文档库 最新最全的文档下载
当前位置:文档库 › Ar等离子体下的反应离子刻蚀

Ar等离子体下的反应离子刻蚀

Ar等离子体下的反应离子刻蚀
Ar等离子体下的反应离子刻蚀

Vol.34,No.5Journal of Semiconductors May2013 Reactive ion etching of Si2Sb2Te5in CF4/Ar plasma for a nonvolatile phase-change memory device

Li Juntao(李俊焘)1;2; ,Liu Bo(刘波)1; ,Song Zhitang(宋志棠)1,Yao Dongning(姚栋宁)1,

Feng Gaoming(冯高明)3,He Aodong(何敖东)1;2,Peng Cheng(彭程)1;2,

and Feng Songlin(封松林)1

1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,

Chinese Academy of Sciences,Shanghai200050,China

2University of Chinese Academy of Sciences,Beijing100049,China

3United Laboratory,Semiconductor Manufacturing International Corporation,Shanghai201203,China

Abstract:Phase change random access memory(PCRAM)is one of the best candidates for next generation non-

volatile memory,and phase change Si2Sb2Te5material is expected to be a promising material for PCRAM.In the

fabrication of phase change random access memories,the etching process is a critical step.In this paper,the etching

characteristics of Si2Sb2Te5films were studied with a CF4/Ar gas mixture using a reactive ion etching system.We

observed a monotonic decrease in etch rate with decreasing CF4concentration,meanwhile,Ar concentration went

up and smoother etched surfaces were obtained.It proves that CF4determines the etch rate while Ar plays an im-

portant role in defining the smoothness of the etched surface and sidewall edge https://www.wendangku.net/doc/178450579.html,pared with Ge2Sb2Te5,

it is found that Si2Sb2Te5has a greater etch rate.Etching characteristics of Si2Sb2Te5as a function of power and

pressure were also studied.The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas

mixture ratio of10/40,a background pressure of40mTorr,and power of200W.

Key words:reactive ion etching;phase-change material;Si2Sb2Te5

DOI:10.1088/1674-4926/34/5/056001PACC:7360F;8160

1.Introduction

Nowadays,phase change random access memory (PCRAM)has been regarded as one of the most promising non-volatile memories,and has received more and more attention because of its superior performance and other mer-its?1;2 .It was devised by Ovshinsky in1968?3 based on the rapid reversible phase change effect in some materials under the influence of an electric current pulse,and the different resistances between crystalline and amorphous states define the logic state of an individual bit.

Phase change Si2Sb2Te5material,expected as a promising material for PCRAM,possesses a wider band-gap comparing to Ge2Sb2Te5.The band-gap width of amorphous and poly-crystalline Si2Sb2Te5are determined to be0.89and0.62eV by means of Fourier transform infrared spectroscopy?4 .The mate-rial possesses a low threshold current from amorphous to poly-crystalline state in voltage–current measurement,and shows a good data retention.These properties prove Si2Sb2Te5is a po-tential material?4;5 .

In this paper,the reactive ion etching(RIE)process of Si2Sb2Te5films in CF4/Ar plasma is described.The etch rate and surface roughness were examined systematically as a func-tion of pressure,power,and Ar concentration in the CF4/Ar mixture gas.A smooth surface was successfully obtained us-

ing the optimization approach described below.

2.Experiment

In this study,Si2Sb2Te5films were deposited with the ra-

dio frequency(RF)-magnetron sputtering method using single

element targets at room temperature.The thickness of the films

was about400nm measured by a cross-sectional scanning elec-

tron microscope(SEM,Hitachi S-4700).The compositions of

films were determined by means of energy dispersive spec-

troscopy(EDS).Shipley6809photo-resist was used for pattern

definition.An Oxford80plus RIE system with a maximum RF

power of600W was used to etch the Si2Sb2Te5films.The

etch gas ratio was controlled by mass flow controllers,and the

gas pressure in the chamber was adjusted by a clapper valve.

The temperature of the sample holder was controlled by heat

transfer fluid(Hexid)and held at30?C.The experimental con-trol parameters were the gas flow rate,chamber background

pressure,CF4/Ar ratio and the incident RF power applied to

the lower electrode.A total flow rate of CF4C Ar was50sccm throughout the experiment,while the CF4/Ar ratio was varied as an optimization parameter.

Etching depths were measured using a surface profile-

*Project supported by National Key Basic Research Program of China(Nos.2010CB934300,2011CBA00607,2011CB9328004),the Na-tional Integrate Circuit Research Program of China(No.2009ZX02023-003),the National Natural Science Foundation of China(Nos. 60906004,60906003,61006087,61076121,61176122,61106001),the Science and Technology Council of Shanghai(Nos.11DZ2261000, 11QA1407800),and the Chinese Academy of Sciences(No.20110490761).

?Corresponding author.Email:jet_lee@https://www.wendangku.net/doc/178450579.html,;liubo@https://www.wendangku.net/doc/178450579.html,

Received25August2012,revised manuscript received3December2012?2013Chinese Institute of Electronics

Fig.1.Etch rate of the Si2Sb2Te5and RMS roughness as a function of CF4/Ar gas mixture ratio.

meter.The surface morphology and patterning of the mesa structure were examined using SEM,and the surface rough-ness was examined using atomic force microscopy(AFM). 3.Results and discussion

Figure1shows the etch rate as a function of the CF4/Ar gas mixture ratio.The etchings were carried out at a constant pres-sure of50mTorr and an application of200W.The etch rate de-creased monotonically with decreasing CF4concentration in-dicating its importance in defining the material removal rate. In the plasma system,when an energetic electron strikes a neu-tral gas molecule,it can excite the molecule to a higher energy state.These energetic F containing molecules,known as free radicals,cause most of the chemical etching of Si2Sb2Te5?6 .In this experiment,as the content of CF4went down,the concen-tration of energetic F decreased,so the etch rate of Si2Sb2Te5 decreased in turn.The phenomenon observed is consistent with this https://www.wendangku.net/doc/178450579.html,pared with Ge2Sb2Te5,we found that the etch rate of Si2Sb2Te5was faster,this should be related with the different boiling points of the etch products,such as SiF4 [boiling point(bp): 65?C]and GeF4[bp: 36:5?C].The lower boiling point of SiF4makes it easier to be removed from the chamber,as the volatile product of Si2Sb2Te5,this property leads to a faster etch rate of Si2Sb2Te5?7 .

