运用韦达定理,必须注意这个前提条件,而应用判别式的前提条件是方程必须是一元二次方程,即二次项系数,因此,解题时,要根据题目分析题中有没有隐含条件和。

三、教学步骤

(一)教学过程

1.复习提问

(1)写出一元二次方程的一般式和求根公式。

(2)解方程①,②。

观察、思考两根和、两根积与系数的关系。

在教师的引导和点拨下,由沉重得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?

2.推导一元二次方程两根和与两根积和系数的关系。

设是方程的两个根。

以上一名学生板书,其他学生在练习本上推导。

数学教学如何突破难点

作者:尤庆松发表时间:2011-9-12 8:39:24来源:南靖奎洋中心小学访问次数:648

一、教学难点的含义

什么是教学难点?有学者认为,教学的难点一般是指教师较难讲清楚、学生较难理解或容易产生错误的知识内容。也有的学者认为,数学中的难点是指学生不易理解的知识,或不易掌握的技能技巧。按笔者的理解,教学难点可以从基础知识和基本技能两方面来确定,也就是学生不容易理解的概念、原理、定律法则、公式等知识可以认为是难

点,对于那些应用基础知识去解决某些实际问题而感到困难,或是通过反复训练学生难以内化的知识也可以认为是难点。

需要说明的是,难点不一定是重点,重点也不一定是难点,而有些内容既是难点又是重点。难点要根据学生的实际水平来定,同样一个问题,在这个班级是难点,而在另一个班级则不一定是难点。

二、教学难点的突破

1.启发讲解法。就是对学生不容易理解的知识,教师有必要进行有意义的“讲”。要特别注意的是,这里的“讲”不是“灌输”,而是“启发讲解”,使学生在比较短的时间内理解知识。这是我们常用的一种方法。

2.演示实验法。即运用演示实验的方法来攻破教学难点。演示实验,可以让学生从动态的操作过程中观察思考,从而达到理解知识的目的。

例如:“在一只底面半径是30厘米的圆柱形水桶中,有一段半径是10厘米的圆柱形钢材完全浸没在水中,当钢材从水中取出时,桶里的水面下降5厘米。这段钢材有多长?”这道题的教学难点是让学生理解钢材的体积实际上就是水下降的体积。如何在“钢材的体积”与“水下降的体积”这两者之间建立起联系,对学生来说是一个比较困难的问题。为此,我在教学时引导学生观察实验:将一段圆柱形钢材放进一个盛水的圆柱形烧杯里,使圆柱形钢材完全浸没在水中,让学生观察演示过程,教师将钢材从烧杯中取出,让学生观察水面的变化过程,并思考下面的问题:在没有拿出钢材时,水面在什么位置?当拿出钢材后,水面发生了怎样的变化?为什么会有这样的变化?钢材的体积与水下降的体积有怎样的关系?

学生通过观察思考,发现钢材取出后,烧杯里的水下降了的那一部分是一个小圆柱,而这个小圆柱的体积与圆柱形钢材的体积相等。这样学生顺利解决了圆柱形钢材的体积问题,进而迅速求出了钢材的长:3.14×302×5÷(3.14×102),问题迎刃而解。

3.运用比喻法。有些基础知识,学生虽然能记住,也能运用已学的知识解决一些简单的问题,但是让他们说出其中的道理,有时往往表述不清楚,这说明学生还是没有真正理解。为此,我在教学时常常运用比喻的方法帮助学生理解知识。

例如,对于“方程的解”和“解方程”这两个概念,学生在理解上有一定的困难,有时还会混淆。为使学生理解这两个概念,我先让学生求出x+20=100,23x=69,x-13=50中x的值,并将求得的x的值代入原方程检验,引导学生观察各等式的左右两边是否相等,抽象出“方程的解”这一概念,与此同时,说明像刚才求未知数(x)的过程,就叫做“解方程”。最后启发学生说出完整的概念。接着边打比方边演示,将一块(重10克)小石子放在天平的一边,要想知道它的重量是多少,就需要打开砝码盒,找出与小石子重量相等的砝码放在天平的另一边,使之左右平衡。那么,10克砝码便是“方程的解”,而开盒找砝码的过程就是“解方程”。

4.变换叙述法。即运用变换叙述形式的方法来降低难度,攻破难点。我们经常说“思维定式”,确实,学生有时会有一种固化的思维,对于某些“标准形式”的问题,都能顺利解决,而对稍有变化的材料则出现困难。当遇到这样的情况时,教师如果能及时变换叙述形式,让学生在比较中感悟,他们就会从中得到启示,从而解决问题。

例如:“一项工程,由甲工程队修建,需要20天完成,由乙工程队修建,需要30天完成。两队先合修若干天,剩下的工程甲队又用了5天完成了全工程。甲乙两队合修

了多少天?”学生对题中的表述比较难理解,给解题思路带来了干扰。为攻破难点,可将此题的叙述形式变为:“一项工程,由甲工程队修建,需要20天完成,由乙工程队修建,需要30天完成。现在由甲工程队先修5天,剩下的由甲乙两队合修,甲乙两队合修了多少天?”

