文档库 最新最全的文档下载
当前位置:文档库 › 传感器的技术参数说明

传感器的技术参数说明

传感器的技术参数说明
传感器的技术参数说明

关于传感器的技术参数

1.额定载荷:传感器的额定载荷是指在设计此传感器时,在规定技术指标范围内能够测量的最大负荷。但实际使用时,一般只用额定量程的2/3~1/3。

2.灵敏度/额定输出:加额定载荷时和无载荷时,传感器输出信号的差值。由于传感器的输出信号与所加的激励电压有关,所以灵敏度的以单位mV/V来表示。

3.灵敏度允差:传感器实际稳定输出对应的标称灵敏度之差对该标称灵敏度的百分比。例如,某称重传感器的实际灵敏度为2.002mV/V,与之相适应的标准灵敏度则为2 mV/V,则其灵敏度允差为:((2.002-2.000)/2.000)*100%=0.1%。

4.综合误差/精度等级:根据OIML R60,±%F.S额定输出,国内一般为C3级,分度数3000。

(5)蠕变:在负荷不变(一般为额定载荷),其它测试条件也保持不变的情况下,称重传感器输出随时间的变化量对额定输出的百分比。

(6)非线性:由空载荷的输出值和额定载荷时的输出值所决定的直线和增加负荷时实测曲线之间的最大偏差对额定输出的百比分。

线性度δ=ΔYmax/Yfs*100﹪其中,ΔYmax表示输出值的最大量,Yfs表示满量程输出,注意,线性度有正负之分,因此,前面带正负号。

7)重复性误差:在相同的环境条件下,对传感器反复加载荷到额定载荷并卸载,加载荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。这项特性很重要,更能反映传感器的品质。

(8)滞后允差:从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。

(9)零点输出/零点平衡:在推荐激励电压下,未加载荷时传感器的输出值对额定输出的百分比。

(10)零点温漂:环境温度的变化引起的零点平衡变化。一般以温度每变化10℃时,引起的零点平衡变化量对额定输出的百分比来表示。

(11)灵敏度温漂:环境温度的变化引起的灵敏度变化。一般以温度每变化10℃时,引起的灵敏度变化量对额定输出的百分比来表示。

(12)允许使用温度:规定了此传感器能适用的场合。例常温传感器一般标注为:-20℃~+70℃。高温传感器标注为:-40℃~250℃。

(13)温度补偿范围:在此温度范围内,传感器的额定输出和零点平衡均经过严密补偿,不会超出规定的范围。例:常温传感器一般标注为-10℃~+55℃。

(14)安全过载:传感器允许施加的最大负荷。允许在一定范围内超负荷工作。一般为120%~150%。

(15)极限过载:传感器能承受的不使其丧失工作能力的最大负荷。意思是当工作超过此值时,传感器将会受到永久损坏。

(16)输出阻抗:激励输入端开路,传感器未加负荷时,从信号输出端测得的阻抗值。

(17)输入阻抗:信号输出端开路,传感器未加负荷时,从激励输入端测量的阻抗值。由于传感器的输入端补偿电阻和灵敏度系数调整电阻,所以传感器的输入电阻都大于输出电阻。

(18)绝缘阻抗:绝缘阻抗相当于传感器桥路与地之间串了一个阻值与其相当的的电阻,绝缘电阻的大小会影响传感器的各项性能。而当绝缘阻抗低于某一个值时,电桥将无法正常工作。

(19)推荐激励电压:一般为10~12伏。

(20)频响:传感器能感受到的频率范围。

(21)精度:在工业测量中,为了便于表示仪表的质量,通常用准确度等级来表示仪表的准确程度.准确度等级就是最大引用误差去掉正,负号及百分号.准确度等级是衡量仪表质量优

劣的重要指标之一.我国工业仪表等级分为0.1,0.2,0.5,1.0,1.5,2.5,5.0七个等级,并标志在仪表刻度标尺或铭牌上.仪表准确度习惯上称为精度,准确度等级习惯上称为精度等级.

