文档库 最新最全的文档下载
当前位置:文档库 › 金属材料的焊接性能

金属材料的焊接性能

金属材料的焊接性能
金属材料的焊接性能

金属材料的焊接性能

(2014.2.27)

摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。

关键词:碳当量;焊接性;焊接工艺参数;焊接接头

1 前言

随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。

2 金属材料的焊接性能

2.1 金属材料焊接性的定义及其影响因素

2.1.1 金属材料焊接性的定义

金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。

工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。

使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

从理论上,凡是在熔化状态下相互能形成固熔体或共晶的两种金属或合金,原则上都可以实现焊接,即具有所谓原则焊接性,又叫物理焊接性,然而,这种原则焊接性仅仅为材料实现焊接提供依据,并不等于该材料用任何焊接方法,都能获得满足使用性能要求的优质焊接接头。同种金属或合金之间是具有原则焊接性的,但是,它们在不同的焊接工艺条件下的焊接性却表现出很大的差异。

因此,金属材料的焊接性不仅与材料本身的固有性能有关,同时也与许多焊接工艺条件有关,在不同的焊接工艺条件下,同一材料具有不同的焊接性。而且随着新的焊接方法、焊接材料或焊接工艺的开发和完善,一些原来焊接性差的金属材料,也会变成焊接性好的材料。

2.1.2 金属材料焊接性的影响因素

焊接性是金属材料的一种工艺性能。除了受材料本身性质影响外,还受到工艺条件、结构条件和使用条件的影响。

1)材料因素

材料包括母材和焊接材料。在相同的焊接条件下,决定母材焊接性的主要因素是它本身的物理性能和化学组成。

物理性能方面:如金属的熔点、热导率、线膨胀系数、密度、热容量等因素,都对热循环、熔化、结晶、相变等过程产生影响,从而影响焊接性。不锈钢等热导率低的材料,焊接时温度梯度大,残余应力高,变形大,。而且由于高温停留时间长,热影响区晶粒长大,对接头性能不利。奥氏体不锈钢线膨胀系数大、接头的变形和应力较为严重。

化学组成方面,其中影响最大的是碳元素,也就是说金属含碳量的多少决定了它的可焊性。钢中的其他合金元素大部分也不利于焊接,但其影响程度一般都比碳小得多。钢中含碳量增加,淬硬倾向就增大,塑性则下降,容易产生焊接裂纹。通常,把金属材料在焊接时产生裂纹的敏感性及焊接接头区力学性能的变化作为评价材料可焊性的主要指标。所以含碳量越高,可焊性越差。含碳量小于0.25%的低碳钢和低合金钢,塑性和冲击韧性优良,焊后的焊接接头塑性和冲击韧性也很好。焊接时不需要预热和焊后热处理,焊接过程容易控制,因此具有良好的焊接性。

此外,钢材的冶炼轧制状态、热处理状态、组织状态等,在不同程度上都对焊接性发生影响。通过精炼提纯或细化晶粒和控轧工艺等手段,来改善钢材的焊接性。

焊接材料直接参与焊接过程一系列化学冶金反应,决定着焊缝金属的成分、组织、性能及缺陷的形成。如果选择焊接材料不当,与母材不匹配,不仅不能获得满足使用要

求的接头,还会引进裂纹等缺陷的产生和组织性能的变化。因此,正确选用焊接材料是保证获得优质焊接接头的重要因素。

2)工艺因素

工艺因素包括焊接方法、焊接工艺参数、焊接顺序、预热、后热及焊后热处理等[1]。焊接方法对焊接性影响很大,主要表现在热源特性和保护条件两个方面。

不同的焊接方法其热源在功率、能量密度、最高加热温度等方面有很大差别。金属在不同热源下焊接,将显示出不同的焊接性能。如电渣焊功率很大,但能量密度很低,最高加热温度也不高,焊接时加热缓慢,高温停留时间长,使得热影响区晶粒粗大,冲击韧性显著降低,必须经正火处理才能改善。与此相反,电子束焊、激光焊等方法,功率不大,但能量密度很高,加热迅速。高温停留时间短,热影响区很窄,没有晶粒长大的危险。

调整焊接工艺参数,采取预热、后热、多层焊和控制层间温度等其它工艺措施,可以调节和控制焊接热循环,从而可改变金属的焊接性。如采取焊前预热或焊后热处理等措施,则完全可能获得没有裂纹缺陷,满足使用性能要求的焊接接头。

3)结构因素

主要是指焊接结构和焊接接头的设计形式,如结构形状、尺寸、厚度、接头坡口形式、焊缝布置及其截面形状等因素对焊接性的影响。其影响主要表现在热的传递和力的状态方面。不同板厚、不同接头形式或坡口形状其传热速度方向和传热速度不一样,从而对熔池结晶方向和晶粒成长发生影响。结构的开关、板厚和焊缝的布置等,决定接头的刚度和拘束度,对接头的应力状态产生影响。不良的结晶形态,严重的应力集中和过大的焊接应力等是形成焊接裂纹的基本条件。设计中减少接头的刚度、减少交叉焊缝,减少造成应力集中的各种因素,都是改善焊接性的重要措施。

4)使用条件

是指焊接结构服役期间的工作温度、负载条件和工作介质等。这些工作环境和运行条件要求焊接结构具有相应的使用性能。如在低温工作的焊接结构,必须具备抗脆性断裂性能;在高温工作的结构要具有抗蠕变性能;在交变载荷下工作的结构具有良好的抗疲劳;在酸、碱或盐类介质工作的焊接容器应具有高的耐蚀性能等等。总之,使用条件越苛刻,对焊接接头的质量要求就越高,材料的焊接性就越不容易保证。

3金属材料焊接性的鉴别评定指标

焊接过程中,产品经过焊接热过程、冶金反应,以及焊接应力和变形的作用,因而带来化学成分、金相组织、尺寸和形状的变化,使焊接接头的性能往往不同于母材,有时甚至不能满足使用要求。对于许多活性金属或难熔金属,宜采用特殊焊接方法,如电子束焊或激光焊,以便获得优质接头。材料制成优良焊接接头所需的设备条件越少、难度越小,则此材料的焊接性越好;反之,需要复杂而昂贵的焊接方法、特殊的焊接材料和工艺措施,则说明这种材料的焊接性不佳。

制造产品时,必须首先评定所用材料的焊接性,以判断所选用的结构材料、焊接材料和焊接方法等是否适当。评定材料焊接性的方法很多,每种方法只能说明焊接性的某一方面,因此需要进行试验后才能全面确定焊接性。试验方法可分为模拟型和实验型。前者模拟焊接加热和冷却特点;后者则按实际施焊条件进行试验。试验内容主要是检测母材和焊缝金属的化学成分、金相组织、机械性能、有无焊接缺陷,测定焊接接头的低温性能、高温性能、抗腐蚀性能和抗裂纹能力等。