显然,尽管这两道题的表述形式不一样,但是实质是一样的。因此,问题很快得到解决:

5.设数计算法。即运用设数举例的方法,通过计算来解决问题。有些题,看上去似乎缺少条件,从而给解决问题带来了难度,这时如果运用设数的方法,便可以很快找到解决问题的办法。

例如:“甲数比乙数多25%,乙数比甲数少百分之几?”可以设乙数为100,则甲数为100×(1+25%)=125,这样乙数比甲数少的百分率很快可以求出:(125-100)÷125=0?郾2=20%。

当然,有些题我们还可以直接用字母来表示要设的数。

如:“一个班在一次数学考试中,平均成绩是78分,男女生的平均成绩分别是75?郾5分和81分。这个班男女生人数的比是多少?”

我们可以设男生为x人,女生为y人,则75?郾5x+81y=78(x+y)化简得3y=2?郾5x,也就是x∶y=6∶5,即这个班男女生人数的比是6∶5。

6.画图观察法。让学生通过画线段图来攻破难点,这是一种解决问题的策略。

如:“甲乙两人各用一定的速度从AB两地同时相向而行,第一次相遇在离甲出发点A地500处。相遇后各人再继续前进,到达对方的出发点后再折回,第二次相遇在离乙出发点B地300米处。两地相距多少米?”

画出下面的线段图,就会很快找到解决问题的方法。从图中可以看出,甲乙两人走一个全程,甲行了500米,在整个过程中,甲乙两人共走了3个全程,也就是甲走了(500×3)米,还多300米,所以两地相距500×3-300=1200米。

7.比较分析法。“比较是一切理解和思维的基础,我们正是通过比较来了解世界上的一切的。”(乌申斯基语)小学数学中有许多内容既有联系又有区别,在教学中充分运用比较的方法,有助于突破教学难点,防止知识的混淆,提高辨别能力。

例如:求下面(图1)这个图形的周长(单位:厘米)

许多学生觉得这道题还缺少条件,一时无法解决这个问题。这时,可呈现一个长方形(图2),让学生对比两个图形观察思考:比较这两个图形,你觉得要求原来这个图形的周长,可以怎么求?然后进行动态演示,将两条水平的线段上移,使之与最上面的一条水平线段相连,再将两条竖着的线段右移,使之与最右边的一条竖线段相连。到此,学生茅塞顿开:这个图形的周长可以这样求出:(10+5)×2。

8.巧用转化法。所谓转化,就是把原问题尽可能转化为能解决或较易解决的问题。它的特点是化难为易,化一般为特殊,化特殊为一般,化复合为单一,化隐蔽为外显。因此,适时恰当运用转化的方法,不但可以攻破难点,还可以帮助学生形成正确而灵活的思路,提高学生的分析和解决问题能力。

例如,有一个古代经典题:“传说阿拉伯有一个富商,临终时留下遗嘱:我死后把17匹马分给三个儿子。大儿子分得马总数的,二儿子分得马总数的,三儿子分得马总数的,但不允许将马杀掉,也不允许将马卖掉。富商去世后,三个儿子和亲属都无法分这些马。现在请你帮分一分这些马。

解决这个问题,如果没有想到“借来一匹马分”的思路,将会出现分到的结果不是整只数的结果。为此,我作了如下提示:能否将题中的三个分率转化成与比有关的形式呢?接着组织学生合作探究,在大家的努力下想到了假如借来一匹马则可将这个题中的三个分率转化为比,即三个儿子分得的马匹数的比是∶∶=9∶6∶2,再用按比例分配思路解决问题:大儿子得17×=9(匹),二儿子分得17×=6(匹),三儿子分得17×=2(匹)