(22)分辨率:分辨率是指传感器可感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨率时,其输出才会发生变化。

通常传感器在满量程范围内各点的分辨率并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨率的指标。上述指标若用满量程的百分比表示,则称为分辨率。分辨率与传感器的稳定性有负相相关性。

(22)IP防护等级:标准规定的防水、防尘等保护等级,第一标记数字如IP6_ 表示防尘保护等级(6表示无灰尘进入), 第二标记数字如IP_7 表示防水保护等级(7表示浸在15cm到1m的水下没有影响)。

传感器原理及种类介绍

传感器原理及种类介绍 ――年度教育训练 一、传感器的基础知识 1、传感器的定义 国家标准GB7665-87 对传感器下的定义是:“ 能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成” 。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 2、传感器的分类 2.1、按传感器的被测物理量分类,可分为位移传感器、压力传感器、速度传感器、温度传感器等传感器。 2.2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅热电偶等传感器。 2.3、按传感器输出信号的性质分类,可分为:输出为开关量(“ 1” 和“ 0” 或“ 开” 和“ 关” )的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

二、传感器的原理 1、应变式电阻传感器 电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是应变式电阻传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

电涡流位移传感器的原理

电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。 电涡流传感器以其长期工作可靠 性好、测量围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定围不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

各类传感器介绍

目前,被人们所关注传感器的类型: 压力传感器、光电传感器、位移传感器、超声波传感器、温度传感器、湿度传感器、光纤传感器。 一、压力传感器 压力传感器、压力变送器的种类及选用 压力传感器及压力变送器分为表压、绝压、差压等种类。常见0.1、0.2、0.5、1.0等精度等级。可测量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。不同种类压力传感器及压力变送器的工作温度范围也不同,常分成0~70℃、-25~85℃、-40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。 压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、形状的差异可测量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC 5V、12V、24V、±12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA、 0~20mA、 4~20mA等及Rs232、Rs485等与计算机的接口。 用户在选择压力传感器及压力变送器时,应充分了解压力测量系统的工况,根据需要合理选择,使系统工作在最佳状态,并可降低工程造价。 压力传感器常见精度参数及试验设备 传感器静态标定设备:活塞压力计:精度优于0.05% 数字压力表: 精度优于 0.05% 直流稳压电源: 精度优于0.05%。 传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为±1℃,低温试验箱:温度能从0℃~-60℃温度控制精度为±1℃ 传感器静态性能试验项目:零点输出、满量程输出、非线性、迟滞、重复性、零点漂移、超复荷。 传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。(检查产品在规定的温度范内对温度的适应能力,此项参数对精度影响极为重要) 压力传感器使用注意事项 压力传感器及压力变送器在安装使用前应详细阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。压力传感器及压力变送器的外壳一般需接地,信号电缆线不得与动力电缆混合铺设,压力传感器及压力变送器周围应避免有强电磁干扰。压力传感器及压力变送器在使用中应按行业规定进行周期检定。 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,简单介绍一些常用传感器原理及其应用:

电涡流传感器

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一、电涡流传感器的基本原理 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z 的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。 其工作过程是:当被测金属与探头之间的距离发生变化时,探头中线圈的Q值

广州本田发动机传感器技术参数说明

技术参数说明 发动机转速: 发动机转速 (RPM) 发动机速度从CKP技术参数说明 车速: 车速 (km/h)(MPH)单位换算类型:车速 ECU将来自车速传感器的脉冲信号转换为显示的车速(km/h)。当驱动轮速度达到2km/h或更高,ECU通过车轮速度信息控制各种功能。举例) VTEC系统的打开/关闭控制在高速行驶时的燃油切断控制在行驶期间的空燃比修正控制。 - 车速传感器也用于速度表。脉冲信号由基于车速的传感器输出,并根据特定时间内的脉冲数计算出车速(km/h)。 - 车速传感器系统通过集成在转子中的磁铁和安装在磁铁外的霍尔元件检测差速齿轮的旋转。当电压施加到霍尔元件时,磁通量发生变化,霍尔电压根据磁通量的变化而输出。由于霍尔电压在转子的一个旋转期间有四个周期的变化,因此波形产生电路输出四脉冲信号。 - 当车速提高时,在特定时间内的车速信号脉冲数也随之增加,电压的输出大致是在10km/h时7个脉冲/秒、在100km/h时为707个脉冲/秒。 - 来自车速传感器的信号电压输出是一个脉冲信号,电压的输出在0V与5V之间交替变化。当车速传感器信号为关闭,ECU计算机的参考电路输出的电压(5V)流向车速传感器并变成0V,当车速传感器信号为打开,参考电压在相同的电位下变成5V。 - 计算机是基于参考电压的打开/关闭切换来检测车速信号,而参考电压的切换又是通过车速传感器的打开/关闭切换得到的。- 车辆传感器根据变速箱处的主减速器旋转速度检测车速变化。 - 车速传感器有一个磁性感应元件,并靠它检测磁通量变化。此变化被放大并被转换成高或低电压信号。磁通量的变化取决于安装在主减速器旋转区域的磁性转子的旋转速度。