The quality of etched surfaces is very important for the device fabrication process?8 .Many short-circuit defects are due to RIE pillars caused by micro-masks.The smoother the etched surface is the better contact between Si2Sb2Te5and the top/bottom electrode is obtained,which can result in a low contact resistance.The sidewall is also important for the de-vice fabrication process,particularly for the nanoscale etching of Si2Sb2Te5films.Therefore,etched surfaces with a smooth surface,vertical sidewall,and low sidewall roughness are pre-ferred to meet the requirements of the high-density memory devices.Etch residues are not observed on the sidewalls or the film surfaces for all conditions.As the Ar concentration is in-creased,both the etch slopes and the root-mean-square(RMS) roughness of the etched surfaces shows improvement.When the CF4/Ar ratio is40/10,the etched surface is very rough and pillars formed because of micro masks can be observed.As the CF4/Ar ratio was decreased to10/40,an almost vertical etch slope was obtained,and the etched surface showed signif-icantly improved smoothness.

In order to validate these results,AFM images of the etched surfaces under different gas mixture are shown in Fig.2. When the CF4/Ar ratio is40/10,the RMS value of this etched surface is3.38nm.It reduces to1.67nm when the CF4/Ar ra-tio increases to10/40.This phenomenon should be attributed to the increase in Ar concentration.The role of Ar is to re-move the non-volatile etch products deposited on the substrate by physical bombardment.It is evident that ion bombardment contributes positively to improving the smoothness in the etch-ing process?9 .

For the fabrication of PCRAM devices,etch selectivity (the ratio of etch rates)of Si2Sb2Te5films to insulating ma-terials is a key parameter in the etching process.In this experi-ment,SiO2films were prepared by plasma enhanced chemical vapour deposition.Etchings were carried out at a constant pres-sure of50mTorr and applying power of200W.As shown in Fig.3,the selectivity decreases along with the Ar concentra-tion which indicates that the concentration of F has a greater impact on Si2Sb2Te5.

The etch rate of the Si2Sb2Te5film as a function of power is shown in Fig.4.The etch rate decreases linearly with RF power.The decreasing etch rate with increasing power may be related to the plasma sheath layer that exists in the cham-ber and the influence of non-volatile etch products.When the thickness of the plasma sheath increases,the distance crossed by the radicals to reach the substrate also increased.On the other hand,more fluorine radicals lead to the polymer form-ing species that eventually deposit as unwanted masking ma-terials on the etched surface.Thus,the etch rate appeared to decrease?10 .From Fig.5,it is found that the surface of higher power etched Si2Sb2Te5films is much smoother than that of lower power etched ones.In lower power conditions,the ki-netic energy of Ar radicals is too low to remove the chemical products in time which causes a rough surface.However,this problem is resolved in high power conditions.

The etch rate and RMS roughness of the Si2Sb2Te5films as a function of pressure are shown in Fig.6.The experiments were carried out when the CF4/Ar ratio was40/10and the PF power kept at200W.The etch rate increased with cham-ber pressure and then decreased.The highest etch rate hap-pened under60mTorr.The pressure dependence of the etch rate should be dominated by the active abundance of neutral etchant species.In general,the ion energy and the direction of physical bombardment to the specimens are determined by the direct current(DC)bias voltage which is strongly influ-enced by the chamber pressure.When the pressure is lower than60mTorr,the etch rate is mainly dominated by the ac-tive abundance of neutral etchant species,the concentration of radicals increases with the gas pressure,which leads to the in-crease of etch rate.On the other hand,when the gas pressure is higher than60mTorr,according to the collisional plasma sheath model?11 ,a collisional effect should be considered. When the pressure increases,the mean free path of the charged particles decreases and hence the dc bias will be lower.As a result,the physical bombardment to the substrate by positive ions becomes lower which leads to a decrease of etch rate.

The effect of pressure on the surface roughness was also examined using AFM,and the corresponding RMS roughness

Fig.2.AFM images of the etched Si 2Sb 2Te 5

surface with a CF 4/Ar ratio of (a)40/10,(b)30/20,(c)20/30,and (d)10/40.

Fig.3.Etch selectivity of Si 2Sb 2Te 5to SiO 2as a function of CF 4/Ar ratio.

Fig.4.Etch rate of the Si 2Sb 2

Te 5film as a function of power.

Fig.5.SEM images of the Si 2Sb 2Te 5surface after etching under dif-ferent powers.(a)100W.(b)150W.(c)200W.(d)250W.

Fig.6.Etch rate and RMS roughness of the Si 2Sb 2Te 5film as a func-tion of pressure.

Fig.7.AFM images of the etched Si2Sb2Te5surface at different pressures.(a)30mTorr.(b)40mTorr.(c)50mTorr.(d)60mTorr.(e)70mTorr.

values are shown in Fig.7.The etched surface is rough under

a background pressure of30mTorr(RMS roughness measured

6.11nm),and it becomes smoother as the pressure increases. As stated above,as the DC bias decreases,the physical bom-bardment by positive ions decreases and enhances the chemi-cal activity.At a pressure of40mTorr,the surface is smoothest with an RMS roughness value of1.00nm.However,etching at higher pressure(>40mTorr)created a rough surface.This is probably due to the re-deposition of etch products.The ion bombarding energy is too low to remove the re-depositions which act as micro-masks resulting in a rough surface?12 14 .

4.Conclusion

Reactive ion etching of Si2Sb2Te5thin films with a photo-resist mask was studied using a CF4/Ar gas mixture in in-ductively coupled plasma.The etch rate of Si2Sb2Te5films in a CF4/Ar plasma decreased with the decrease of CF4con-centration at constant background pressure and power.Ar helped to promote the etching process as it removed the non-volatile products by physical bombardment resulting in a smooth surface.Meanwhile,the selectivity of Si2Sb2Te5 films to SiO2decreased.Etched features of Si2Sb2Te5films in CF4/Ar gas mixture were best when the CF4/Ar ratio is10/40, and a smooth surface and a vertical sidewall were obtained. The chamber pressure and power influenced the etch rate and etched surface roughness.A smooth surface and a vertical side-wall were achieved using the following etching parameters:a CF4/Ar mixing ratio of10/40,a base pressure of50mTorr,and a power of200W.Finally,we have demonstrated that reactive-ion etching of Si2Sb2Te5in CF4/Ar plasma shows good etch characteristics and can be used in the fabrication of PCRAM devices based on Si2Sb2Te5.