在数学教学中,攻破难点的方法是多方面的,我们只要善于思考,依据学生的认知特点进行教学,就会攻破教学中的难点。

商务与经济统计精要版答案

商务与经济统计精要版答案 【篇一:经管类书单推荐】 与管理学院 2016.10.17 管理类推荐读物 孙耀君,《西方管理学名著提要》,江西人民出版社 1)管理学 邢以群,《管理学》,浙江大学出版社 周三多,《管理学》,复旦大学出版社 2)管理信息系统 kenneth https://www.wendangku.net/doc/178947434.html,udon/ jane https://www.wendangku.net/doc/178947434.html,udon ,《管理信息系统—网络化企业的组织与技术》(第六版,影印版),高等教育出版社 薛华成,《管理信息系统》(第三版),清华大学出版社 小威廉d.佩勒尔特 e.杰罗姆.麦卡锡,《市场营销学基础》:全球管理(英文版.第12版)--国际通用mba教材》,机械工业出版社 郭毅等,《市场营销学原理》,电子工业出版社malhotra,n.k.著,《市场营销研究应用导向(第3版)》,电子工业出版社 4)战略管理 项保华,《战略管理——艺术与实务》,华夏出版社 斯蒂文斯(英),《战略性思维》,机械工业出版社 arthur a. thompson, jr. and a. j. strickland Ⅲ.crafting implementing strategy. 6th ed. richard d. irwin, inc., 1995中文版《战略管理学:概念与案例(英文版.第十版)-- 国际通用mba教材》,机械工业出版社 david besanko, david dranove, mark shanley. the economics of strategy. john wiley sons, inc., 1996alan j. rowe; et al.. strategic management: a methodological approach. 4th ed. addison-wesley publishing company, inc., 1994 5)组织行为学 卢盛忠等,《组织行为学:理论与实践》,浙江教育出版社 英文版《human resource management: gaining a competitive advantage》,清华大学出版社约翰.m.伊万切维奇,《人力资源管理(英文版.原书第8版)-- 国际通用mba教材》,机械工业出版社

韦达定理及其应用

韦达定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。 说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况

韦达定理在解析几何中的应用

韦达定理在解析几何中的应用 陈历强 一,求弦长 在有关解析几何的高考题型中不乏弦长问题以及直线与圆锥曲线相交的问题。求直线与圆锥曲线相交所截得的弦长,可以联立它们的方程,解方程组求出交点坐标,再利用两点间距离公式即可求出,但计算比较麻烦。能否另擗捷径呢?能!仔细观察弦长公式: ∣AB ∣=∣x 1-x 2∣21k +?=)1](4)[(221221k x x x x +-+ 或∣AB ∣=∣y 1-y 2∣2 11k + ? =) 11](4)[(2 21221k y y y y + -+ , 立刻发现里面藏着韦达定理(其中x 1、x 2分别表示弦的两个端点的横坐标,y 1、y 2分别表示弦的两个端点的纵坐标)。请看下面的例子: 例1,已知直线 L 的斜率为2,且过抛物线y 2=2px 的焦点,求直线 L 被抛物线截得的弦长。 解:易知直线的方程为y=2(x-2 p ). 联立方程组y 2=2px 和y=2(x- 2 p ) 消去x 得 y 2-py-p 2=0.∵△=5p 2>0,∴直线与抛物线有两个不同的交点。由韦达定理得y 1+y 2=p,y 1y 2=-p 2.故弦长d= 2 5p 例2,直线y=kx-2交椭圆x 2+4y 2=80交于不同的两点P 、Q ,若PQ 中点的横坐标为2,则∣PQ ∣等于___________. 分析:联立方程组y=kx-2和x 2+4y 2=80消去y 得(4k 2+1)x 2-16kx-64=0 设P(x 1,y 1),Q(x 2,y 2). 由韦达定理得 x 1+x 2= 1 4162 +k k = 4得k= 2 1.x 1x 2= -32∣PQ ∣=6 . 练习1:过抛物线 y 2=4x 的焦点作直线交抛物线A(x 1,y 1),B(x 2,y 2)两点,如果x 1+x 2=6, 那么|AB|=( ) (A)10 (B)8 (C)6 (D)4 (文尾有提示.下同) 二,判定曲线交点的个数

高考圆锥曲线中的定点与定值问题题型总结超全

专题08 解锁圆锥曲线中的定点与定值问题 一、解答题 1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标. 【答案】(1)(2) 【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得。设x轴上的定点为,可得,由定值可得需满足,解得可得定点坐标。 解得。 ∴椭圆的标准方程为. (Ⅱ)证明: 由题意设直线的方程为, 由消去y整理得, 设,, 要使其为定值,需满足, 解得. 故定点的坐标为. 点睛:解析几何中定点问题的常见解法 (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为的直线经过点与抛物线(为常数)交于不同的两点,当时,弦的长为. (1)求抛物线的标准方程; (2)过点的直线交抛物线于另一点,且直线经过点,判断直线是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1);(2)直线过定点 【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设,则, 则; 同理: . 由在直线上(1); 由在直线上将(1)代入(2) 将(2)代入方程,即可得出直线过定点. (2)设,则, 则即; 同理:; . 由在直线上,即(1); 由在直线上将(1)代入(2) 将(2)代入方程,易得直线过定点 3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线过点,是上一点,斜率为的直线交于不同两点(不过点),且的重心的纵坐标为. (1)求抛物线的方程,并求其焦点坐标; (2)记直线的斜率分别为,求的值.