电涡流式传感器的应用

电涡流式传感器的应用 摘要:随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。传感器技术的应用在许多个发达国家中,已经得到普遍重视。电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。 关键词:电涡流式传感器传感器技术 引言:电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一.电涡流传感器的工作原理: 电涡流传感器利用检测线圈与被测导体之间的涡流效应进行测量,具有非接触测量、灵敏度高、频响特性好、抗干扰能力强等优点,其基本原理如图l所示。当线圈l通以交流电I1时,其产生的交变磁场H1会在被测导体2中产生电涡流 I2,而I2又产生一交变磁场H2 来阻碍H1的变化,从而使线圈的 等效电感L发生变化。当被测导 体的电阻率、磁导率都确定,只 有x发生变化时,通过分析提取 等效电感与测量位移间的关系, 就可以建立电涡流位移传感器。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子

传感器的技术参数说明

关于传感器的技术参数 1.额定载荷:传感器的额定载荷是指在设计此传感器时,在规定技术指标范围内能够测量的最大负荷。但实际使用时,一般只用额定量程的2/3~1/3。 2.灵敏度/额定输出:加额定载荷时和无载荷时,传感器输出信号的差值。由于传感器的输出信号与所加的激励电压有关,所以灵敏度的以单位mV/V来表示。 3.灵敏度允差:传感器实际稳定输出对应的标称灵敏度之差对该标称灵敏度的百分比。例如,某称重传感器的实际灵敏度为2.002mV/V,与之相适应的标准灵敏度则为2 mV/V,则其灵敏度允差为:((2.002-2.000)/2.000)*100%=0.1%。 4.综合误差/精度等级:根据OIML R60,±%F.S额定输出,国内一般为C3级,分度数3000。 (5)蠕变:在负荷不变(一般为额定载荷),其它测试条件也保持不变的情况下,称重传感器输出随时间的变化量对额定输出的百分比。 (6)非线性:由空载荷的输出值和额定载荷时的输出值所决定的直线和增加负荷时实测曲线之间的最大偏差对额定输出的百比分。 线性度δ=ΔYmax/Yfs*100﹪其中,ΔYmax表示输出值的最大量,Yfs表示满量程输出,注意,线性度有正负之分,因此,前面带正负号。 7)重复性误差:在相同的环境条件下,对传感器反复加载荷到额定载荷并卸载,加载荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。这项特性很重要,更能反映传感器的品质。 (8)滞后允差:从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。 (9)零点输出/零点平衡:在推荐激励电压下,未加载荷时传感器的输出值对额定输出的百分比。 (10)零点温漂:环境温度的变化引起的零点平衡变化。一般以温度每变化10℃时,引起的零点平衡变化量对额定输出的百分比来表示。 (11)灵敏度温漂:环境温度的变化引起的灵敏度变化。一般以温度每变化10℃时,引起的灵敏度变化量对额定输出的百分比来表示。 (12)允许使用温度:规定了此传感器能适用的场合。例常温传感器一般标注为:-20℃~+70℃。高温传感器标注为:-40℃~250℃。 (13)温度补偿范围:在此温度范围内,传感器的额定输出和零点平衡均经过严密补偿,不会超出规定的范围。例:常温传感器一般标注为-10℃~+55℃。 (14)安全过载:传感器允许施加的最大负荷。允许在一定范围内超负荷工作。一般为120%~150%。