References

[1]Lam C H.Storage class memory.Solid-State and Integrated Cir-

cuit Technology,2010

[2]Annunziata R,Zuliani P,Borghi M,et al.Phase change memory

technology for embedded non volatile memory applications for 90nm and beyond.IEEE International Electron Devices Meet-ing,Technical Digest,2009

[3]Kim I S,Cho S L,Im D H,et al.High performance PRAM cell

scalable to sub-20nm technology with below4F2cell size.Di-gest of Technical Papers,Symposium on Extendable to DRAM Applications in VLSI Technology,2010

[4]Kojima R,Okabayashi S,Kashihara T,et al.Nitrogen doping

effect on phase change optical disks.Jpn J Appl Phys,1998,37: 2098

[5]Liu Y B,Zhang T,Niu X M,et al.Si2Sb2Te5phase change ma-

terial studied by an atomic force microscope nano-tip.Journal of Semiconductors,2009,30(6):063003

[6]Kojima R,Yamada N.Acceleration of crystallization speed by

Sn addition to Ge–Sb–Te phase-change recording material.Jpn J Appl Phys,2001,40:5930

[7]Zhang T,Song Z T,Liu B,et al.Investigation of phase change

Si2Sb2Te5material and its application in chalcogenide random

access memory.Solid-State Electron,2007,51:950

[8]Chinoy P B.Reactive ion etching of benzocyclobutene poly-

mer films.IEEE Trans Components,Parking,and Manufacturing Technology,Part C,1997,20(3):99

[9]Abe H,Yoneda M,Fujiwara N.Developments of plasma etch-

ing technology for fabricating semiconductor devices.Jpn J Appl Phys,2008,47:1435

[10]Plank N O V,Cheung R.Functionalization of carbon nanotubes

for molecular electronics.Microelectron Eng,2004,73/74:578 [11]Feng G M,Liu B,Song Z T,et al.Reactive-ion etching of

Ge2Sb2Te5in CF4/Ar plasma for non-volatile phase-change memories.Microelectron Eng,2008,85(8):1699

[12]Sheridan T E,Goree J.Collisional plasma sheath model.Phys

Fluids B,1991,3(10):2796

[13]Knizikevicius R,Kopustinskas V.Influence of temperature on the

etching rate of SiO2in CF4+O2plasma.Microelectron Eng, 2006,83(2):193

[14]Wolf R,Helbig R.Reactive ion etching of6H-SiC in SF6/O2and

CF4/O2with N2additive for device fabrication.J Electrochem Soc,1996,143:1037

刻蚀简介

刻蚀简介.txt遇事潇洒一点,看世糊涂一点。相亲是经销,恋爱叫直销,抛绣球招亲则为围标。没有准备请不要开始,没有能力请不要承诺。爱情这东西,没得到可能是缺憾,不表白就会有遗憾,可是如果自不量力,就只能抱憾了。本文由bshxl1贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 等离子刻蚀简介 自 1970 年代以来组件制造首先开始采用等离子刻蚀技术,对于等离子化学新的了解与认知也就蕴育而生。在现今的集成电路制造过程中,必须精确的控制各种材料尺寸至次微米大小且具有极高的再制性,而由于等离子刻蚀是现今技术中唯一能极有效率地将此工作在高良率下完成,因此等离子刻蚀便成为集成电路制造过程中的主要技术之一。等离子刻蚀主要应用于集成电路制程中线路图案的定义,通常需搭配光刻胶的使用及微影技术,其中包括了1) 氮化硅(Nitride)蚀刻:应用于定义主动区;2) 多晶硅化物/多晶硅(Polycide/Poly)刻蚀:应用于定义栅极宽度/长度;3) 多晶硅(Poly)刻蚀:应用于定义多晶硅电容及负载用之多晶硅;4) 间隙壁(Spacer)刻蚀:应用于定义 LDD 宽度;5) 接触窗(Contact) 及引线孔(Via)刻蚀:应用于定义接触窗及引线孔的尺寸大小;6) 钨回刻蚀(Etch Back):应用于钨栓塞(W-Plug)的形成;7) 涂布玻璃(SOG)回刻蚀:应用于平坦化制程;8) 金属刻蚀:应用于定义金属线宽及线长;接脚(Bonding Pad)刻蚀等。 9) 影响等离子刻蚀特性好坏的因素包括了:1) 等离子刻蚀系统的型态;2) 等离子刻蚀的参数;3) 前制程相关参数,如光刻胶、待刻蚀薄膜的沉积参数条件、待刻蚀薄膜下层薄膜的型态及表面的平整度等。何谓等离子体?基本上等离子体是由部份解离的气体及等量的带正、负电荷粒子所组成,其中所含的气体具高度的活性,它是利用外加电场的驱动而形成,并且会产生辉光放电(Glow Discharge) 现象。刻蚀用的等离子体中,气体的解离程度很低,通常在 10-5-10-1 之间,在一般的等离子体或活性离子反应器中气体的解离程度约为 10-5-10-4,若解离程度到达 10-3-10-1 则属于高密度等离子体。等离子体形成的原理:等离子体的产生可藉由直流(DC)偏压或交流射频(RF)偏压下的电场形成,如图 1-3 所示,而在等离子体中的电子来源通常有二:一为分子或原子解离后所产生的电子,另一则为离子撞击电极所产生的二次电子(Secondary Electron),在直流(DC)电场下产生的等离子体其电子源主要以二次电子为主,而交流射频(RF)电场下产生的等离子体其电子源则以分子或原子解离后所产生的电子为主。在等离子刻蚀中以直流方式产生辉光放电的缺点包含了:需要较高的功率消耗, 1) 也就是说产生的离子密度低; 2) 须要以离子撞击电极以产生二次电子,如此将会造成电极材料的损耗;3) 所需之电极材料必须为导体。如此一来将不适用于晶圆制程中。在射频放电(RF Discharge)状况下,由于高频操作,使得大部份的电子在半个周期内没有足够的时间移动至正电极,因此这些电子将会在电极间作振荡,并与气体分子产生碰撞。而射频放电所需的振荡频率下限将视电极间的间距、压力、射频电场振幅的大小及气体分子的解离位能等因素而定,而通常振荡频率下限为 50kHz。一般的射频系统所采用的操作频率大都为13.56MHz。相较于直流放电,射频放电具有下列优点:1) 放电的情况可一直持续下去而无需二次电子的发射,当晶圆本身即为电极的一部份时,这点对半导体材料制程就显得十分重要了;由于电子来回的振荡, 2) 因此离子化的机率大为提升,蚀刻速率可因而提升;3) 可在较低的电极电压下操作,以减低电浆对组件所导致之损坏;4) 对于介电质材料同样可以运作。现今所有的等离子体系统皆为射频系统。另外值得一提的是在射频系统中一个重要的参数是供给动力的电极面积与接地电极面积之比。等效电子及离子温度:存在于等离子体中的电场分别施力于带正电荷之离子与代负电荷之电子,F=E*q ,而加速度 a=F/M,由于离子质量远大于电子,因此电子所获得的加速度与速度将远大于离子,以致电子的动能远大于离子,电子与离子间处于一非平衡状态。从气体动力论中,得知 Ekinetic = (3/2) kT,由此可知,等效电子温度远大于等效离子温度,如此可视为“热”电子处于“冷”等