4 金属材料焊接性的估算检测方法

4.1工艺焊接性的间接评定法:由于碳的影响最为明显,其他元素的影响可折合成碳的影响,所以我们用碳当量来评定焊接性的优良。

4.1.1碳钢及低合金结构钢的碳当量计算公式:

w=w(C)+1/6[w(Mn)]+ 1/5[w(Cr)+w(Mo)+w(V)]+1/15[w(Ni)+w(Cu)]*100% 当w<0.4%时,金属材料的焊接性良好,不需要预热。

当w=0.4%~0.6%时,焊接性相对较差,需要预热。

当w>0.4%~0.6%时,焊接性很差,必须预热到较高温度。

计算结果得到的碳当量数值越大,则被焊钢材的淬硬倾向越大,热影响区容易产生冷裂纹,所以当w>0.5%时,钢材容易淬硬,焊接时必须预热才能防止裂纹,随板厚和w 的增高加,预热温度也应相应增高。

4.2工艺焊接性的直接评定法:焊接裂纹试验方法,在焊接接头中产生的裂纹可以分为,热裂纹、冷裂纹、再热裂纹、应力腐蚀、层状撕裂等。由于各种裂纹形成的机理和扩散规律不同,所以要分别进行焊接裂纹试验方法。

4.2.1T形接头焊接裂纹试验法,该方法主要用于评定碳素钢和低合金钢角焊缝的热裂纹敏感性,也可用于测定焊条以及焊接参数对热裂纹敏感性的影响。

4.2.2压板对接焊接裂纹试验法,该方法主要用于评定碳钢、低合金钢、奥氏体不锈钢焊条及焊缝的热裂纹敏感性。它是通过把试件安装在FISCO试验装置内,调整坡口间隙大小对产生裂纹的影响很大,随着间隙的增加,裂纹敏感性越大。

4.2.3 刚性对接裂纹试验方法,这种方法主要用于测定焊缝区热裂纹和冷裂纹,也可测定热影响区的冷裂纹,试件四周先用定位焊缝焊牢在刚度很大的底板上,试验时按实际施工焊接参数施焊试验焊缝,主要用于焊条电弧焊,试件焊后室温下放置24h,先检查焊缝表面,然后在切去试样磨片,检查有无裂纹,一般以裂与不裂为评定标准,每种条件焊两块试件。

遵从金属材料焊接性的检测方法,进行焊接性试验,,以确保获得优良的焊接质量以及满足使用要求的焊接结构产品。

5 常用金属材料的焊接特点分析

5.1 碳钢的焊接

5.1.1 低碳钢的焊接

低碳钢含碳量低,锰、硅含量少,在通常情况下不会因焊接而引起严重组织硬化或出现淬火组织。这种钢的塑性和冲击韧性优良,其焊接接头的塑性、韧性也极其良好。焊接时一般不需预热和后热,不需采取特殊的工艺措施,即可获得质量满意的焊接接头,故低碳钢钢具有优良的焊接性能,是所有钢材中焊接性能最好的钢种。

5.1.2 中碳钢的焊接

中碳钢含碳量较高,其焊接性比低碳钢差。当W(C)接近下限(0.25%)时焊接性良好,随着含碳量增加,其淬硬倾向随之增大,在热影响区容易产生低塑性的马氏体组织。当焊件刚性较大或焊接材料、工艺参数选择不当时,容易产生冷裂纹。多层焊焊接第一层焊缝时,由于母材熔合到焊缝中的比例大,使其含碳量及硫、磷含量增高、容易生产热裂纹。此外,碳含量高时,气孔敏感性也增大。

5.1.3 高碳钢的焊接

W(C)大于0.6%的高碳钢淬硬性高、很容易产生硬又脆的高碳马氏体。在焊缝和热影响区中容易产生裂纹,难以焊接。故一般都不用这类钢制造焊接结构,而用于制造高硬度或耐磨的部件或零件,对它们的焊接多数是破损件的焊补修理。焊补这些零、部件之前应先行退火,以减少焊接裂纹,焊后再重新进行热处理。

5.2 低合金高强度钢的焊接

低合金高强钢的含碳量一般不超过0.20%,合金元素总量一般不超过5%。正是由于低合金高强钢含有一定量的合金元素,使其焊接性能与碳钢有一定差别,其焊接特点表现在:

1、焊接接头的焊接裂纹

(1)冷裂纹低合金高强钢由于含使钢材强化的C、Mn、V、Nb等元素,在焊接时易淬硬,这些硬化组织很敏感,因此,在刚性较大或拘束应力高的情况下,若焊接工艺不当,很容易产生冷裂纹。而且这类裂纹有一定的延迟性,其危害极大。

(2)再热(SR)裂纹再热裂纹是焊接接头在焊后消除应力热处理过程或长期处于高温运行中发生在靠近熔合线粗晶区的沿晶开裂。一般认为,其产生是由于焊接高温使HAZ附近的V、Nb、Cr、Mo等碳化物固溶于奥氏体中,焊后冷却时来不及析出,而在PWHT时呈弥散析出,从而强化了晶内,使应力松弛时的蠕变变形集中于晶界。

低合金高强钢焊接接头一般不易产生再热裂纹,如16MnR、15MnVR等。但对于Mn-Mo-Nb和Mn-Mo-V系低合金高强钢,如07MnCrMoVR,由于Nb、V 、Mo是促使再热裂纹敏感性较强的元素,因此这一类钢在焊后热处理时应注意避开再热裂纹的敏感温度区,防止再热裂纹的发生。

2、焊接接头的脆化和软化

(1)应变时效脆化焊接接头在焊接前需经受各种冷加工(下料剪切、筒体卷圆等),钢材会产生塑性变形,如果该区再经200 ~ 450℃的热作用就会引起应变时效。应变时效脆化会使钢材塑性降低,脆性转变温度提高,从而导致设备脆断。焊后热处理可消除焊接结构这类应变时效,使韧性恢复。

(2)焊缝和热影响区脆化焊接是不均匀的加热和冷却过程,从而形成不均匀组织。焊缝(WM)和热影响区(HAZ)的脆性转变温度比母材高,是接头中的薄弱环节。焊接线能量对低合金高强钢WM和HAZ性能有重要影响,低合金高强钢易淬硬,线能量过小,HAZ会出现马氏体引起裂纹;线能量过大,WM和HAZ的晶粒粗大会造成接头脆化。低碳调质钢与热轧、正火钢相比,对线能量过大而引起的HAZ脆化倾向更严重。所以焊接时,应将线能量限制在一定范围。

(3)焊接接头的热影响区软化由于焊接热作用,低碳调质钢的热影响区(HAZ)外侧加热到回火温度以上特别是Ac1附近的区域,会产生强度下降的软化带。HAZ区的组织软化随着焊接线能量的增加和预热温度的提高而加重,但一般其软化区的抗拉强度仍高于母材标准值的下限要求,所以这类钢的热影响区软化问题只要工艺得当,不致