韦达定理及其应用

韦达定理及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。 说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0 后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件, 试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和 同时为正;一根大于1,另一根小于是等价于和异号。

初中数学竞赛辅导-韦达定理及其应用

学科:奥数年级:初三 不分版本期数:346 本周教学内容:韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b 为实数,且,,求的值。 思路注意a,b 为方程的二实根;(隐含)。 解(1)当a=b时, ; (2 )当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b 的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2 若,且,试求代数式的值。 思路 此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m ,n 为方程 的二不等实根,再由韦达定理, 得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3 设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以 和 为根的一元二次方程仍为 。求所有这样的一元二次方 程。 解 (1)由韦达定理知 , 。 , 。 所以,所求方程为 。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q )=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。 于是,得以下七个方程 , , , ,, 01x 2x 2=++,01x 2=-,其中01x 2=+无实数根,舍去。其余六个方程均为所求。

数学九年级上册 二次函数单元培优测试卷

数学九年级上册 二次函数单元培优测试卷 一、初三数学二次函数易错题压轴题(难) 1.已知,抛物线y=- 1 2 x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A. (1)直接填写抛物线的解析式________; (2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN. 求证:MN∥y轴; (3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG ?CH 为定值. 【答案】(1)2 1 2 2 y x x =-++;(2)见详解;(3)见详解. 【解析】 【分析】 (1)把点C、D代入y=- 1 2 x2 +bx+c求解即可; (2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解; (3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】 详解:(1)∵y=- 1 2 x2 +bx+c过点C(0,2),点Q(2,2), ∴ 2 1 222 2 2 b c c ? -?++ ? ? ?= ? = ,

解得:1 2b c =??=? . ∴y=- 12 x 2 +x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由2 2122y kx y x x =+?? ?=-++?? 得 12 x 2 +(k-1)x=0, 解得:120,22x x k ==-, x p =22p x k =- 由2 1=22y mx y x x =???-++?? 得 12 x 2 +(m-1)x-2=0, ∴124b x x a ?=- =- 即x p?x m =-4, ∴x m =4p x -=21 k -. 由24y kx y x =+??=+? 得x N = 2 1 k -=x M , ∴MN ∥y 轴. (3)设G (0,m ),H (0,n ). 设直线QG 的解析式为y kx m =+, 将点()2,2Q 代入y kx m =+ 得22k m =+

韦达定理的运用

一元二次方程跟与系数关系(韦达定理)的应用 一 教材分析 本节教学内容为“韦达定理的应用”,此内容是学生学习“一元二次方的根与系数的关系”中解决一些简单问题的重要方法。韦达定理联系了方程根与系数的关系,是学生在解决应用问题中的重要工具,具有广泛的应用价值,根据教材内容,由学生已知的认知结构及原由的知识水平,制定如下教学目标: 二 教学目标 1、巩固上一节学习的韦达定理,并熟练掌握韦达定理的应用。 2、提高学生综合应用能力 三 教学重难点 重点:运用韦达定理解决方程中的问题 难点:如何运用韦达定理 四 教学过程 (一 ) 回顾旧知,探索新知 上节课我们学习了韦达定理,我们回忆一下什么是韦达定理? 如果)0(02 ≠=++a c bx ax 的两个根是21,x x 那么a c x x a b x x =?- =+2121, {老师:由韦达定理我们可知,韦达定理表示方程的根与系数的关系,如果在方 程中遇到需要求解根的情况,我们是否能用韦达定理来解决呢?今天我们将来探讨这个问题。) (二) 举例分析 例 已知方程0652 =-+kx x 的一根是2,求它的另一根及k 的值。 请同学们分析解题方法: 思路:应用解方程的方法,带入法 解法一:把X=2代入方程求的K=-7 把K=-7代入方程:06752 =--x x 运用求根公式公式解得5 3,221- ==∴x x 提问:同学们还有没有其它方法呢? 启发学生,我们已知方程一根,求另一根,我们否能用韦达定理建立一个关系,求解方程。

解法二:设方程的两根为21,x x ,则21,2x x =是未知数 用韦达定理建立关系式 5 3 ,5622 2-=∴-=x x 7 ,5 3 ,27 ,5 2212-=-==∴-=∴-=+k x x k k x 对比分析,第二种方法更加简单 总结:在解方程的根时,利用韦达定理会使求解过程更为简单,且不用解方程,直接求某 些代数式的值 例2 不解方程,求一元二次方程2x 2+3x -1=0两根的 (1)平方和;(2)倒数和 方法小结: (1)运用韦达定理求某些代数式的值,关键是将所求的代数式恒等变形为用2121,x x x x ?+的代数式表示。 (2)格式、步骤要求规范: ①将方程的两根设为。 ②求出2121,x x x x ?+的值 。 ③将所求代数式用2121,x x x x ?+的代数式表示 。 ④ 将2121,x x x x ?+的值代人并求值。 三 综合运用 巩固新知 1、求一个一元二次方程,使它的两根分别是 解 : 2、设 2 1,x x 是方程03422 =-+x x 的两根,利用根与系数的关系,求下列各式的值。