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

传感器原理与使用方法

传感器原理与使用方法 传感器的原理与使用方法 1 概述 在监控系统中,测量范围广泛,包括高低压配电设备、柴油发电机组、空调设备的交流电量:交流电压、交流电流、有功功率、功率因数、频率等;整流器、直流配电设备、蓄电池组的直流量:直流电压、直流电流;机房环境的各种物理量:温度、湿度、红外、烟感、水浸、门禁等;同时还有表示各种物理状态的开关量。由于监控系统数据采集设备的输入电量范围只能是一些小电压、小电流,而上述各种测量量却是一些非电量、强电量,因此必须用一种信号变换装置将它们转换成4一20mA或0一5V的标准直流或交流信号。传感器、变送器就是这样一种信号变换装置,它们把一种形式的信号变换成另外一种形式的信号(传感器),或把同一种信号变换成不同大小或不同形式的信号(变送器)。因此,传感器和变送器在监控系统中得到了广泛应用,是监控系统中必不可少的组成单元。 一般地,传感器是把各种物理量变换成另外一种大小、形式的物理量输出,以便于观察、测量或处理的装置,在监控系统中,传感器是把各种物理量变换成一定形式电量输出,以便于进行测量和数据采集的装置。电量变送器则是把各种形

式的电量变换成标准电量输出的装置。输出的标准电量一般为:4--20mA或0--20mA的标准直流电流信号和0一5V 的标准直流或交流电压信号。在监控系统中,电量变送器一般用于各种交流电量的变换,这些交流电量包括:交流电压、交流电流、有功功率、功率因数和频率等。交流电量的表示方法有多种,常用的有:瞬时值,有效值,平均值。 由于监控系统中各种要测量的电量和非电量种类繁多,相应的传感器和变送器也各种各样,但根据它们转换后的输出信号性质,可分为分为模拟和数字两种。在我公司的监控系统中,各类传感器、变送器有如下几种: 数字信号传感器(变送器): 1. 离子感烟探测器,用于探测烟雾浓度。当烟雾达到一定的浓度时,给出对应的数字量报警信号。 2. 微波双鉴被动式红外探测器XC-1、单红外探测器XP-5,当其探测范围内,有人体侵入时,提供对应的继电器触点信号输出,给出对应的数字量报警信号。 3. 玻璃破碎传感器,当玻璃被击碎时,提供对应的继电器触点信号输出,给出对应的数字量报警信号。 4.

电涡流位移传感器的原理及其静态标定方法

电涡流位移传感器的原理及其静态标定方法电涡流是20世纪70年代以后发展较快的一种新型传感器,它广泛的应用在位移震动检测、金属材质鉴别,无损探伤等技术领域。 实验目的: 了解电涡流位移传感器的结构和工作原理。 了解电涡流位移传感器的静态标定方法。 实验原理 结构:变间隙式是最常用的一种电涡流传感器形式,它的结构很简单,由一个扁平线圈固定在框架上构成。线圈用高强度漆包铜线或银线绕成,用粘结剂粘在框架端部或是绕指在框架槽内。线圈框架应采用损耗小、电性能好、热膨胀系数小的材料,常用高频陶瓷、聚四氟乙烯等。由于激励频率较高,对所用的电缆和插头也要充分重视,一般使用专用的高频电缆和插头。 工作原理:在传感器线圈中通以高频电流,则在线圈中产生高频交变磁场。当到点被测金属板接近线圈,并置于线圈的磁场范围内,交变磁场在金属板的表面层内产生感应电流,即电涡流。电涡流又产生一个反向的磁场,减弱了线圈的原磁场,从而导致线圈的电感量、阻抗和品质因素发生变化,这些参数的变化与导体的几何形状、电导率、线圈的几何参数、电流的频率以及线圈与被测导体间的距离有关。如果控制上述参数的变化,在其他条件不变的情况下,仅是线圈与金属板之间距离的单值函数,从而达到测量位移间隙的目的。 测量电路 当传感器接近被测导体时,损耗功率增大,回路失谐,输出电压相应变小。这样,在一定范围内,输出电压幅值与间隙呈近似线性关系。由于输出电压的频率始终恒定,因此称为定频幅式。这种电路采用适应晶体振荡器,旨在获得高稳定度频率的高频激励信号,以保证

稳定的输出。 实验仪器与材料 电涡流位移传感器静态标定系统 Hz-8500探头前置器 8511型电涡流探头 电涡流传感器测量装置 高精度数字万用表。 实验内容: 实验一:被测金属板采用铝质板,测量U-x 关系曲线。 实验二:被测金属板仍采用铝质板,但直径较小,测量U-x 关系曲线。 实验三:被测金属板采用铁板,测量U-x 关系曲线。 5、实验数据: 实验一数据: 6、实验要求: 1、画出(实验一)中的U-x 关系曲线,确定传感器的线性工作范围计算传感器的灵敏度。答:线性工作范围:由画出的U-X关系曲线可以看出其线性工作范围在0~13 灵敏度:(15.4-1.78)/13=1.048

