文档库 最新最全的文档下载
当前位置:文档库 › 2020高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用(含解析)

2020高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用(含解析)

2020高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用(含解析)
2020高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用(含解析)

2020高考物理二轮复习题型归纳与训练 专题十四 动量守恒定律及其应用

题型一、动量定理的理解与应用

【典例1】(2019·武汉高三下学期2月调考)运动员在水上做飞行运动表演。他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中,如图所示。已知运动员与装备的总质量为90 kg ,两个喷嘴的直径均为10 cm ,已知重力加速度大小g =10 m/s 2,水的密度ρ=1.0×103 kg/m 3,则喷嘴处喷水的速度大约为( )

A .2.7 m/s

B .5.4 m/s

C .7.6 m/s

D .10.8 m/s 【答案】 C

【解析】 设Δt 时间内有质量为m 的水射出,忽略重力冲量,对这部分水由动量定理得F Δt =2mv ,m =ρv Δt ·πd 2

4,设运动员与装备的总质量为M ,运动员悬停在空中,所以F ′=Mg ,

由牛顿第三定律得F ′=F ,联立解得v ≈7.6 m/s ,C 正确。

题型二、动量守恒定律的应用

【规律方法】动量守恒定律解题的基本步骤

1.明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); 2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); 3.规定正方向,确定初、末状态动量; 4.由动量守恒定律列出方程;

5.代入数据,求出结果,必要时讨论说明.

【典例2】如图所示,甲、乙两小孩各乘一辆冰车在水平冰面上玩耍.甲和他的冰车的总质量为M=30 kg,乙和他的冰车的总质量也是M=30 kg.甲推着一个质量为m=15 kg的箱子和他一起以2 m/s的速度滑行,乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时,乙迅速抓住.若不计冰面摩擦,求甲至少以多大速度(相对地)将箱子推出,才能避免与乙相撞?

【解析】要想刚好避免相撞,要求乙抓住箱子后与甲的速度正好相等,设甲推出箱子后的速度为v1,箱子的速度为v,乙抓住箱子后的速度为v2.

对甲和箱子,推箱子前后动量守恒,以甲初速度方向为正方向,由动量守恒定律有(M+m)v0=mv+Mv1①

对乙和箱子,抓住箱子前后动量守恒,以箱子初速度方向为正方向,由动量守恒定律有mv-Mv0=(m+M)v2①

甲与乙刚好不相撞的条件是v1=v2①

联立①①①解得v=5.2 m/s,方向与甲和箱子初速度方向一致.

【答案】 5.2 m/s

题型三、碰撞模型的规律及应用

【典例3】.(多选)(2019·山东济南高三第二次联考)如图甲所示,光滑水平面上有a、b两个小球,a球向b球运动并与b球发生正碰后粘合在一起共同运动,其碰前和碰后的s -t图象如图乙所示,已知m a=5 kg.若b球的质量为m b,两球因碰撞而损失的机械能为ΔE,则()

A.m b=1 kg B.m b=2 kg

C .ΔE =15 J

D .Δ

E =35 J

【解析】:在s -t 图象中图线的斜率表示小球运动的速度大小,所以v a =6

1 m/s =6 m/s ,碰

后粘合在一起共同运动的速度为v =5

1 m/s =5 m/s ,碰撞过程动量守恒,得m a v a =(m a +m b )v ,

解得m b =1 kg ,故A 正确,B 错误;根据功能关系得ΔE =12m a v 2a -12(m a +m b )v 2=15 J ,故C 正确,D 错误. 【答案】:AC

题型四、动量与能量的综合应用

【规律方法】利用动量和能量观点解题的技巧

(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律.

(2)动量守恒定律和能量守恒定律都只考查一个物理过程的初、末两个状态,对过程的细节不予追究.

(3)注意挖掘隐含条件,根据选取的对象和过程判断动量和能量是否守恒.

【典例4】(2019·湖北孝感高三上学期期末八校联考)如图所示,水平轨道OBC 与一半径为R =0.5 m 的竖直光滑半圆形轨道CD 相切于C 点,其中AB 部分粗糙,其他部分光滑。质量分别为1 kg 和2 kg 且外形相同的甲、乙两物块放在水平轨道上,物块甲被一处于压缩状态的轻弹簧水平锁定于A 点左侧某处(图中未画出),其与轨道AB 间的动摩擦因数为μ=0.2,AB 间的距离L AB =7.75 m ,物块乙位于轨道BC 上。现释放物块甲,使其从A 点弹出,并与物块乙相撞。已知两物块撞后粘在一起向右运动,两物块恰好能运动到半圆轨道的最高点D ,重力加速度g 取10 m/s 2。求:

(1)弹簧对物块甲的冲量;

(2)从物块甲被弹出至滑到D 点的过程中,甲、乙整体损失的机械能ΔE 。 【答案】 (1)16 N·s (2)90.5 J

【解析】 (1)甲、乙两物块碰后恰能到达竖直半圆轨道的最高点,由牛顿第二定律得 (M 甲+M 乙)g =(M 甲+M 乙)v 2D

R

在甲、乙两物块从碰后到上滑到最高点的过程中,由机械能守恒定律有12

(M 甲+M 乙)v 2D +2(M 甲

+M 乙)gR =1

2

(M 甲+M 乙)v 2共 在甲、乙碰撞的过程中,由动量守恒定律有 M 甲v 甲=(M 甲+M 乙)v 共

在物块甲由A 到B 的过程中,由运动学知识有

v 2甲-v 20=-2μgL AB

联立以上各式解得v 共=5 m/s ,v 0=16 m/s

在弹簧与物块甲相互作用的过程中,对物块甲应用动量定理有 I =M 甲v 0=16 N·s 。

(2)从物块甲被弹出至滑到D 点的过程中,甲、乙整体损失的机械能为 ΔE =12M 甲v 20-12

(M 甲+M 乙)v 2共=90.5 J 。 【强化训练】

1.(2019·湖南株洲高三年级教学检测)高空坠物伤人事件常有发生.一身高为1.75 m 的同学被一根从6.75 m 高处竖直落下的枯树枝砸正头顶,设枯枝质量为2 kg ,与头部作用时间为0.02 s ,那么( )