影响其接头的使用性能。

5.3 不锈钢的焊接

不锈钢按其钢的组织不同可分为四类,即奥氏体不锈钢、铁素体不锈钢、马氏体不锈钢、奥氏体-铁素体双相不锈钢。以下主要分析奥氏体不锈钢和双向不锈钢的焊接特点。

5.3.1 奥氏体不锈钢的焊接

奥氏体不锈钢比其他不锈钢容易焊接。在任何温度下都不会发生相变,对氢脆不敏感,在焊态下奥氏体不锈钢接头也有较好的塑性和韧性。焊接的主要问题是:焊接热裂纹、脆化、晶间腐蚀和应力腐蚀等。此外,因导热性差,线胀系数大,焊接应力和变形较大。在焊接时应尽量采用小的焊接热输入,而且不应预热,并降低层间温度,层间温度控制在60度以下,焊缝接头相互错开。减小热输入,不应过分增大焊接速度,而应适应降低焊接电流。

5.3.2 奥氏体-铁素体双向不锈钢的焊接

奥氏体-铁素体双向不锈钢是由奥氏体和铁素体两相组成的双相不锈钢。它兼备了奥氏体钢和铁素体钢的优点,故具有强度高、耐腐蚀性好和易于焊接的特点。目前主要有CR18、CR21、CR25三种类型的双相不锈钢。这类钢焊接的主要特点是:与奥氏体不锈钢比具有较低的热倾向;与纯铁素体不锈钢比焊后具有较低的脆化倾向,而且焊接热影响区铁素体粗化程度也较低,故焊接性较好。

由于这类钢焊接性能良好,焊时可不预热和后热。薄板宜用TIG焊,中厚板可用焊条电弧焊,焊条电弧焊时宜选用成分与母材相近的专用焊条或含碳量低的奥氏体焊条。对于CR25型双相钢也可选用镍基合金焊条。

双相钢中因有较大比例铁素体存在,而铁素体钢所固有的脆化倾向,如475度脆性、σ相析出脆化和晶粒粗大,依然存在,只因有奥氏体的平衡作用而获得一定缓解,焊接时,仍需注意。对无NI或低NI双相不锈钢焊接时,在热影响区有单相铁素体及晶粒粗化倾向,这时应注意控制焊接热输入,尽量用小电流、高焊速、窄道焊和多道焊,以防止热影响区晶粒粗化和单相铁素体化,层间温度不宜太高,最好冷后再焊下一道。

6 总结

对于各类金属材料的焊接性能研究,在实际产品焊接应用中,应综合考虑各方面的影响因素,以下列举出几条因素:

(1)材料因素

影响焊接性的材料因素包括母材和焊接材料两个方面。对于母材:我们必须通过焊接工艺评定及对应的力学性能、金像分析检验等来分析此种材料的工艺焊接性和使用焊接性[1];对于焊材:根据母材的力学性能和化学成分数据,合理选择与母材强度相匹配及熔敷金属中合金元素含量与母材相匹配的焊材是最根本的选材原则。

(2)工艺因素

工艺因素包括采用的焊接方法、焊接工艺参数、焊接顺序,以及预热、后热、焊后热处理等方面。合理确定焊接规范参数及工艺措施,对于获得优质的焊接接头具有关键性的作用。

(3)结构因素

焊接接头形式、焊接结构类型、焊缝布置情况对最终的焊接接头质量影响很大。在设计焊接结构时,应尽量采用防止应力集中,减少焊缝数量的焊接结构[2]。

(4)工艺纪律因素

产品焊接生产过程中,焊接过程只允许有相应资格证的合格焊工进行施焊,严禁无证焊工上岗作业,严格执行焊接工艺规程,严格工艺纪律,对违反工艺纪律的合格焊工予以纠正,并作出相应处分,避免类似事件反复发生。

参考文献:

[1] 中国机械工程学会焊接学会.焊接手册(第2卷材料的焊接)【M】.北京:机械工业出版社,2007.

[2] 中国机械工程学会焊接学会.焊接手册(第3卷焊接结构)【M】.北京:机械工业出版社,2007.

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

金属材料焊接性知识要点(最新整理)

金属材料焊接性知识要点 1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性 7. 常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些? 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些? 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性?焊接工艺条件对热影响区最高硬度有什么影响? 答:因为(1).冷裂纹主要产生在热影响区; (2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。 一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

各种材料的焊接性能

金属材料的焊接性能 (1)焊接性能良好的钢材主要有: 低碳钢(含碳量<0.25);低合金钢(合金元素含量1~3、含碳量<0.20);不锈钢(合金元素含量>3、含碳量<0.18)。 (2)焊接性能一般的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.25~0.35);低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13~25、含碳量£0.18) (3)焊接性能较差的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.35~0.45);低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。 (4)焊接性能不好的钢材主要有: 中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量>0.40);不锈钢(合金元素含量13、含碳量0.30~0.40)。 焊条和焊丝选择的基本要点如下: 同类钢材焊接时选择焊条主要考虑以下几类因素: 考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能; 考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。 异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况: 一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。 焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。 ###15CrMoR的换热器的热处理工艺 ***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。 *** 15CrMoR焊接性能良好。手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。自动焊丝用H13CrMoA和焊剂250等。 ###压力容器用钢的基本要求 压力容器用钢的基本要求:较高的强度,良好的塑性、韧性、制造性能和与相容性。 改善钢材性能的途径:化学成分的设计,组织结构的改变,零件表面改性。 本节对压力容器用钢的基本要求作进一步分析。 一、化学成分 钢材化学成分对其性能和热处理有较大的影响。 1、碳:碳含量增加时,钢的强度增大,可焊性下降,焊接时易在热影响区出现裂纹。 因此压力容器用钢的含碳量一般不应大于0.25%。2、钒、钛、铌等:在钢中加入钒、钛、铌等元素,可提高钢的强度和韧性。

材料焊接性

《材料焊接性》(专科)学案 第一章绪论 二、本章习题 1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。 2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同? 第2章材料焊接性及其试验方法 1. 了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。 工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。 影响因素:材料因素、工艺因素、结构因素、使用条件。 2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题? 冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化

3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。 有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。 金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好| 第3章低合金结构钢的焊接 1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。 热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接 2. 分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

金属材料焊接性知识要点精选版

金属材料焊接性知识要 点 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

金属材料焊接性知识要点 1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2.工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3.使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4.影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5.评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6.实验方法应满足的原则:1可比性2针对性3再现性4经济性 7.常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法:此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。B:插销试验C:压板对接焊接裂纹试验法D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合了解其主要实验步骤,分析 影响实验结果稳定性的因素有哪些 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些? 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。

常用金属材料的焊接(不锈钢)