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 什么是传感器(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 传感器特性在检测系统中起到什么作用 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 传感器由哪几部分组成说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图所示。 传感器的性能参数反映了传感器的什么关系静态参数有哪些各种参数代表什么意义动态参数有那些应如何选择 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=℃、S2=mV、S3=V,求系统的总的灵敏度。 某线性位移测量仪,当被测位移由变到时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

Honeywell_传感器_技术参数 2

目录: 水系统传感器 (2) 水流开关WFS-1001-H (2) 液位开关MAC-3-5M (2) 水管式压差传感器P7620C (3) 水管式压力传感器P7620A (4) 流量变送器8550+2517 (5) VF20T浸入式温度传感器 (5) 风系统传感器 (7) DPS系列气流压差开关 (7) DPTM系列压差变送器 (7) 风管式温度传感器LF20 (8) 风管式温度传感器LF20-C (9) 室外温度传感器T7416A1022 (9) 室内温度传感器T7412A1000 (9) 室内温度传感器CTR21 (10) 风管式温湿度传感器H7050B1018 (10) 风管式温湿度变送器H7050B1117 (11) 室内温湿度变送器H7030A1000 (12) 室内温湿度传感变送器H7012B1023 (12) 室内温湿度传感器CTR21-H (13) 风管式温湿度传感器H7015B1020 (14) 室外温湿度传感变送器H7508A1042 (14) CDS2000 系列二氧化碳传感器 (15) C7110C1001(替换已停产的AQS51) 系列二氧化碳传感器 (15) AQS71-KAM(替换已停产的AQS51-KAM) 系列二氧化碳传感器 (16) GD250W3E 系列一氧化碳传感器 (17) C7110A1005系列房间空气质量传感器 (17) L4064K1006B 高温断路开关,手动复位 (18) T6950A1000 低温短路开关,手动复位 (18) 数字化挂墙模块T7560 温度传感器 (19) 数字化挂墙模块T7460 温度传感器 (19)

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

电涡流传感器应用设计实验

电涡流传感器应用设计实验 一、创新实践目的 熟悉和掌握电涡流传感器测量原理,及其位移测量电路、设计方法和应用。 二、器件与仪器 1、主要器件:电涡流传感实验模板、电涡流传感器、振动台(2000型)、直流稳压电源、 低通滤波模板、螺旋测微头、不同面积的铝被测体、铜和铝的被测体圆盘、铁圆片、导线若干。 2、主要仪器:数显表、频率表、示波器、电压表。 三、基础设计与实践 1、设计内容 (1)设计一种利用电涡流传感器检测到不同金属静态位移的系统; (2)设计一种电涡流传感器测量振动的方法。 2、研究内容 (1)研究不同的被测体材料对电涡流传感器性能的影响; (2)研究电涡流传感器在实际应用中其位移特性与被测体的形状和尺寸的关系; (3)研究电涡流传感器的动态性能及测量原理与方法。 3、设计提示 (1)电涡流传感器的原理参考教材《检测与转换技术》(童敏明、唐守锋编); (2)电涡流传感器测量电路框图如图7所示,其中涡流线圈L和测量电器中的电容C 组成谐振电路,谐振频率为: f= 图7 电涡流传感器测量电路框图 (3)电涡流传感器的变频调幅式测量电路原理如图8所示;

图8 变频调幅式测量电路原理 (4)电涡流传感器的位移检测电路如图9所示。 图9 电涡流传感器位移检测电路 (5)电涡流传感器的静态位移测量安装如图10(a)所示,振动测量安装如图10(b)所示; (a)静态位移测量安装图;(b)振动测量安装如图 图10 电涡流传感器的安装示意图