等离子体刻蚀机常见故障及处理方法

等离子体刻蚀机常见故障及处理方法 1。预抽时压力值无显示或显示值很大,可能是 1)真空泵抽速不够,换泵油或清洗泵体; 2)石英管有破损或没安装好; 3)泵上压差式放气阀漏气,需拆开来清洗; 4)预抽软管漏气,需更换; 5)石英管上盖没盖好; 6)上进气管破损,需更换。 2。主抽时压力值有显示,但值偏高,可能是 1)真空泵抽速不够,换泵油或清洗泵体; 2)压力传感器零点漂移,漂移较少可自行调整,过大需送厂家重新校准; 3)反应室或气路漏气,需对真空管道和气路进行检漏; 4)执行器模块坏了或过热保护使真空碟阀没动作; 5)执行器与真空碟阀的连接轴松动,执行器有动作,而真空碟阀没有动作。 3。送气时压力值偏小,达不到设定的要求,可能是 1)执行器模块坏了或过热保护使真空碟阀没动作; 2)执行器与真空碟阀的连接轴松动,执行器有动作,而真空碟阀没有动作。 4。主抽时压力真空度满足要求,送气时压力过大,达不到设定要求,可能是1)送气时真空泵的抽速不够,换泵油或清洗泵体; 2)质量流量计损坏,流量过大。 5。送气时压力控制不稳定,可能是 1)压力控制器PID参数不合适,重新调整PID参数; 2)执行器开度太小,调整各工艺参数大小,使执行器开度在15~20之间控制较稳定。6。送气时压力稳定,但辉光时压力控制不住,上下波动,可能是 1)辉光时的射频干扰,需要重新调整地线的位置或线圈的接入点; 2)检查各射频接头是否松动,接点是否接触很好。 7。辉光时反应室不起辉,板压板流正常,反射功率大,调不下来,可能是1)射频输出线接头有短路,拆开接头检查; 2)反应室的射频接头连接线脱落。 8。辉光时有板压但很小,板流很大,无辉光,可能是 1)RF电源功率调整板坏,需更换; 2)FU100电子管有短路,需更换; 3)RF电源前级推动板坏,需厂家维修; 4)在RF输出线路上有电容短路,需更换。 9。辉光时有板压,但很大,没板流,不起辉,可能是 1)RF电源的功率调整板坏,需更换; 2)射频功率输出电缆短路。 10。辉光时调节功率调节旋钮不起作用,没有板压,也没有板流,可能是1)FU100电子管损坏,需更换; 2)环形变压器损坏,需更换; 3)功率调整板损坏,需更换。 11。辉光时亮度很暗,而且反应室上部亮而下部暗或不亮,匹配难调节,可能是1)压力传感器零点漂移,显示的压力值不是正确的; 2)射频输入线圈的接入点位置需要调整。

反应离子刻蚀技术的原理

反应离子刻蚀技术的原理-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

摘要:详细阐述离子刻蚀技术的原理,反应腔功能与结构设计,着重介绍适应集成电路特征尺寸微细化发展所采用的新技术。关键词:刻蚀,等离子体,射频 Author: 刘晓明 from Applied Material (China) --SolidState Technology( China) 前言目前,整个集成电路制造技术向着高集成度、小特征尺寸(CD)的方向发展。硅片直径从最初的4英寸发展到已批量生产的12英寸生产线。同时,衡量半导体制造技术的关键参数-特征尺寸亦朝着微细化方向发展,从最初的5祄发展到当前的110nm、90nm、65nm。而刻蚀是决定特征尺寸的核心工艺技术之一。刻蚀技术分为湿法刻蚀和干法刻蚀。湿法刻蚀采用化学腐蚀进行,是传统的刻蚀工艺。它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3祄以上。干法刻蚀是因应大规模集成电路电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。目前流行的典型设备为反应离子刻蚀(RIE-Reactive Ion Etch)系统。它已被广泛应用于微处理器(CPU)、存储(DRAM)和各种逻辑电路的制造中。其分类按照刻蚀的材料分为介电材料刻蚀(Dielectric Etch)、多晶硅刻蚀(Poly-silicon Etch)和金属刻蚀(Metal Etch)。反应离子刻蚀技术的原理刻蚀精度主要是用保真度(Profile)、选择比(Selectivity)、均匀性(Uniformity)等参数来衡量。所谓保真度度,就是要求把光刻胶的图形转移到其下的薄膜上,即希望只刻蚀所要刻蚀的薄膜,而对其上的掩膜和其下的衬底没有刻蚀。事实上,以上三个部分都会被刻蚀,只是刻蚀速率不同。选择比(Selectivity)就是用来衡量这一指标的参数。S=V/U(V为对薄膜的刻蚀速率,U为对掩膜或衬底的刻蚀速率),S越大则选择比越好。由于跨越整个硅片的薄膜厚度和刻蚀速率不尽相同,从而也导致图形转移的不均匀,尤其是中心(Center)和边缘(Edge)相差较大。因而均匀性(Etch Rate Uniformity)成为衡量这一指标的重要参数。除以上参数外,刻蚀速率(Etch Rate)也是一个重要指标,它用来衡量硅片的产出速度,刻蚀速率越快,则产出率越高。反应离子刻蚀是以物理溅射为主并兼有化学反应的过程。通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,从而很好地控制了保真度。刻蚀气体(主要是F基和CL基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。另一方面,如图1所示,反应离子刻蚀腔体采用了阴极(Cathode)面积小,阳极面积大的不对称设计。在射频电源所产生的电场的作用下带负电的自由电子因质量小、运动速度快,很快到达阴极;而正离子则由于质量大,速度慢不能在相同的时间内到达阴极, 从而使阴极附近形成了带负电的鞘层电压。同时由于反应腔的工作气压在10-3~10-2Torr, 这样正离子在阴极附近得到非常有效的加速,垂直轰击放置于阴极表面的硅片,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。正是由于离子轰击的存在才使得各向异性刻蚀得以实现。 [attach]201183[/attach] 图1. DPSII 刻蚀腔结构图初期的射频系统普遍为电容式耦合单射频系统设计(Bias RF)。但随着工艺要求的不断提高,双射频设计(Bias RF 和Source RF)开始被广泛应用。特别是到65nm以后,这已经成为必然选择。该设计方式能把离子的轰击速度和浓度分开控制,从而更好地控制刻蚀速率、选择比、均匀性和特