常用金属材料的焊接(不锈钢) 24 试述耐候钢及耐海水腐蚀用钢的焊接工艺。 铜、磷能显著地降低钢的腐蚀速度,这是耐候钢及耐海水腐蚀用钢的主要合金元素,常用耐候钢及耐海水腐蚀用钢有:16CuCr、12MnCuCr、15MnCuCr、09Mn2Cu、16MnCu、09MnCuPTi、08MnPRE、10MnPNbRE钢等。 铜、磷耐蚀钢对焊接热循环不敏感,焊接热影响区的最高硬度不超过350HV。虽然钢中含有Cu、P等元素,但其含量均不高,通常铜的质量分数控制在0.2%~0.4%,不会促使产生热裂纹。含磷钢中碳、磷的质量分数都在0.25%以下,因而钢的冷脆倾向也不大,所以焊接性良好,焊接工艺与强度级别较低(σs为343~392MPa)的普通热轧钢相同。 焊接耐候及耐海水腐蚀用钢的焊条,见表17。埋弧焊时,采用H08MnA、H10Mn2焊丝配合HJ431焊剂。 表17 焊接耐候及耐海水腐蚀用钢的焊条 牌号型号主要用途 J422CrCu E4303 焊接12CrMoCu J502CuP 焊接10MnPNbRE、08MnP、09MnCuPTi J502NiCu E5003-G 焊接耐候铁道车辆09MnCuPTi J502WCr J502CrNiCu E5003-G 焊接耐候近海工程结构 J506WCu E5016-G 焊接耐候用钢09MnCuPTi J506NiCu E5016-G 焊接耐候用钢 J507NiCu E5015-G 焊接耐候用钢 J507CrNi E5015-G 焊接耐海水腐蚀用钢的海洋重要结构 25 什么是不锈钢的晶闸腐蚀? 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶闸腐蚀。产生晶闸腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶闸腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀,见图2。

《金属材料焊接》A卷材料工程系2012-2013-1

……………………………………密……………………………………封……………………………………线……………………………… 班级:________________________姓名:________________________学号:________________________ ……………………………………密……………………………………封……………………………………线……………………………… ****** 2012~2013学年第一学期焊接技术及自动化专业 《金属材料焊接》考试试卷(A ) 答题注意事项:○1学生必须用蓝色(或黑色)钢笔、圆珠笔或签字笔直接在试题卷上答题;○2答卷前请将密封线内的项目填写清楚;○3字迹要清楚、工整,不宜过大,以防试卷不够使用;4本卷共4大题,总分为100分。 一、填空题(共9小题,26空,每空1分,合计26分) 1.焊接是通过 或 ,或者两者并用,并且用或不用 ,使焊件间达到 的一种加工方法。 2.按焊接过程中金属所处的状态不同,可以把焊接方法分为 、 和 三大类。 3.熔焊时, 在焊缝金属中所占的百分比叫做熔合比。 4.焊缝金属的偏析主要有 、 和 。 5.对不易淬火钢来说,根据热影响区组织特征主要分为三个区域,即 、 、 。 6.冷裂纹通常是 、 及 三者共同作用的结果。通常把这三个因素,称为冷裂纹形成的三要素。 7.不锈复合钢板装配时,必须以 为基准对齐;定位焊一定要在 面上。 8.按碳在灰口铸铁中的存在形式不同,可将其铸铁分 为 、 、 和 。 9.铝及铝合金常用的焊接方法是 、 和 。 二、选择题(共22小题,每题2分,合计44分) 1.( )不是影响焊接性的因素。 A.金属材料的种类及其化学成分 B.焊接方法 C.构件类型 D.焊接操作技术 2.碳当量( )时,钢的淬硬冷裂倾向不大,焊接性优良。 A.小于0.40% B.小于0.50% C.小于 0.60% D.小于0.80% 3.国际焊接学会的碳当量计算公式只考虑了( )对焊接性的影响,而没有考虑其他因素对焊接性的影响。 A.焊缝扩散氢含量 B.焊接方法 C.构件类型 D.化学成分 4.国际焊接学会推荐的碳当量计算公式适用于( )。 A.高合金钢 B.奥氏体不锈钢 C.耐磨钢 D.碳钢和低合金结构钢 5.低碳钢Q235钢板对接时,焊条应选用( )。 A.E7015 B.E6015 C.E5515 D.E4303 6.焊接18MnMoNb 钢材时,宜选用的焊条是( )。 A.E7515—D2 B.E4303 C.E5015 D.E5016 7.低合金结构钢焊接时的主要问题是( )。 A.应力腐蚀和接头软化 B.冷裂纹和接头软化 C.应力腐蚀和粗晶区脆化 D.冷裂纹和粗晶区脆化 8.( )不属于有淬硬冷裂倾向的低合金结构钢焊接工艺特点。 A.采取预热 B.要控制热输入 C.采取降低含氢量的工艺措施 D.采用酸性焊条 9.低合金结构钢采取局部预热时,预热范围为焊缝两侧各不小于焊件厚度的3倍,且不小于( )mm 。 A.300 B.250 C.200 D.100 10.18MnMoNb 钢的焊接性较差,焊前需要预热,预热温度为( )°C 。 A.100-130 B.130-150 C.150-180 D.180-250 11.低温压力容器用钢16MnDR 的最低使用温度为( )°C 。 A.-20 B.-40 C.-50 D.-60 12.低合金高强度结构钢按热处理状态分类,30CrMnSiA 钢属于( )。 A.正火刚 B.热轧钢 C.非热处理强化钢 D.中碳调质钢 13.熔焊时硫的主要危害是产生( )缺陷。 A.气孔 B.飞溅 C.裂纹 D.夹杂物 14.低碳钢由于结晶区间不大所以( )不严重。 A.层状偏析 B.区域偏析 C.显微偏析 D.火口偏析 15.奥氏体不锈钢的焊接电流(A ),一般取焊条直径(mm )的( )倍。 A.15-20 B.25-30 C.35-40 D.45-50 16.牌号为A137的焊条是( )。 A.碳钢焊条 B.低合金钢焊条 C.珠光体耐热钢焊条 D.奥氏体不锈钢焊条 17.为了防止奥氏体不锈钢焊接热裂纹,希望焊缝金属组织是奥氏体-铁素体双相组织,其中铁素体的质量分数应控制在( )左右。 A.30% B.20% C.10% D.5% 18.( )不是奥氏体不锈钢合适的焊接方法。 A.焊条电弧焊 B.钨极氩弧焊 C.埋弧自动焊 D.电渣焊 19.( )不是奥氏体不锈钢的焊接工艺特点。 A.不能进行预热和后热处理 B.采用小线能量,小电流快速焊