判别式韦达定理题型讲解

根的判别式 【典例1】.关于x 的方程10422 =-+kx x 的一个根是-2,则方程的另一根是 _____;k =______。 【典例2】.1x 、2x 是方程05322 =--x x 的两个根,不解方程,求下列代数式 的值: (1)2 2 2 1x x +(2) 2 1x x -(3)22 22133x x x -+ 【典例3】.已知关于x 的一元二次方程与 有一个相同的根,求k 的值。 【典例4】已知方程032=++k x x (1)若方程两根之差为5,求k 。 (2)若方程一根是另一根2倍,求这两根之积。 【典例5】已知方程 两根之比为1:3,判别式值为16,求a 、b 的值。

韦达定理 [典例1]因式分解6x y+7xy-3=___________ [典例2]解方程组 [典例3]如果直角三角形三条边a,b,c,都满足方程x-mx+=0,求三角形的面积。 [典例4]已知方程2x-8x-1=0的两个根为α,β,不解方程,求解以+,(α-1)(β-1)为根的一元二次方程。 [典例5]已知某二次项系数为1的一元二次方程的两个实数根为p,q,且满足关系式,试求这个一元二次方程。

[典例6]已知α,β是一元二次方程4kx-4kx+k+1=0的两个实根 (1)是否存在实数根k,使(2α-β)(α-2β)=- 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使+-2的值为整数的实数k的整数值。 训练题 1、(海淀中考)已知:关于x的一元二次方程ax2+2ax+c=0的两个实数根之差的平方为m. (1)试分别判断当a=1,c=-3与a=2,c=时,m≥4是否成立,并说明理由; (2)若对于任意一个非零的实数a,m≥4总成立,求实数c及m的值. 2、已知下列n(n为正整数)个关于x的一元二次方程:①x2-1=0,②x2+x-2=0, ③x2+2x-3=0,…(n)x2+(n-1)x-n=0. (1)请解上述一元二次方程①、②、③、(n); (2)请你指出这n个方程的根具有什么共同特点,写出一条即可. 3、(02海淀)(1)求证:若关于x的方程(n-1)x2十mx十1=0①有两个相等的实数根.则关于y的方程m2y2-2my-m2-2n2+3=0②必有两个不相等的实数根; (2)若方程①的一根的相反数恰好是方程②的一个根,求代数式m2n十12n 的值.

中考数学 专题八 充满活力的韦达定理培优试题

专题八 充满活力的韦达定理 姓名: 班别: 典例导析 类型一:直接运用公式 例1:若一元二次方程02)2(2=++-a x a x 的两个根分别为3,b ,则____=+b a [点拨] 运用公式a b x x = +21,a c x x =21 [解答] [变式] 已知一元二次方程0562=--x x 之两根为b a ,,则 _____11=+b a 类型二:求方程中的字母系数 例2: 关于x 的方程0122=+++k x x 有两实根21,x x ,如果12121-<-+x x x x ,求整数k 的值。 [点拨] 熟记特殊式子2121x x x x ++的变形式 [解答] [变式] 关于x 的一元二次方程0622=--k x x (k 为常数)之两根为21,x x , 且14221=+x x 。求k 值及方程的两根。 类型三:利用已知根求未知数的值 例3:已知关于x 的方程02=+-n mx x 的两个根是0和-3,则m= ,n= 。 [点拨] 运用公式得方程 [解答]

[变式] 已知方程042=+-m x x 的一个根是2,求方程的另一个根及m 的值。 类型四:利用公式求有关根的代数式的值 例4:已知b a ,是一元二次方程0122=--x x 的两个实数根,求代数式ab b a b a +-+-)2)((的值。 [点拨] 转化成b a +,ab [解答] [变式] 设21,x x 是方程032=-+x x 的两根,求1942231+-x x 的值。 类型五:与判别式的综合运用 例5:已知关于x 的方程22)1(2m x m x --=的两实根为21,x x 。 ①求m 的取值范围。 ②设21x x y +=,当y 取最小值时,求m 值及y 的最小值。 [点拨] 得出y 的表达式,用函数增减性 [解答] [变式]若关于x 的方程012)2(222=++--k x k x 有实根βα,。 ①求实数k 的取值。 ②设k t βα+= ,求t 的最小值。

韦达定理应用资料资料全

韦达定理的应用 一、典型例题 例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。 解:设另一个根为x1,则相加,得x 例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和. 解:∵又 ∴代入得,∴新方程为 例3:判断是不是方程9x-10x-2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。 ∴以为根的一元二次方程即为.