第四章+聚焦离子束的应用-2016

第四章聚焦离子束的应用聚焦离子束是一种用途广泛的微纳米加工工具。

主要内容 1.简介 2.液态金属离子源 3.聚焦离子束系统 4.离子束在固体材料中的散射 5.离子束加工 6.聚焦离子束曝光

(一)简介 聚焦离子束(focused ion beam, FIB)与聚焦电子束的本质是一样的,但是两者又有很大的不同。主要差别在于它们的质量,最轻的离子(如氢离子)也比电子重1000多倍。 离子束当然用来曝光,但不仅只用来曝光,还可以对材料进行溅射和沉积,因此聚焦离子束是一种更广泛的加工工具。 自1910年Thomson发明了气体放电型离子源后,离子束技术主要应用于物质分析、同位素分离和材料改性。 早期的离子源是等离子体放电式的,属大面积离子源。真正的聚焦离子源始于液态金属离子源的出现。

液态金属离子源产生的离子具有高亮度、小尺寸的特点,是目前所有聚焦离子束系统的离子源。液态金属离子源加上先进的离子光学系统,可以获得只有5nm的最细离子束。一方面,离子束本身可以对材料表面剥离加工;另一方面,以不同的液态金属作为源材料可以将不同的元素注入材料之中,起到对衬底材料掺杂的作用。 聚焦离子束与化学气体配合可以直接将原子沉积到衬底材料表面。这些应用与聚焦离子束的高分辨能力相结合,使它们都具有微小尺度的特点。 因此,聚焦离子束是一种用途广泛的微纳米加工工具。

(二)液态金属离子源 又名:熔融金属场发射离子源 电流体动力离子源

(1)电子轰击型离子源:通过热阴极发射的电子,加速后轰击气体分子,使气体分子电离。这类离子源多用于质谱分析仪。特点是束流不高,但能量分散小。 (2)气体放电型离子源:由气体等离子体放电产生电子。如:辉光放电、弧光放电、火花放电离子源等。这类离子源的特点是产生离子束流大,因此广泛应用于核物理研究,如高能加速器的离子源和离子注入机的离子源。 离子源分类 (3)场致电离型离子源 (4)液态金属离子源都是在大范围内(如电离室)产生离子,通过小孔将离子流引出。因此离子流密度大,离子源面积大,不适合于聚焦成微小束。

深硅刻蚀工艺原理

硅蚀刻工艺在MEMS中的应用 文章来源:本站原创 点击数:97 录入时间:2006-4-7 减小字体增大字体 Dave Thomas / Trikon Technologies,Newport,Wales,United Kingdom 本文介绍了在现代微机电系统(MEMS;Micro Electro-Mechanical System)制造过程中必不可少的硅蚀刻流程,讨论了蚀刻设备对于满足四种基本蚀刻流程的要求并做了比较,包括块体(bulk)、精度(pre cision)、绝缘体上硅芯片(SOI;Silicon On Insulator)及高深宽比的蚀刻(high aspect ratio etching)等。并希望这些基本模块能衍生出可提供具备更高蚀刻率、更好的均匀度、更平滑的蚀刻侧壁及更高的高深宽比的蚀刻能力等蚀刻设备,以满足微机电系统的未来发展需求。 微机电系统是在芯片上集成运动件,如悬臂(cantilever)、薄膜(membrane)、传感器(sensor)、反射镜(mirror)、齿轮(gear)、马达(motor)、共振器(resonator)、阀门(valve)和泵(pump)等。这些组件都是用微加工技术(micromachining)制造的。由于硅材料的机械性及电性众所周知,以及它在主流IC制造上的广泛应用,使其成为微加工技术的首要选择材料。在制造各式各样的坑、洞、齿状等几何形状的方法中,湿式蚀刻具有快速及低成本的优势。然而,它所具有对硅材料各方向均以相同蚀刻速率进行的等向性(isotropic)蚀刻特性、或者是与硅材料的晶体结构存在的差异性、产生不同蚀刻速率的非等向性(a nisotropic)等蚀刻特性,会限制我们在工艺中对应用制造的特定要求,例如喷墨打印机的细微喷嘴制造(非等向性蚀刻特性总会造成V形沟槽,或具锥状(tapered walls)的坑洞,使关键尺寸不易控制)。而干式蚀刻正可克服这个应用限制,按照标准光刻线法(photolithographic)的光罩所定义的几何图案,此类干式蚀刻工艺可获取具有垂直侧壁的几何图案。举例来说,通常要蚀刻定义出较大尺寸的组件,如电容式加速微传感器(capacitive accelerometers)。通常我们会优先考虑湿式蚀刻方式,但对于需要更精确尺寸控制、或是整体尺寸需微缩的组件的制造,则会考虑选择采用干式蚀刻来达到工艺要求。 硅蚀刻 广泛应用的硅蚀刻方法,是起源于德国Robert Bosch公司开发的非等向性硅蚀刻工艺方法,被称为Bosch 气体交替技术(Bosch gas-switching technique)[1]。利用具有非等向性蚀刻反应的等离子源,与通过反应形成高分子蔽覆层(polymeric passivation layer)的另一种等离子源,两者反复交替进行的方法,以达到硅蚀刻的工艺要求。常用的在硅蚀刻生产过程中的气体选择,多是采用SF6(六氟化硫),因其可在能量只有2 0eV的条件下即可分解出6个氟原子,而这些氟原子会继续与Si反应形成挥发性SiF4(四氟化硅)。理论上,已定义几何图案的6寸硅晶圆占据了大约15%的裸片面积,设定等离子反应室内压力>30mtorr、SF6