金属材料焊接及热处理工艺

金属材料焊接及热处理工艺 总则 1)本工艺适用于汽机范围内管道、容器、承重构架及结构部件的焊接及热处理工作。 2)本工艺适用于低碳钢,普通低合金钢,耐热钢、不锈钢、铜及铜合金、铝及铝合金、铸铁等材料的手工电弧焊,手工钨氩弧焊和O2 C 2H2气焊。 3)有关安全方面,应遵守安全防火等规程的有关规定。 4)焊缝检查和焊工考核及质量验收应遵照有关射线超声检验等规定及焊工考试的规则执行。5)对焊工及热处理工的要求,见电力建设施工及验收技术规范(火力发电厂焊接篇)。 16.2 焊接工艺 16.2.1焊接材料 16.2.1.1焊条、电丝的选择,具体按工程一览表选择 1)对同种类钢,机械性能及化学性能,化学成分与母材相近,焊条的合金元素的含量应略高于母材,Ar弧焊焊则要求与母材相同,化学类有钢要求抗蚀性同母材相同。 2)对焊接质量要求高,裂纹倾向大的材料和结构,应选用低氢型焊条。 3)对于异种钢,两非“A”体钢同类组织异种钢应选择靠近低合金侧或选其中间合金含量的焊条和焊丝;两非“A”体一同组织异种钢应选择能获得综合性能好的组织的焊条,焊丝,两材料其中之一为“A”体不锈钢时应选用高Ni不透钢焊条,对各异种钢结构,可参考附表16-1选择。4)对低碳钢,普通碳素结构钢,选用相应强度等级的结构焊丝,焊条。 5)焊条的直径选择,必须是在保证操作工艺性良好,成型美观,保证焊接质量的前提下尽可能选择较大直径的焊条,对于承压管道的多层焊,底层采用?2.5mm焊条,第2-3层选用?3.2mm 焊条,以后各层选用?4.0mm焊条,对应力大,裂纹倾向大的高合金钢,高碳钢,应选用较小的焊条直径。 16.2.1.2钨极的选择:目前市场上有纯钨极,钍钨极和铈钨极三种,纯钨极及钍钨极已趋于淘汰不再被采用。最好选用铈钨极。其直径据所用的电流进行选择,各种规格的钨极所适应的电流范围如表16.1.

金属材料焊接知识

金属材料焊接知识 第一节金属材料焊接性的基本概念 一、焊接性的定义金属的焊接性是指材料对焊接加工的适应性,主要指在一定的焊接工艺条件下,获得优质焊接接头的难易程度,它包括两个方面的内容。 (1)接合性能:既在一定的焊接工艺条件下,一定的金属形成焊接缺陷的敏感性。 (2)使用性能:既在一定的焊接工艺条件下,一定金属的焊接接头对使用要求的适应性。 金属焊接性的内容是多方面的,对于不同材料、不同工作条件下的焊件,焊接性的内容不同。因此焊接性只是相对的概念。 二、影响焊接性的因素 金属材料焊接性的好坏主要决定于材料化学成分,而且与结构的复杂程度、钢度、焊接方法、采用的焊接材料、焊接工艺条件及结构的使用条件有密切关系。 1.结构因素 焊接接头的结构设计会影响应力状态,从而对焊接性产生影响,焊接时应尽量使焊接接头处于钢度较小的状态,使之能够自由收缩,这样有利于防止焊接裂纹。 2.材料因素材料因素包括母材本身和使用的焊接材料,如焊条、焊丝、焊剂、保护气体等。它们在焊接时都参与熔池或半熔化区内的冶金过程,直接影响焊接质量。 母材或焊接材料选用不当时,会造成焊接金属化学成分不合格,力学性能和其他使用性能降低:这会出现气孔、裂纹等缺陷。也就是使结合性能变差。 3.工艺因素 对于同一母材,当采用不同的焊接工艺方法和工艺措施时,所表现的焊接性也不同。焊接方法对焊接的影响,首先表现在焊接热源能量密度大小、温度高低以及热输入的多少。 工艺措施对防止焊接接头缺陷,提高使用性能也有重要的作用。如焊前预热、焊后缓冷和去氢处理等,他们对防止热影响区淬硬变脆、降低焊接应力、避免氢致冷裂纹是比较有效的措施,另外,如合理安排焊接顺序,则能减小应力变形。 4.使用条件 焊接结构的使用条件是多种多样的,有在高温、低温下工作,在腐蚀介质中 工作及在静载或动载工作下工作等。在高温工作,可能产生蠕变,在低温工作或有冲

金属材料焊接及热处理工艺

金属材料焊接及热处理工艺 16.1 总则 1)本工艺适用于汽机范围内管道、容器、承重构架及结构部件的焊接及热处理工作。 2)本工艺适用于低碳钢,普通低合金钢,耐热钢、不锈钢、铜及铜合金、铝及铝合金、铸铁等材料的手工电弧焊,手工钨氩弧焊和O2 C 2H2气焊。 3)有关安全方面,应遵守安全防火等规程的有关规定。 4)焊缝检查和焊工考核及质量验收应遵照有关射线超声检验等规定及焊工考试的规则执行。5)对焊工及热处理工的要求,见电力建设施工及验收技术规范(火力发电厂焊接篇)。 16.2 焊接工艺 16.2.1焊接材料 16.2.1.1焊条、电丝的选择,具体按工程一览表选择 1)对同种类钢,机械性能及化学性能,化学成分与母材相近,焊条的合金元素的含量应略高于母材,Ar弧焊焊则要求与母材相同,化学类有钢要求抗蚀性同母材相同。 2)对焊接质量要求高,裂纹倾向大的材料和结构,应选用低氢型焊条。 3)对于异种钢,两非“A”体钢同类组织异种钢应选择靠近低合金侧或选其中间合金含量的焊条和焊丝;两非“A”体一同组织异种钢应选择能获得综合性能好的组织的焊条,焊丝,两材料其中之一为“A”体不锈钢时应选用高Ni不透钢焊条,对各异种钢结构,可参考附表16-1选择。 4)对低碳钢,普通碳素结构钢,选用相应强度等级的结构焊丝,焊条。 5)焊条的直径选择,必须是在保证操作工艺性良好,成型美观,保证焊接质量的前提下尽可能选择较大直径的焊条,对于承压管道的多层焊,底层采用?2.5mm焊条,第2-3层选用?3.2mm 焊条,以后各层选用?4.0mm焊条,对应力大,裂纹倾向大的高合金钢,高碳钢,应选用较小的焊条直径。 16.2.1.2钨极的选择:目前市场上有纯钨极,钍钨极和铈钨极三种,纯钨极及钍钨极已趋于淘汰不再被采用。最好选用铈钨极。其直径据所用的电流进行选择,各种规格的钨极所适应的电流范围如表16.1.