例4:解方程组 解:设∴. ∴A=5. ∴x-y=5 又xy=-6. ∴解方程组∴可解得 例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值 解:不妨设斜边为C=13,两条直角边为a,b,则2。又a,b为方程两根。∴ab=4m(m-2)∴S但a,b为实数且 ∴∴ ∴m=5或6 当m=6时,∴m=5 ∴S. 例6:M为何值时,方程8x-(m-1)x+m-7=0的两根 ①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数 解:①∵∴m>7

②∵ ∴不存在这样的情况。 ③ ∴m<7 ④ ∴m=7 ⑤ ∴m=15.但使 ∴不存在这种情况 【模拟试题】(答题时间:30分钟) 1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于 2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q= 3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为() A.±8 B.8 C.-8 D.±4 4. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等? 5. 已知方程(a+3)x+1=ax有负数根,求a的取值围。

韦达定理及其应用

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

一元二次方程提高培优题

1 一元二次方程提高题 一、选择题 1.已知a 是方程x 2 +x ﹣1=0的一个根,则 的值为( ) A . B . C .﹣1 D .1 2.一元二次方程(2)2x x x -=-的根是( ) =1 =0 =1和x=2 =-1和x=2 3.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( ) A . 289(1﹣x )2=256 B . 256(1﹣x )2 =289 C . 289(1﹣2x )=256 D . 256(1﹣2x )=289 4.岑溪市重点打造的天龙顶山地公园在20XX 年12月27日试业了.在此之前,公园派出小曾等人到某旅游景区考察,了解到该景区三月份共接待游客20万人次,五月份共接待游客50万人次.小曾想知道景区每月游客的平均增长率x 的值,应该用下列哪一个方程来求出( ) A .20(1+x )2=50 B .20(1﹣x )2=50 C .50(1+x )2 =20 D .50(1 ﹣x )2 =20 5.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .(1)2070x x -= B .(1)2070x x += C .2(1)2070x x += D . (1) 2070x x x -= 6.若关于x 的方程x 2 ﹣4x+m=0没有实数根,则实数m 的取值范围是 A .m <﹣4 B .m >﹣4 C .m <4 D .m >4 7.已知实数a ,b 分别满足22a 6a 40b 6b 40-+=-+=,,且a≠b,则 b a a b +的值是【 】 A .7 B .-7 C .11 D .-11 8.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A.当k 0=时,方程无解 B.当k 1=时,方程有一个实数解 C.当k 1=-时,方程有两个相等的实数解 D.当k 0≠时,方程总有两个不相等的实数解 9.若22 4x Mxy y -+是一个完全平方式,那么M 的值是( ) A. 2 B. ±2 C. 4 D.±4 二、填空题 10.已知方程x 2 +(1﹣ )x ﹣=0的两个根x 1和x 2,则x 12+x 22 = 11.已知m 和n 是方程2x 2 -5x -3=0的两个根,则 1m +1 n =________. 12.若将方程2 67x x +=,化为()2 16x m +=,则m =________. 13.已知(x 2 +y 2 )(x 2 -1+y 2 )-12=0,则x 2 +y 2 的值是_________? 14.某种药品原价为60元/盒,经过连续两次降价后售价为元/盒.设平均每次降价的百分率为x ,则根据题意,可列方程为 . 15a 4+b 10--=,且一元二次方程2kx ax b 0++=有实数根,则k 的取值范围是 . 三、计算题 16.解方程:(x+3)2 ﹣x (x+3)=0. 按要求解方程:

浅谈韦达定理的应用(105620)

浅谈韦达定理的应用 齐贤学校 匡双霞 【趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间 的应用: 1. 已知一元二次方程的一根,求另一根。 2. 已知一元二次方程的两根,求作新的一元二次方程。 3. 不解方程,求关于两根的代数式的值。 4. 一元二次方程的验根。 5. 解一类特殊的二元二次方程组和通过换元等方法求解二次根式方程。 6. 与判别式的综合应用。 【中考真题欣赏】 例1 (2001年河南省)已知关于x 的方程4x 2+4bx+7b=0有两个相等的实数 根,?y 1,y 2是关于y 的方程y 2 +(2-b)y+4=0的两个根,二次方程. 解析 ∵关于x 的方程4x 2+4bx+7b=0有两个相等的实数根, ∴ △ = (4b)2 -4×4×7b=0, 即b 2-7b=0. ∴b 1=0, b 2=7. 当b=0时,,关于y 的方程化为y 2+2y+4=0, 因△=4-16=-12<0,方程无解. 当b=7时,关于y 的方程可化为y 2-5y+4=0,