Ar等离子体下的反应离子刻蚀

Vol.34,No.5Journal of Semiconductors May2013 Reactive ion etching of Si2Sb2Te5in CF4/Ar plasma for a nonvolatile phase-change memory device Li Juntao(李俊焘)1;2; ,Liu Bo(刘波)1; ,Song Zhitang(宋志棠)1,Yao Dongning(姚栋宁)1, Feng Gaoming(冯高明)3,He Aodong(何敖东)1;2,Peng Cheng(彭程)1;2, and Feng Songlin(封松林)1 1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,Shanghai200050,China 2University of Chinese Academy of Sciences,Beijing100049,China 3United Laboratory,Semiconductor Manufacturing International Corporation,Shanghai201203,China Abstract:Phase change random access memory(PCRAM)is one of the best candidates for next generation non- volatile memory,and phase change Si2Sb2Te5material is expected to be a promising material for PCRAM.In the fabrication of phase change random access memories,the etching process is a critical step.In this paper,the etching characteristics of Si2Sb2Te5films were studied with a CF4/Ar gas mixture using a reactive ion etching system.We observed a monotonic decrease in etch rate with decreasing CF4concentration,meanwhile,Ar concentration went up and smoother etched surfaces were obtained.It proves that CF4determines the etch rate while Ar plays an im- portant role in defining the smoothness of the etched surface and sidewall edge https://www.wendangku.net/doc/178450579.html,pared with Ge2Sb2Te5, it is found that Si2Sb2Te5has a greater etch rate.Etching characteristics of Si2Sb2Te5as a function of power and pressure were also studied.The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas mixture ratio of10/40,a background pressure of40mTorr,and power of200W. Key words:reactive ion etching;phase-change material;Si2Sb2Te5 DOI:10.1088/1674-4926/34/5/056001PACC:7360F;8160 1.Introduction Nowadays,phase change random access memory (PCRAM)has been regarded as one of the most promising non-volatile memories,and has received more and more attention because of its superior performance and other mer-its?1;2 .It was devised by Ovshinsky in1968?3 based on the rapid reversible phase change effect in some materials under the influence of an electric current pulse,and the different resistances between crystalline and amorphous states define the logic state of an individual bit. Phase change Si2Sb2Te5material,expected as a promising material for PCRAM,possesses a wider band-gap comparing to Ge2Sb2Te5.The band-gap width of amorphous and poly-crystalline Si2Sb2Te5are determined to be0.89and0.62eV by means of Fourier transform infrared spectroscopy?4 .The mate-rial possesses a low threshold current from amorphous to poly-crystalline state in voltage–current measurement,and shows a good data retention.These properties prove Si2Sb2Te5is a po-tential material?4;5 . In this paper,the reactive ion etching(RIE)process of Si2Sb2Te5films in CF4/Ar plasma is described.The etch rate and surface roughness were examined systematically as a func-tion of pressure,power,and Ar concentration in the CF4/Ar mixture gas.A smooth surface was successfully obtained us- ing the optimization approach described below. 2.Experiment In this study,Si2Sb2Te5films were deposited with the ra- dio frequency(RF)-magnetron sputtering method using single element targets at room temperature.The thickness of the films was about400nm measured by a cross-sectional scanning elec- tron microscope(SEM,Hitachi S-4700).The compositions of films were determined by means of energy dispersive spec- troscopy(EDS).Shipley6809photo-resist was used for pattern definition.An Oxford80plus RIE system with a maximum RF power of600W was used to etch the Si2Sb2Te5films.The etch gas ratio was controlled by mass flow controllers,and the gas pressure in the chamber was adjusted by a clapper valve. The temperature of the sample holder was controlled by heat transfer fluid(Hexid)and held at30?C.The experimental con-trol parameters were the gas flow rate,chamber background pressure,CF4/Ar ratio and the incident RF power applied to the lower electrode.A total flow rate of CF4C Ar was50sccm throughout the experiment,while the CF4/Ar ratio was varied as an optimization parameter. Etching depths were measured using a surface profile- *Project supported by National Key Basic Research Program of China(Nos.2010CB934300,2011CBA00607,2011CB9328004),the Na-tional Integrate Circuit Research Program of China(No.2009ZX02023-003),the National Natural Science Foundation of China(Nos. 60906004,60906003,61006087,61076121,61176122,61106001),the Science and Technology Council of Shanghai(Nos.11DZ2261000, 11QA1407800),and the Chinese Academy of Sciences(No.20110490761). ?Corresponding author.Email:jet_lee@https://www.wendangku.net/doc/178450579.html,;liubo@https://www.wendangku.net/doc/178450579.html, Received25August2012,revised manuscript received3December2012?2013Chinese Institute of Electronics

等离子刻蚀机技术参数

磁控溅射台技术参数 一、设备名称:磁控溅射台 二、采购数量:1台 三、技术参数及配置要求: 1.真空室:不锈钢真空室 2.极限真空:6.7×10-5 Pa(环境湿度≤55%); 3.真空室漏气率:≤5.0×10-7 Pa?L/s; 4.抽气速率:系统短时间暴露大气并充干燥N2开始抽气,溅射室30分钟可达到9.0×10-4 Pa; 5.真空室保压:系统停泵关机12小时后真空度:≤5Pa; 6.溅射材料:至少3inch向下兼容;各种金属、合金、化合物、陶瓷、超导、铁磁、铁电、热电、磁性材料薄膜 7.溅射靶:Φ60mm可弯曲磁控溅射靶三只(其中一只为强磁靶),上置安装,靶基距6~10cm范围内可调; 8.溅射不均匀性:≤±5%(共溅工位Φ75mm范围内,直溅工位Φ37.5mm范围内) 9.溅射室规格:内空容量≥0.1m3 10工件台旋转:中心工位自转,转速5~30rpm可调, 11样品加热:样品衬底可加热,共溅加热温度≥600℃,直溅三工位加热温度均达到≥400℃,多段控温模式,控温精度±1%, 12.载片量:Φ75mm 样片一片。 13.高效实验模式。一炉可以完成不少于3次的相互无污染的独立工艺试验。 14.进口射频电源:600W,一台。 15.进口直流电源,1000W,一台。 16.偏压电源,一台。 17.质量流量控制器2台,气路三条Ar、O2、N2,并提供气体Ar、O2、N2各一瓶,以及相关减压阀。 18.复合分子泵,600升/秒,设备选用不低于中科科仪产品。 19.外企生产机械泵:8升/秒,设备选用不低于日本真空独资宁波爱发科产品。

20.超高真空插板阀。 21.自动压力控制系统,配套进口规管。 22.全自动控制系统,包括进口控制模块、工控机、控制软件。 23.配套循环冷却水机、静音空气压缩机。 24. 配套靶材7种:Al、Cu、Cr、Ti、Si、SiO2、Au(其中靶材Au为Φ60mm*3mm,纯度不低于99.99%,其他6种为Φ60mm*5mm,高纯)。 四、安装、售后及培训: 1、交货期:合同正式生效后30天内到货。 2、质保期:自验收之日起,仪器设备至少免费保修三年。 3、包含该设备运输,上楼搬运,所需气路实验室内部铺设。仪器安装、验收:专业工程师提供免费的安装调试,并按照出厂指标验收。 4、培训:免费提供该仪器设备培训;提供本设备全套操作教学视频。

等离子体刻蚀机原理

等离子体刻蚀机原理 什么是等离子体? ?随着温度的升高,一般物质依次表现为固体、液体和气体。它们统称为物质的 三态。 ?当气体的温度进一步升高时,其中许多,甚至全部分子或原子将由于激烈的相 互碰撞而离解为电子和正离子。这时物质将进入一种新的状态,即主要由电子和 正离子(或是带正电的核)组成的状态。这种状态的物质叫等离子体。它可以称 为物质的第四态。 等离子体的应用 等离子体的产生

等离子体刻蚀原理 ?等离子体刻蚀是采用高频辉光放电反应,使反应气体激活成活性粒子,如原子或游离基,这些活性粒子扩散到需刻蚀的部位,在那里与被刻蚀材料进行反应,形成挥发性反应物而被去除。 ?这种腐蚀方法也叫做干法腐蚀。 等离子体刻蚀反应