金属材料焊接复习提纲要点

10-11学年第一学期《金属材料焊接》复习提纲 1.焊接热源:对焊接热源有何特殊要求;生产中常用的焊接热源有哪些;比较不同焊接热源性能的判据是什么;焊接热源的热效率。 2.焊接化学冶金过程:焊缝金属的熔合比;熔滴过渡及其形式;焊接熔池(概念、形状、尺寸、熔池金属的流动、凝固过程);熔渣的作用、碱度,长渣、短渣;焊缝金属中的有害杂质元素的来源、与金属的作用和危害、控制措施。 3.焊接接头的组织与性能:焊缝金属的化学不均匀性,焊缝中偏析的三种形式;如何改善焊缝的组织与性能;焊接热影响区、焊接热影响区的组织和性能。 4.焊接冶金缺陷:焊接冶金缺陷的常见形式、分类(种类)、形成原因、防止措施。 5.焊接材料:酸性/碱性焊条的特点,各自采用的脱氧剂;常见焊条/焊丝/焊剂型号、牌号的识别;焊条的工艺性能。 6.金属的焊接性及其评定:何为金属的焊接性;影响金属焊接性的因素;金属焊接性实验的内容。 7.合金结构钢的焊接:低合金高强度钢焊接的主要问题;Q345钢的焊接性,该材料采用焊条电弧焊、埋弧焊、CO2气体保护焊时的焊接材料、焊接工艺。 8.不锈钢、耐热钢的焊接:奥氏体不锈钢(如0Cr18Ni9)的焊接性(焊接时产生各种缺陷的原因及防止措施)、焊接工艺。 9.铸铁的焊接:铸铁焊接常出现的问题;灰铸铁的焊接性问题;灰铸铁焊条电弧焊/气焊的冷焊焊接工艺。 10.有色金属的焊接:适于制作焊接结构的铝及其合金有哪些,常见的牌号及其识别;铝及铝合金的焊接性及焊接工艺。 11.其他:碳素钢的成分、牌号、组织与性能 二〇一〇年十二月

金属材料焊接习题(3-5章) 班级:学号:姓名: 一、填空 1.焊接熔池与铸锭相比,具有如下特点:、、和。 2.焊缝金属的偏析主要有、和。 3.在液体金属中加入少量的使结晶过程发生明显变化,从而达到,叫做变质处理。 4.熔合区由、两部分组成。半融化区指两相交错共存,而又凝固的部位,是由于所形成。 5.焊接过程中,在形成焊缝的同时不可避免地使其附近的母材经受了一次,形成了一个和极不均匀的。 6.影响热影响区形成的因素主要有、、、 。 7.对不易淬火钢来说,根据热影响区组织特征主要分为三个区域,即、 、。 8.焊接碳含量和合金元素较高的易淬火钢时,在热影响区的会形成组织,导致热影响区出现脆化。 9.产生气孔的过程可以分为三个阶段:、和。 10.当熔渣的氧化性增大时,则由引起的气孔的倾向增大;相反,当熔渣的还原性增大时,则产生的倾向增大。 11.焊接时,焊接电流增大,会使熔滴变细,熔滴的增大,熔滴吸收的较多,增加气孔的倾向。 12.夹杂物的组成及分布形式多种多样,随、与 而变化。焊缝金属中常见的夹杂物有、和等三类。 13.当夹杂物以分布时,对焊缝的塑性和脆性危害很小,还可以使焊缝的有所提高,只有当夹杂物以状存在或聚集时,才会对焊缝的性能危害较大。14.按照裂纹产生的条件,可以把裂纹分为、、、、 。 15.冷裂纹通常是、及三者共同作用的结果。通常把这三个因素,称为冷裂纹形成的三要素。 16. 是涂有药皮的,供焊条电弧焊用的熔化电极,由和两部分组成。 17.焊芯是一根实心金属棒,在电弧热作用下自身熔化过渡到焊件的内,成为焊缝中

金属材料的焊接性

第三节 金属材料的焊接性 1. 焊接性的概念 —定焊接技术条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性称为金属材料的焊接性。 2.焊接性的评价 1) 碳当量法 碳当量是把钢中的合金元素(包括碳)的含量,按其作用换算成碳的相对含量。国际焊接学会推荐的碳当量(CE)公式为: %)++++++=10015 )Cu ()Ni (5)V ()Mo ()Cr (6)Mn ()C ([CE ?ωωωωωωω 式中,ω(C)、ω(Mn)等-碳、锰等相应成分的质量分数(%)。 当CE<0.4%时,钢材的塑性良好,淬硬倾向不明显,焊接性良好。在一般的焊接技术条件下,焊接接头不会产生裂纹,但对厚大件或在低温下焊接,应考虑预热;当CE 在0.4~0.6%时,钢材的塑性下降,淬硬倾向逐渐增加,焊接性较差。焊前工件需适当预热,焊后注意缓冷,才能防止裂纹;当CE>0.6%时,钢材的塑性变差。淬硬倾向和冷裂倾向大,焊接性更差。工件必须预热到较高的温度,要采取减少焊接应力和防止开裂的技术措施,焊后还要进行适当的热处理。 2)冷裂纹敏感系数法 冷裂纹敏感系数的其计算式为: %++++++=100]600 60]H [)B (510) V (15) Mo (60) Ni (20) Cu ()Mn ()Cr (30) Si ()C ([?++++h P W ωωωωωωωωω 式中P W -冷裂纹敏感系数;h -板厚;[H]-100g 焊缝金属扩散氢的含量(mL)。 冷裂纹敏感系数越大,则产生冷裂纹的可能性越大,焊接性越差。 3.低碳钢的焊接 低碳钢的CE 小于0.4%,塑性好,一般没有淬硬倾向,对焊接热过程不敏感,焊接性良好。 4.中、高碳钢的焊接 中碳钢的CE 一般为0.4%~0.6%,随着CE 的增加,焊接性能逐渐变差。高碳钢的CE 一般大于0.6%,焊接性能更差,这类钢的焊接—般只用于修补工作。为了保证中、高碳钢焊件焊后不产生裂纹,并具有良好的力学性能,通常采取以下技术措施: 1)焊前预热、焊后缓冷 焊前预热和焊后缓冷的主要目的是减小焊接前后的温差,降低冷却速度,减少焊接应力,从而防止焊接裂纹的产生。预热温度取决于焊件的含碳量、焊件的厚度、焊条类型和焊接规范。