直线与圆锥曲线位置关系之韦达定理的使用

直线与圆锥曲线位置关系之韦达定理的使用 【例1】已知椭圆22+197x y =的长轴两端点为双曲线E 的焦点,且双曲线E 的离心率为32 . (1)求双曲线E 的标准方程; (2)若斜率为1的直线l 交双曲线E 于,A B 两点,线段AB 的中点的横坐标为线l 的方程. 【例2】已知双曲线C : 22 221x y a b -=(0,0a b >>4. (1)求双曲线的标准方程; (2)过点()0,1,倾斜角为045的直线l 与双曲线C 相交于,A B 两点, O 为坐标原点,求

【例3】已知椭圆C:()22 2210x y a b a b +=>>的左右焦点分别为12,F F ,离心率为; 圆M :2220x y Dx +--=过椭圆C 的三个顶点.过点2F 且斜率不为0的直线与椭圆C 交于P ,Q 两点. (Ⅰ)求椭圆的标准方程; ,使得AP AQ 为定值;并求出该定点的坐标 . 【例4】的椭圆C 的一个焦点坐标为() . (1)求椭圆C 的标准方程; (2)过点() 0,2P 的直线l 与轨迹C 交于不同的两点E F 、,求PE PF ?的取值范围.

【例5】已知抛物线2:2C y x =和直线:1l y kx =+, O 为坐标原点. (1)求证: l 与C 必有两交点; OA 和OB 斜率之和为1,求k 的值. 【例6】已知椭圆C : 22221(0,0)x y a b a b +=>>,右焦点为,0). (1)求椭圆C 的方程; ,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为)

【例7】已知椭圆()22 22:10x y C a b a b +=>> ,且椭圆上任意一点到左焦点的最大距离为1 1. (1)求椭圆的方程; (2)过点10,3S ??- ??? 的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的

韦达定理及其应用

韦达定理及其应用 【趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。你能利用韦达定理解决下面的问题吗? 已知:①a2+2a-1=0,②b4-2b2-1=0且1-ab2≠0,求( 221 ab b a ++ )2004的值。 解析由①知1+21 a - 2 1 a =0, 即(1 a )2-2· 1 a -1 =0,③ 由②知(b2)2-2b2-1=0,④ ∴1 a ,b2为一元二次方程x2-2x-1=0的两根. 由韦达定理,得1 a +b2=2, 1 a ·b2=-1. ∴ 221 ab b a ++ =[( 1 a +b2)+ 2 b a ]2004=(2-1)2004=1. 点评 本题的关键是构造一元二次方程x2-2x-1=0,利用韦达定理求解,?难点是将①变形成③,易错点是忽视条件1-ab2≠0,而把a,-b2看作方程x2+2x-1=0的两根来求解. 【知识延伸】 例1已知关于x的二次方程2x2+ax-2a+1=0的两个实根的平方和为71 4 ,求a的值.

韦达定理的应用题_证明_公式讲解

根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论. 1.判别式的应用 例1 (1987年武汉等四市联赛题)已知实数a、b、c、R、P满足条件PR>1,Pc+2b+Ra=0.求证:一元二次方程ax2+2bx+c=0必有实根. 证明△=(2b)2-4ac.①若一元二次方程有实根, 必须证△≥0.由已知条件有2b=-(Pc+Ra),代入①,得 △=(Pc+Ra)2-4ac =(Pc)2+2PcRa+(Ra)2-4ac =(Pc-Ra)2+4ac(PR-1). ∵(Pc-Ra)2≥0,又PR>1,a≠0, (1)当ac≥0时,有△≥0; (2)当ac<0时,有△=(2b)2-4ac>0. (1)、(2)证明了△≥0,故方程ax2+2bx+c=0必有实数根. 例2 (1985年宁波初中数学竞赛题)如图21-1,k是实数,O是数轴的原点,A是数轴上的点,它的坐标是正数a.P是数轴上另一点,坐标是x,x<a,且OP2=k·PA·OA. (1)k为何值时,x有两个解x1,x2(设x1<x2); 此处无图 (2)若k>1,把x1,x2,0,a按从小到大的顺序排列,并用不等号“<”连接. 解(1)由已知可得x2=k·(a-x)·a,即 x2+kax-ka2=0,当判别式△>0时有两解,这时 △=k2a2+4ka2=a2k(k+4)>0. ∵a>0,∴k(k+4)>0,故k<-4或k>0. (2)x1<0<x2<a. 例3(1982年湖北初中数学竞赛题)证明不可能分解为两个一次因式之积. 分析若视原式为关于x的二次三项式,则可利用判别式求解. 证明 将此式看作关于x的二次三项式,则判别式 △= 显然△不是一个完全平方式,故原式不能分解为两个一次因式之积. 例3 (1957年北京中学生数学竞赛题)已知x,y,z是实数,且x+y+z=a,① ②求证:0≤x≤0≤y≤0≤z≤ 分析将①代入②可消去一个字母,如消去z,然后整理成关于y的二次方程讨论. 证明由①得z=a-x-y,代入②整理得 此式可看作关于y的实系数一元二次方程,据已知此方程有实根,故有