?首先,母体分子CF4在高能量的电子的碰撞作用下分解成多种中性基团或离子。 CF4→CF3,CF2,CF,C,F ?其次,这些活性粒子由于扩散或者在电场作用下到达SiO2表面,并在表面上发生化学反应。 ?生产过程中,在CF4中掺入O2,这样有利于提高Si和SiO2的刻蚀速率。 等离子体刻蚀工艺 ?装片 在待刻蚀硅片的两边,分别放置一片与硅片同样大小的玻璃夹板,叠放整齐,用夹具夹紧,确保待刻蚀的硅片中间没有大的缝隙。将夹具平稳放入反应室的支架上,关好反应室的盖子。 检验方法 ?冷热探针法 检验原理 ?热探针和N型半导体接触时,传导电子将流向温度较低的区域,使得热探针处

电子缺少,因而其电势相对于同一材料上的室温触点而言将是正的。 ?同样道理,P型半导体热探针触点相对于室温触点而言将是负的。 ?此电势差可以用简单的微伏表测量。 ?热探针的结构可以是将小的热线圈绕在一个探针的周围,也可以用小型的电烙 铁。 检验操作及判断 ?确认万用表工作正常,量程置于200mV。 ?冷探针连接电压表的正电极,热探针与电压表的负极相连。 ?用冷、热探针接触硅片一个边沿不相连的两个点,电压表显示这两点间的电压为负值,说明导电类型为p,刻蚀合格。相同的方法检测另外三个边沿的导电类型是否为p型。 ?如果经过检验,任何一个边沿没有刻蚀合格,则这一批硅片需要重新装片,进行刻蚀。 一.等离子体刻蚀工艺原理: 等离子体刻蚀机是基于真空中的高频激励而产生的辉光放电将四氟化碳中的氟离子电离出来从而获得化学活性微粒与被刻蚀材料起化学反应产生辉发性物质进行刻蚀的。同时为了保证氟离子的浓度和刻蚀速度必须加入一定比例的氧气生成二氧化碳。 二.主要用途及适用范围: 该设备主要对太阳能电池片周边的P—N结进行刻蚀,使太阳能电池片周边呈开路状态。也可用于半导体工艺中多晶硅,氮化硅的刻蚀和去胶。 三.使用环境及工作条件: 1)环境温度:5℃—40℃; 2)相对湿度:<70%; 3)环境净化等级:>10000级; 4)大气压强:一个标准大气压; 5)电源:三相交流380(1±10%)V,频率50 (1±10%)Hz; 6)所用气体压力:0.1Mpa—0.2 Mpa;所用气体为四氟化碳、氧气和氮气。 7)每台设备要有良好的,独立的接地且接地电阻最好小于0.1Ω;四.总体结构: 本设备由真空管路系统、气路系统、反应室、压力控制系统、SY型射频功率源、电源供电及控制部分组成。 1)真空管路系统主要由2X—15型旋片式真空泵、电磁隔断放气阀、波纹管、碟阀、预抽阀、电磁隔断阀组成。 2)气路系统主要由控制四氟化碳、氧气、尾气、稀释、氮气的电磁阀及不锈钢管和软管组成。其中为了精确控制四氟化碳和氧气10:1的混合比例,在控制四氟化碳和氧气电磁阀的后级加了质量流量计。(这里要附带讲一下关于工作压差的问题,我们所用的质量流量计的工作压差为0.1Mpa—0.5Mpa。而反应室的辉光工作压力为80Pa或更低,尤其是在充气瞬间。因此这就是为什么要求供气压力设定为0.1Mpa—0.2 Mpa的原因。以前出现过由于硅片刻不通,操作

反应离子刻蚀实验

反应离子刻蚀硅阵列实验 一、实验目的: 1、掌握反应离子刻蚀的基本原理。 2、掌握利用单晶硅刻蚀硅阵列的实验流程。 3、了解刻蚀后的硅阵列的表征方法。 二、实验原理 刻蚀技术分为湿法刻蚀和干法刻蚀。湿法刻蚀是传统的刻蚀工艺,把硅片浸泡在一定的化学试剂或试剂溶液中,使没有被抗蚀剂掩蔽的那一部分薄膜表面与试剂发生化学反应而被除去,其优点是操作简便、对设备要求低、易于实现大批量生产,并且刻蚀的选择性也好。但是,它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3μm以上。干法刻蚀是应大规模集成电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。 反应离子刻蚀(Reactive Ion Etching,RIE)是干法刻蚀的一种,是以物理溅射为主并兼有化学反应的过程,通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,其基本工作原理是刻蚀气体(主要是F基和Cl基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。而质量较大的正离子,被阴极附近带负电的鞘层电压有效的加速,垂直轰击放置于阴极表面的硅片,以较大的动量进行物理刻蚀,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。 三、实验装置 ME-3A型多功能磁增强反应离子刻蚀机 四、实验内容和步骤

第六讲 等离子体刻蚀

干法体硅加工―― 深反应离子刻蚀技术 干法体硅加工的必要性: 高深宽比微结构是MEMS体系必不可少的特征之一,基于硅的优异机械特性和半导体工业的积累,硅被选择作为MEMS 的主要结构材料,但是,湿法刻蚀难以实现任意形状的图形转移,复杂微结构的硅材料在高深宽比硅干法刻蚀获得进展之前是非常困难和有很多限制条件的,因此,人们在硅的深刻蚀加工方面倾注了大量的精力,因此也取得了长足进步,发展称为独具特色的专用加工设备,大有取代湿法刻蚀的趋势。 内容: 等离子体刻蚀技术 硅的刻蚀与高深宽比机制 应用

等离子体刻蚀技术 等离子体的形成: 当一定量的化学气体进入一定压力的腔体,在上下电极加上高电压,产生电弧放电,生成大量的离子和自由电子,这种由部分离化的气体组成的气相物质被称为等离子体 对于气体分子AB,其等离子体中可能含有: A,B,A+,B+,AB+,A*,B*,AB*,e 其中激发态的粒子会自发放电,产生辉光,称为辉光放电现象。于是: 直流激发的辉光放电被称为直流辉光放电 射频电流激发的放电就称为射频放电 对于直流等离子体反应,其典型气压约在1mTorr,典型装置如下:

平板间距决定了激发电源的电压,大约是5厘米对应500V,10厘米对应1000V的水平 处于两极之间的等离子体,正电粒子向负极运动,电子向正极运动,电子更快。 离子最终撞击阴极将产生更多的二次电子,二次电子再向正极运动,并被极间电场加速,当能量足够高时,与腔室内的气体分子碰撞,又可以产生新的离子,如此反复,就可以维持腔室内一定区域的等离子状态。 研究表明:等离子体中绝大多数仍为气体分子,自由基和带电粒子只占很小部分,对于简单的直流放电等离子体,自由基约占1%,而离子更是只有大约0.01% 因此,一般等离子体刻蚀反应主要是由自由基去完成的