《金属材料焊接工艺》习题

1.1 1. 锅炉压力容器是生产和生活中广泛使用的()的承压设备。 A. 固定式 B. 提供电力 C. 换热和贮运 D. 有爆炸危险 2. 工作载荷、温度和介质是锅炉压力容器的()。 A. 安装质量 B. 制造质量 C. 工作条件 D. 结构特点 3. 凡承受流体介质的()设备称为压力容器。 A. 耐热 B. 耐磨 C. 耐腐蚀 D. 密封 4. 锅炉铭牌上标出的压力是锅炉()。 A. 设计工作压力 B. 最高工作压力 C. 平均工作压力 D. 最低工作压力 5. 锅炉铭牌上标出的温度是锅炉输出介质的()。 A. 设计工作温度 B. 最高工作温度 C. 平均工作温度 D. 最低工作温度 6. 设计压力为0.1MPa≤P<1.6MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 7. 设计压力为1.6MPa≤P<10MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 8. 设计压力为10MPa≤P<100MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 9. 设计压力为P≥100MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 10. 低温容器是指容器的工作温度等于或低于()的容器。 A. -10℃ B.-20℃ C. -30℃ D. -40℃ 11. 高温容器是指容器的操作温度高于()的容器。 A. -20℃ B. 30℃ C. 100℃ D.室温 12.()容器受力均匀,在相同壁厚条件下,承载能力最高。 A. 圆筒形 B. 锥形 C. 球形 D.方形 13. 在压力容器中,筒体与封头等重要部件的连接均采用()接头。 A. 对接 B. 角接 C. 搭接 D. T形 14. 在生产中,最常用的开坡口加工方法是() A. 机械加工 B. 火焰加工 C. 电弧加工 D. 激光加工 1.2

金属材料焊接-试题

金属材料焊接-试题

金属材料焊接试题 一、填空题 1.金属材料焊接性的好坏,主要取决于材料的(),且与结构的复杂程度、()和焊接方法,采用的焊接材料、焊接工艺条件及结构的()也有密切的关系。 2.判断焊接性最简单的间接法是法()。 3.()焊接裂纹试验,又称小铁研法,主要用于碳素钢和低合金钢焊接接头的冷裂纹抗裂性能试验。 4.焊接性的评价主要包括两方面内容:一是评定焊接接头(),为制定合理的焊接工,提供依据;二是评定焊接接头()。5.焊后为改善焊接接头的组织和性能或消除残余应力而进行的热处理,称()。6.碳当量只考虑对焊接性的影响,没有考虑()、()、()、()、()和构件使用要求等因素的影响。 7.金属的焊接性包括()和

()两方面的内容。 8.低合金钢的主要特点是()、()和良好,()及其他性能较好。 9.含碳量为()一的碳素钢称为中碳钢。中碳钢与低碳钢相比较,含碳量较高,()较高,焊接性较()差。10.高碳钢导热性比低碳钢差,致使焊接区和未加热部分之间产生显著的(),因此在焊接中,引起很大的(),熔池急剧冷却,产生裂纹的倾向较大。 11.低合金结构钢焊接过程中一个重要的特点是热影响区有较大的淬硬倾向,其主要的影响因素是()和()。 12.低合金结构钢焊接时,易出现()、()、()等问题。 13.Q345钢在低温下或在刚度和厚度均较大的结构上进行小工艺参数、小焊道的焊接时,有可能出现()或()。 14.Q390钢属于()MPa级的低合金结构钢,当钢板厚度大于()mm 或在0℃以下施焊时,则应预热至

()℃,焊后采用()℃的消除应力热处理。 15.我国的低合金结构钢可分为四类,即()、()、()和()。 16.低碳钢焊接时,焊接方法或焊接材料选择不当,焊接热影响区会出现()组织,降低热影响区的()。 17.按空冷后室温组织的不同,不锈钢可分为()、()、()、()和()五大类,其中()应用最广泛。 18.在施焊中,若焊接工艺选择不当,奥氏体不锈钢会产生()和()等问题。 19.奥氏体不锈钢最危险的一种破坏形式是(),它既可产生在焊缝或热影响区,又会产生在熔合线上,如产生在熔合线上又称为()。 20.不锈钢具有抗腐蚀能力的必要条件是含铬量为()组织。 21.为避免晶间腐蚀,奥氏体不锈钢中加入的稳

常用金属材料的焊接

常用金属材料的焊接

常用金属材料的焊接(不锈钢) 24 试述耐候钢及耐海水腐蚀用钢的焊接工 艺。 铜、磷能显著地降低钢的腐蚀速度,这是耐候钢及耐海水腐蚀用钢的主要合金元素,常用耐候钢及耐海水腐蚀用钢有:16CuCr、12MnCuCr、15MnCuCr、09Mn2Cu、16MnCu、09MnCuPTi、 08MnPRE、10MnPNbRE钢等。 铜、磷耐蚀钢对焊接热循环不敏感,焊接热影响区的最高硬度不超过350HV。虽然钢中含有Cu、P等元素,但其含量均不高,通常铜的质量分数控制在0.2%~0.4%,不会促使产生热裂纹。含磷钢中碳、磷的质量分数都在0.25%以下,因而钢的冷脆倾向也不大,所以焊接性良好,焊接工艺与强度级别较低(σs为343~392MPa)的普 通热轧钢相同。 焊接耐候及耐海水腐蚀用钢的焊条,见表17。埋弧焊时,采用H08MnA、H10Mn2焊丝配合HJ431 焊剂。 表17 焊接耐候及耐海水腐蚀用钢的焊条

牌号型 号 主要用 途 J422CrCu E4303 焊接12CrMoCu J502CuP 焊接10MnPNbRE、08MnP、09MnCuPTi J502NiCu J502WCr E5003-G 焊接耐候铁道车辆 09MnCuPTi J502CrNiC u E5003-G 焊接耐候近海工程结 构 J506WCu E5016-G 焊接耐候用钢09MnCuPTi J506NiCu E5016-G 焊接耐候用钢J507NiCu E5015-G 焊接耐候用钢 J507CrNi E5015-G 焊接耐海水腐蚀用钢的海洋重要结构 25 什么是不锈钢的晶闸腐蚀? 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶闸腐蚀。产生晶闸腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度

金属材料焊接工艺习题

1. 锅炉压力容器是生产和生活中广泛使用的()的承压设备。 A. 固定式 B. 提供电力 C. 换热和贮运 D. 有爆炸危险 2. 工作载荷、温度和介质是锅炉压力容器的()。 A. 安装质量 B. 制造质量 C. 工作条件 D. 结构特点 3. 凡承受流体介质的()设备称为压力容器。 A. 耐热 B. 耐磨 C. 耐腐蚀 D. 密封 4. 锅炉铭牌上标出的压力是锅炉()。 A. 设计工作压力 B. 最高工作压力 C. 平均工作压力 D. 最低工作压力 5. 锅炉铭牌上标出的温度是锅炉输出介质的()。 A. 设计工作温度 B. 最高工作温度 C. 平均工作温度 D. 最低工作温度 6. 设计压力为≤P<的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 7. 设计压力为≤P<10MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 8. 设计压力为10MPa≤P<100MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 9. 设计压力为P≥100MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 10. 低温容器是指容器的工作温度等于或低于()的容器。 A. -10℃℃ C. -30℃ D. -40℃ 11. 高温容器是指容器的操作温度高于()的容器。 A. -20℃ B. 30℃ C. 100℃ D.室温 12.()容器受力均匀,在相同壁厚条件下,承载能力最高。 A. 圆筒形 B. 锥形 C. 球形 D.方形 13. 在压力容器中,筒体与封头等重要部件的连接均采用()接头。 A. 对接 B. 角接 C. 搭接 D. T形 14. 在生产中,最常用的开坡口加工方法是()