四、基础实践注意事项 (1)被测体与电涡流传感器测试试头平面必须平行并将测头尽量对准被测体中间,以减少涡流损失; (2)传感器在测铁材料初始时可能会出现一段死区; (3)振动幅度不宜过大,以免撞击机壳,损坏仪器。 五、创新设计与实践 题目一、根据所掌握的传感器知识,设计一个金属零件计数分装系统。 1、设计要求: (1)选用合适的传感器了类型,将传感器探头安装在适当的位置上; (2)金属零件陆续从落料管中落到正下方的零件盒中时,能够有效地检测下落零件的个数; (3)当零件盒中的数量达到设定值N时停止落料,传送机构动作,将下一个空盒传送到落料管的正下方。 2、设计提示: 如下图所示为金属零件自动装箱检测控制系统示意图。 金属零件分装、计数系统 根据要求不能采用电涡流接近开关,而只能采用输出模拟电压的电涡流传感器及配套的测量转换电路(应考虑下落物体位置的随机性)。 3、创新实践要求: (1)依据设计思路画出传感器安装简图,测量转换电路图,并说明其工作原理及优缺点; (2)进行硬件电路连接测试,实现设计功能要求。 4、设计报告要求: (1)画出传感器安装图、测量转换电路图; (2)传感器原理说明和电路工作原理说明; (3)各元器件的选择与计算; (4)实践结果。

带你认识基本的传感器特性参数

带你认识基本的传感器特性参数 复性、精度、分辨率、零点漂移、带宽,本文将对这些参数进行一一介绍。 量程 每个传感器都有自身的测量范围,被测量处在这个范围内时,传感器的输出信号才是有一定的准确性的。 传感器的量程X FS、满量程输出值Y FS、测量上限X max、测量下限X min的关系见下图。 灵敏度 传感器的灵敏度是指其输出变化量ΔY与输入变化量ΔX的比值,可以用k表示。对于一个线性度非常高的传感器来说,也可认为等于其满量程输出值Y FS与量程X FS的比值。灵敏度高通常意味着传感器的信噪比高,这将会方便信号的传递、调理及计算。 k=ΔY ΔX

线性度 传感器的线性度又称非线性误差,是指传感器的输出与输入之间的线性程度。理想的传感器输入-输出关系应该是程线性的,这样使用起来才最为方便。但实际中的传感器都不具备这种特性,只是不同程度的接近这种线性关系。 实际中有些传感器的输入-输出关系非常接近线性,在其量程范围内可以直接用一条直线来拟合其输入-输出关系。有些传感器则有很大的偏离,但通过进行非线性补偿、差动使用等方式,也可以在工作点附近一定的范围内用直线来拟合其输入-输出关系。 选取拟合直线的方法很多,上图表示的是用最小二乘法求得的拟合直线,这是拟合精度最高的一种方法。实际特性曲线与拟合直线之间的偏差称之为传感器的非线性误差δ,其最大值与满量程输出值Y FS的比值即为线性度γL。 γL=± δ Y FS ×100% 迟滞

当输入量从小变大或从大变小时,所得到的传感器输出曲线通常是不重合的。也就是说,对于同样大小的输入信号,当传感器处于正行程或反行程时,其输出值是不一样大的,会有一个差值ΔH,这种现象称为传感器的迟滞。 产生迟滞现象的主要原因包括传感器敏感元件的材料特性、机械结构特性等,例如运动部件的摩擦、传动机构间隙、磁性敏感元件的磁滞等等。迟滞误差γH的具体数值一般由实验方法得到,用正反行程最大输出差值ΔH max的一半对其满量程输出值Y FS的比值来表示。 γH=±?H max FS ×100% 重复性 一个传感器即便是在工作条件不变的情况下,若其输入量连续多次地按同一方向(从小到大或从大到小)做满量程变化,所得到的输出曲线也是会有不同的,可以用重复性误差γR 来表示。 重复性误差是一种随机误差,常用正行程或反行程中的最大偏差ΔY max的一半对其满量程输出值Y FS的比值来表示。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