反应离子刻蚀技术的原理

摘要:详细阐述离子刻蚀技术的原理,反应腔功能与结构设计,着重介绍适应集成电路特征尺寸微细化发展所采用的新技术。关键词:刻蚀,等离子体,射频Author: 刘晓明from Applied Material (China) --SolidState Technology( China) 前言目前,整个集成电路制造技术向着高集成度、小特征尺寸(CD)的方向发展。硅片直径从最初的4英寸发展到已批量生产的12英寸生产线。同时,衡量半导体制造技术的关键参数-特征尺寸亦朝着微细化方向发展,从最初的5祄发展到当前的110nm、90nm、65nm。而刻蚀是决定特征尺寸的核心工艺技术之一。刻蚀技术分为湿法刻蚀和干法刻蚀。湿法刻蚀采用化学腐蚀进行,是传统的刻蚀工艺。它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3祄以上。干法刻蚀是因应大规模集成电路电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。目前流行的典型设备为反应离子刻蚀(RIE-Reactive Ion Etch)系统。它已被广泛应用于微处理器(CPU)、存储(DRAM)和各种逻辑电路的制造中。其分类按照刻蚀的材料分为介电材料刻蚀(Dielectric Etch)、多晶硅刻蚀(Poly-silicon Etch)和金属刻蚀(Metal Etch)。反应离子刻蚀技术的原理刻蚀精度主要是用保真度(Profile)、选择比(Selectivity)、均匀性(Uniformity)等参数来衡量。所谓保真度度,就是要求把光刻胶的图形转移到其下的薄膜上,即希望只刻蚀所要刻蚀的薄膜,而对其上的掩膜和其下的衬底没有刻蚀。事实上,以上三个部分都会被刻蚀,只是刻蚀速率不同。选择比(Selectivity)就是用来衡量这一指标的参数。S=V/U(V为对薄膜的刻蚀速率,U为对掩膜或衬底的刻蚀速率),S越大则选择比越好。由于跨越整个硅片的薄膜厚度和刻蚀速率不尽相同,从而也导致图形转移的不均匀,尤其是中心(Center)和边缘(Edge)相差较大。因而均匀性(Etch Rate Uniformity)成为衡量这一指标的重要参数。除以上参数外,刻蚀速率(Etch Rate)也是一个重要指标,它用来衡量硅片的产出速度,刻蚀速率越快,则产出率越高。反应离子刻蚀是以物理溅射为主并兼有化学反应的过程。通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,从而很好地控制了保真度。刻蚀气体(主要是F基和CL基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。另一方面,如图1所示,反应离子刻蚀腔体采用了阴极(Cathode)面积小,阳极面积大的不对称设计。在射频电源所产生的电场的作用下带负电的自由电子因质量小、运动速度快,很快到达阴极;而正离子则由于质量大,速度慢不能在相同的时间内到达阴极, 从而使阴极附近形成了带负电的鞘层电压。同时由于反应腔的工作气压在10-3~10-2Torr, 这样正离子在阴极附近得到非常有效的加速,垂直轰击放置于阴极表面的硅片,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。正是由于离子轰击的存在才使得各向异性刻蚀得以实现。[attach]201183[/attach] 图1. DPSII 刻蚀腔结构图初期的射频系统普遍为电容式耦合单射频系统设计(Bias RF)。但随着工艺要求的不断提高,双射频设计(Bias RF 和Source RF)开始被广泛应用。特别是到65nm以后,这已经成为必然选择。该设计方式能把离子的轰击速度和浓度分开控制,从而更好地控制刻蚀速率、选择比、均匀性和特征尺寸(CD)。传统的单射频系统为了提高刻蚀速率,通常会增加RF功率以提高电场强度,从而增加离子浓度(Ion Density)、加快刻蚀。但离子的能量(Ion Energy)也会相应增加,损伤硅片表面。为了解决这一问题,半导体设备厂商普遍采用了双射频系统设计,也就是在原有基础上,增加一个置于腔体顶部的射频感应电场来增加离子的浓度。其工作原理如下,如图2所示,一个射频电源(Source RF)加在一个电感线圈上,产生交变磁场从而产生感应电场。该电场加速产生更多的离子,而又不直接轰击硅片。[attach]201184[/attach] 图2. 电感耦合原理图此

离子束加工原理

离子束加工原理 离子束加工(ion beam machining,IBM)是在真空条件下利用离子源(离子枪)产生的离子经加速聚焦形成高能的离子束流投射到工件表面,使材料变形、破坏、分离以达到加工目的。 因为离子带正电荷且质量是电子的千万倍,且加速到较高速度时,具有比电子束大得多的撞击动能,因此,离子束撞击工件将引起变形、分离、破坏等机械作用,而不像电子束是通过热效应进行加工。 2.离子束加工特点 加工精度高。因离子束流密度和能量可得到精确控制。 在较高真空度下进行加工,环境污染少。特别适合加工高纯度的半导体材料及易氧化的金属材料。 加工应力小,变形极微小,加工表面质量高,适合于各种材料和低刚度零件的加工。 3.离子束加工的应用范围 离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉积和离子注入等。 1)离子刻蚀 3.离子束加工的应用范围 离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉积和离子注入等。 1)离子刻蚀 当所带能量为0.1~5keV、直径为十分之几纳米的的氩离子轰击工件表面时,此高能离子所传递的能量超过工件表面原子或分子间键合力时,材料表面的原子或分子被逐个溅射出来,以达到加工目的 这种加工本质上属于一种原子尺度的切削加工,通常又称为离子铣削。 离子束刻蚀可用于加工空气轴承的沟槽、打孔、加工极薄材料及超高精度非球面透镜,还可用于刻蚀集成电路等高精度图形。 2)离子溅射沉积 采用能量为0.1~5keV的氩离子轰击某种材料制成的靶材,将靶材原子击出并令其沉积到工件表面上并形成一层薄膜。 实际上此法为一种镀膜工艺。 3)离子镀膜 离子镀膜一方面是把靶材射出的原子向工件表面沉积,另一方面还有高速中性粒子打击工件表面以增强镀层与基材之间的结合力(可达10~20MPa), 此法适应性强、膜层均匀致密、韧性好、沉积速度快,目前已获得广泛应用。4)离子注入 用5~500keV能量的离子束,直接轰击工件表面,由于离子能量相当大,可使离子钻进被加工工件材料表面层,改变其表面层的化学成分,从而改变工件表面层的机械物理性能。 此法不受温度及注入何种元素及粒量限制,可根据不同需求注入不同离子(如

相关文档