韦达定理及其应用竞赛题

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 解(1)当a=b时, ; (2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定

理,得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 解(1)由韦达定理知 ,。 , 。 所以,所求方程为。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q)=(0,0),(1,0),(1 -)。 -,1)或(0, 1 -,0),(0,1),(2,1),(2 于是,得以下七个方程,,,,, 1 x2= -,其中0 1 x2= +无实数根,舍去。其余六个方程均为所求。x2= +,0 x 1 + 2 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

韦达定理及其应用竞赛题

【内容综述】 设一元二次方程 宀肚…。佃弄°)有二实数根可和也,贝U “f 的关系, 为韦达定理。 其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中 数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1. 求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a , b 为实数,且以+力十l = n , “ + 十1 = (],求石打的值。 思路注意a , b 为方程Q +覽+1 = 0的二实根;(隐含A 土 0)。 解(1)当a=b 时, (2)当说护■^时,由已知及根的定义可知,a ,b 分别是方程*打"1二D 的两根,由韦 达定理得 .b d _ 盘2 +於 _ ?4对'一M)_ [-餌一*1 ..—4 — ---- ---------- -- -------------------- - ----------------- -- / L? h ■ 说明此题易漏解a=b 的情况。根的对称多项式对,工扌 程的系数表达出来。一般地,设 可「丁为方程宀E = D 的二根,'-卅+对,则有递 推关系。 其中n 为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出 a ,b 值进而求出所求多项式值,但计算量 较大。 ★★★例2若榊3=疏+1 ,池27-1 = 口且聊5|,试求代数式也G 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为 宀,由根的定义知m n 为方程*-z = 0的二不等实根,再由韦达定理, 这两个式子反映了一元二次方程的两根之积与两根之和同系数 a , b ,c 称之 b 电等都可以用方 的值。

韦达定理培优

《一元二次方程根与系数的关系》专练 基础部分: 1若关于x 的二次方程(m +1)x 2-3x +2=0有两个相等的实数根,则m =______. 2设方程0432 =-+x x 的两根分别为1x ,2x ,则=+2 221x x _______, () 2 21x x -=________,1212 13x x x x ++=_________ 3 若方程x 2-5x +m =0的一个根是1,则m =________ 4 两根之和等于-3,两根之积等于-7的最简系数的一元二次方程是________ 6若关于x 的一元二次方程mx 2+3x -4=0有实数根,则m 的值为______ 7方程k x 2+1=x -x 2无实根,则k 8如果x 2-2(m +1)+m 2+5是一个完全平方公式,则m = 。 9若方程x 2+mx -15=0的两根之差的绝对值是8,则m = 。 10若方程x 2 -x +p =0的两根之比为3,则p = 。 11在实数范围内分解因式:x 2-2x -1= 15方程() 031222=+--m x m x 的两个根是互为相反数,则m 的值是 (A )1±=m (B )1-=m (C )1=m (D )0=m 16若方程2x (kx -4)-x 2 +6=0没有实数根,则k 的最小整数值是 A 、1 B 、2 C 、3 D 、4 17一元二次方程一根比另一根大8,且两根之和为6,那么这个方程是 A 、x 2 -6x -7=0 B 、x 2 -6x +7=0 C 、x 2 +6x -7=0 D 、x 2 +6x +7=0 18若方程x 2+px +q =0的两根之比为3∶2,则p ,q 满足的关系式是 (A )3p 2=25q (B )6p 2=25q (C )25p 2=3q (D) 25p 2=6q 19方程a x 2+b x +c=0(a≠0)的两根之和为m ,两根平方和为n ,则 c bm an ++2 1 21 的值为 A 、0 B 、m 2+n 2 C 、m 2 D 、n 2 20 若一元二次方程的两根 x 1、x 2满足下列关系: x 1x 2+x 1+x 2+2=0,x 1x 2-2x 1-2x 2+5=0. 则这个一元二次方程是( ) A 、x 2+x +3=0 B 、x 2-x -3=0 C 、x 2-x +3=0 D 、x 2+x -3=0 综合部分: 1.方程0132=--x x 的两个根是x 1,x 2,求代数式1 11221+++x x x x 的值。 2.已知21,x x 是一元二次方程01322=-+x x 的两根,求以2121,x x x x ?+为根的方程。 3、一元二次方程()02122=++--k x k kx ,当k 为何值时,方程有两个不相等 的实数根?

相关文档