电涡流传感器的设计

引言 电涡流传感器具有灵敏度高、分辨力高、线性度高、重复性好、结构简单、抗干扰能力强、线性测量范围宽、安装方便、非接触测量、耐高温、能在油、汽、水等恶劣环境下长期连续工作的特点以及能够实现信息的远距离传输、记录、显示和控制的优势,被广泛应用于工业生产和科学研究等领域的位移、振动、偏心、胀差、厚度、转速等物理量的在线检测和安全保护,为精密诊断系统提供了全息动态特性。因而对于电涡流传感器的研究有着深远的理论和实践意义。 目前,对电涡流传感器的研究,主要集中在电磁学模型机理的研究、线圈几何形状的优化设计、测量精度的提高、非线性的线性化和应用范围的拓展等方面。本文提出了一种新型的电涡流传感器设计方案,具有速度快、功耗低、稳定性好等诸多优点,并已广泛应用于电力、石化、冶金、钢铁、航空航天等领域,取得了非常好的效果,得到了用户的一致好评。 1 电涡流传感器的基本工作原理[1-2] 电涡流传感器的基本工作原理是基于电涡流效应。根据法拉第电磁感应定律可知:金属导体置于变化的磁场中时,导体表面就会有感应电流产生。电流的流线在金属导体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应,电涡流传感器就是利用电涡流效应来检测导电物体的各种物理参数的。如图1所示。 理论和实践均证明:电涡流的大小与导体的磁导率ξ、电导率σ、线圈与导体之间的距离D 、激励电流强度I 、激励电流角频率ω、线圈尺寸因子等参数有关。探头线圈的阻抗Z 是上述参数的函数,即Z =F (,ξ, σ, D , I,ω) 。 很显然,如果只改变其中的某一参数,其他参数恒定,阻抗就成为该参数的单值函数。假设被测金属导体材质均匀,且具有线性和各向同性的性能特点,我们可以控制,ξ, σ, I ,ω这几个参数在一定范围内不变,则阻抗就成为距离的单值 函数,再通过前置器电子线路的处理,将探头线圈阻抗的变化,即探头线圈与金属导体之间的距离的变化转化为电压或电流的变化。输出信号的大小随探头到被测体表面之间的距离而变化,电涡流传感器正是基于这样的原理实现对位移、振动、胀差、偏心等的测量。 图1 电涡流传感器的工作原理 2 电涡流传感器电路设计 2.1 测量电路的选择[3-5] 电涡流传感器的测量电路可分为调频式和调幅式两种,调幅式测量电路又可细分为恒定频率的调幅式和频率变化的调幅式两种。 调幅式测量电路是指以输出高频信号的幅度来反映电涡流传感器探头与被测金属导体之间的关系。其特点是:输出可以被调理为直流电压,而对直流电压进行数据采集的速度快、时间短、可以降低功耗。 调频式测量电路是指将探头线圈的电感量与微调电容构成振荡器,以振荡器的频率作为输出量的一种转换电路。其优点是:电路结构简单,抗干扰能力强,性能较稳定,分辨率和精度高,易与计算机连接,频率输出便于数据采集和处理,成本较低。 在本设计中我们采用调幅式电路。2.2 滤波、稳压、同相比例放大电路的设计 该部分电路的作用是消除直流电源中的交流成分以及电源电压的波动所造成的影响。如图2所示。 2.3 振荡电路的设计[6] 电感三点式振荡电路:由于反馈支路是电感,振荡器的输出波形中含有较多的高次谐波,且振荡频率不高,对本设计不适用,故不予采用。 电容三点式振荡电路:由于输出端和反馈支路均为电容,对高次谐波电抗小,反馈电压中高次谐波分量很少,振荡频率稳定度高,因而输出波形好,更接近正弦 波。振荡频率可以较高。符合本设计的要求,故采用。如图3所示。 图3 电容三点式振荡电路 在本设计中,为了保证振荡电路输出信号的稳定和可靠,我们采取了如下措施: 针对电源电压的变化,在电源端添加了稳压环节;针对负载变化,在振荡电路与负载之间插入了缓冲电路以屏蔽负载的影响;针对环境温度变化,采用了温度系数较小的元件,例如云母电容等;针对外界磁场会引起磁性材料磁导率的变化,影响传感器线圈的涡流效应,将振荡器密封在传感器壳体内,起到屏蔽作用,可减少回路与外界发生的电磁耦合。 2.4 检波、滤波电路的设计 检波、滤波电路将电容三点式振荡器的输出信号,经过检波、滤波,将其转换为直流信号。通过对电路的优化设计,对元器件一致性的筛选以及电阻、电容参数的合理选配,使得该电路既能保证独立线性指标的要求,又能满足对动态响应时间指标的要求,同时还要尽可能降低直流信号输出的交流噪声。检波、滤波电路如图4所示。 2.5 对数运算电路的设计[7] 电涡流传感器的设计 伍艮常 株洲职业技术学院,湖南株洲 412001 DOI :10.3969/j.issn.1001-8972.2011.12.076 图2 滤波、稳压、同相比例放大电路

相关文档
相关文档 最新文档