金属材料焊接中的缺陷分析及对策分析

金属材料焊接中的缺陷分析及对策分析 发表时间:2018-06-01T10:49:17.110Z 来源:《基层建设》2018年第9期作者:张仙芝孙全德[导读] 摘要:金属材料焊接的过程中可以应用各种不同的焊接工艺,而焊接工艺的不同其技术要点也存在着一定的差异,为了促进金属材料焊接质量以及材料实用效率的有效提高,必须对其焊接过程中的缺陷予以充分的重视,并采取积极有效的措施,才能有效的避免材料焊接过程中缺陷的出现,促进我国金属焊接工艺水平的提高。 新疆维吾尔自治区特种设备检验研究院新疆乌鲁木齐市 830000 摘要:金属材料焊接的过程中可以应用各种不同的焊接工艺,而焊接工艺的不同其技术要点也存在着一定的差异,为了促进金属材料焊接质量以及材料实用效率的有效提高,必须对其焊接过程中的缺陷予以充分的重视,并采取积极有效的措施,才能有效的避免材料焊接过程中缺陷的出现,促进我国金属焊接工艺水平的提高。 关键词:金属材料;焊接;缺陷 1金属材料焊接成型主要缺陷分析 1.1裂纹缺陷 在金属材料焊接成型处理中,焊接裂纹的出现是最为常见的一个方面,同样也是对于后续金属产品应用影响极大的一个问题表现。这种焊接裂纹在具体处理中主要表现为热裂纹和冷裂纹两种基本类型。热裂纹的出现主要就是指在金属焊接过程中,其由液态结晶转化为固态的过程中,因为一些不当操作,或者是外界环境的不良威胁,最终形成的一些裂纹缺陷,在焊接操作完成后会直接表现,比如所用金属材料的质量不佳,含有过多的杂质,或者是相应焊接周围环境的湿度不合理,都会严重干扰其整体焊接效果,出现热裂纹。冷裂纹则主要是指相应金属材料在焊接完成后的冷却过程中出现了较为明显的裂纹现象,其除了在焊后直接表现出来之外,还会在焊接完成后的几天,甚至是更长时间后出现,具备更为突出的不可控特点,该类裂纹的出现主要就是因为焊缝的处理不当造成的,相应焊缝区域出现了淬硬组织,并且产生了较为明显的约束应力,形成了裂纹表现。 1.2焊缝折断缺陷 对于金属材料的焊接处理而言,相应焊接质量不佳还容易表现为焊缝区域的折断问题,其焊缝区域因为整体性不佳,进而也就很可能会导致其容易在受力状况下出现折断或者是突变问题,最终导致其金属产品的应用价值受损。结合这种焊缝折断缺陷而言,其主要原因就是具体焊接操作的落实不规范,存在着明显的未焊透或者是未融合问题,最终也就很可能会导致其焊接区域的整体规范性受损。当然,这种未焊透或者是未融合问题的出现更是受到了多个方面的威胁和干扰,比如对于焊接操作中的角度选择,其存在大小不适宜问题的话,就极有可能会影响到焊接的彻底性,而焊条选择不合理,或者是相应焊接技术手段的处理不规范,焊缝位置的清洁工作处理不当,都极有可能会产生未焊透问题。 1.3夹渣缺陷 在金属材料焊接成型操作中,其出现夹渣问题的危害性同样也是比较突出的,这种夹渣方面的影响主要就是在焊缝区域内出现了熔渣的混入,如此也就必然会对于焊缝的强度以及整体性效果产生了威胁。这种夹渣问题产生的影响因素也是比较多的,比如相应焊缝区域的切割不合理,导致其遗留较多的残渣,相应焊条的选择不合理,和具体焊接需求存在明显冲突,或者是相关焊接操作所用电流过小,都极有可能会带来较为明显的夹渣问题,最终也就很可能会形成明显焊接质量缺陷。 1.4气孔缺陷 对于金属材料焊接成型操作,其在处理中出现气孔问题的危害性同样也是比较突出的,这种气孔缺陷主要就是指在焊接区域的内部,或者是表面、接头位置,存在着较为明显的气孔,如此也就必然会对于整个焊接质量效果产生明显威胁。结合这种气孔缺陷的产生,其主要就是在相应焊接区域的处理中没有做好清洁工作,导致其相关焊接区域出现了明显的油污或者是水分,进而也就很可能在焊接操作中形成大量气体,并且被滞留在焊缝周围,导致其焊接整体质量效果出现问题。 1.5咬边缺陷 在金属材料焊接成型处理中,其存在的咬边缺陷同样也是比较常见的一个基本类型,这种咬边缺陷主要就是指在焊接区域存在着明显的凹陷边缘,进而也就必然会导致焊缝的强度受损,还影响到焊接的美观性效果。结合这种咬边缺陷的产生,其主要就是在焊接操作过程中没有规范运用焊接解决,导致其相应焊接操作所使用的电流过大,或者是焊接的速度过快,进而导致具体焊缝区域的处理质量不佳,形成了明显的凹陷问题。 1.6焊瘤缺陷 金属材料焊接成型处理中的焊瘤缺陷同样也是比较常见的一个方面,这种焊瘤缺陷主要就是指相应焊接操作的相关区域内存在着明显的金属瘤,影响到焊缝的美观性和强度效果。这种焊瘤缺陷主要就是在金属呈液态趋势下的慢慢下坠不合理而造成的,其一般和焊接操作过程中所用的电流控制不当有关,相应焊接电流过大,或者是焊接弧长过大,都会导致其焊瘤缺陷问题的出现。 2金属焊接技术缺陷的解决措施 2.1气孔的解决措施 烘干材料的过程中,要保证操作严格执行规范要求,妥善保管焊接材料和设备。焊接之前,彻底清除坡口边缘的杂质,合理控制焊接电流以及焊接速度、电弧的长度。 2.2夹渣和咬边的解决措施 合理选择坡口尺寸,彻底清理倒角,严格控制焊接速度和电流大小,保证摆动适度。在进行多层焊接的过程中,仔细检查槽边缘的融化,对焊渣进行彻底的清理。将全部的焊渣彻底清除,以实现精密焊接。另外,合理选择焊接电流以及操作方法,合理控制焊条的角度以及电弧长度,实时监控并调整工艺参数,保证焊接速度的合理性,焊道的平整性。 2.3弧坑的解决措施 在焊接过程中,要实时改变焊接方向,焊丝的长度以及开槽的侧面尺寸的制定要将焊丝的直径作为衡量基准,开槽的形状应该和木材相一致,尽可能提高中的焊接电流量,提高焊渣的融化速度,在对该面层的焊接过程中,需要及时调整单焊道为多焊道,降低金属焊接过程中的负荷,保证焊接金属的稳定性和安全性。

相关文档