A .枯枝对人的头部产生的冲击力约20 N

B .枯枝对人的头部产生的冲击力约1 000 N

C .保持其他条件不变,身高更高的同学,头部受到枯枝的冲击力会更大

D .保持其他条件不变,身高更矮的同学,头部受到枯枝的冲击力会更小

【解析】:树枝落到头顶上时的速度v =2gh =2×10×5 m/s =10 m/s ,对树枝由动量定理

得(mg-F)Δt=0-mv,解得F=1 020 N,则选项B正确,A错误;保持其他条件不变,身高更高的同学,树枝落到头部的速度较小,则根据上述的分析可知,头部受到枯枝的冲击力会更小;同理身高更矮的同学,头部受到枯枝的冲击力会更大,选项C、D错误.

【答案】:B

2.(多选)(2019·黑龙江哈尔滨4月理综检测)水平推力F1和F2分别作用于置于水平面上的等质量的a、b两物块上,作用一段时间后撤去推力,两物块在水平面上继续运动一段时间停下来.两物块运动的v -t图象如图所示,图中AB∥CD,则下列说法正确的是()

A.两物块所受摩擦力大小相等

B.两物块所受摩擦力冲量大小相等

C.F1的冲量大于F2的冲量

D.F1的冲量小于F2的冲量

【解析】:由图,AB与CD平行,说明推力撤去后两物体的加速度相同,而撤去推力后物体的合力等于摩擦力,根据牛顿第二定律可知,两物体受到的摩擦力大小相等,故A正确.根据I=F f t,由图看出摩擦力的作用时间t OB<t OD,可知摩擦力的冲量不相等,选项B错误.根据动量定理,对整个过程研究得F1t1-F f t OB=0,F2t2-F f t OD=0,因t OB<t OD,则有F1t1<F2t2,即F1的冲量小于F2的冲量,故C错误,D正确.故选A、D.

【答案】:AD

3.(2019·陕西西安高考模拟)如图所示,一物体分别沿三个倾角不同的光滑斜面由静止开始从顶端下滑到底端C、D、E处,三个过程中动能变化量的大小依次为ΔE1、ΔE2、ΔE3,动量变化量的大小依次为Δp1、Δp2、Δp3,则有()

A.ΔE1<ΔE2<ΔE3,Δp1<Δp2<Δp3

B.ΔE1<ΔE2<ΔE3,Δp1=Δp2=Δp3

C .ΔE 1=ΔE 2=ΔE 3,Δp 1<Δp 2<Δp 3

D .Δ

E 1=ΔE 2=ΔE 3,Δp 1=Δp 2=Δp 3

【解析】:物体下滑过程中,只有重力做功,三种情况下下降的高度相同,即重力做功相同,根据动能定理可得下滑到底端时的动能相同,故ΔE 1=ΔE 2=ΔE 3;由机械能守恒定律可知物体下滑到底端C 、D 、E 的速度大小v 相等,动量变化量大小Δp =mv 相等,即 Δp 1=Δp 2=Δp 3(注意方向不同),D 正确. 【答案】:D

4.(2019·湖南娄底高三教学质量检测)质量为M 的气球上有一个质量为m 的人,气球和人在静止的空气中共同静止于离地h 高处,如果从气球上逐渐放下一个质量不计的软梯,让人沿软梯降到地面,则软梯长至少应为( ) A.m m +M h B.M m +M h C.M +m M

h

D.M +m m

h

【解析】:设人沿软梯滑至地面,软绳长度至少为L ,以人和气球的系统为研究对象,竖直方向动量守恒,规定竖直向下为正方向,由动量守恒定律得0=M (-v 2)+mv 1,人沿软梯降至地面时,气球上升的高度为L -h ,速度大小v 2=L -h t ,人相对于地面下降的高度为h ,

速度大小为v 1=h t ,联立得0=M (-L -h t )+m ·h

t ,解得L =M +m M h ,故C 正确,A 、B 、D

错误. 【答案】:C

5.(2019·湖南长沙高三期末)如图所示,质量为m 的A 球以速度v 0在光滑水平面上运动,与原静止的质量为4m 的B 球碰撞,碰撞后A 球以v =av 0(待定系数a <1)的速率弹回,并与挡板P 发生完全弹性碰撞,若要使A 球能追上B 球再相撞,则a 的取值范围为( )

A.15<a <1

3 B.13<a <2

3 C.13<a ≤25

D.13<a ≤35

【解析】:碰撞过程动量守恒,以v 0方向为正方向有m A v 0=-m A av 0+m B v B ,A 与挡板P 碰撞后能追上B 发生再碰撞的条件是av 0>v B ,解得13<a ;碰撞过程中损失的机械能ΔE k =12m A v 20

- [12m A (av 0)2+12m B v 2B ]≥0,解得a ≤35,故13<a ≤3

5,D 正确. 【答案】:D

6.(多选)一质量m =0.10 kg 的小钢球以大小为v 0=10 m/s 的速度水平抛出,下落h =5.0 m 时撞击一钢板,撞后速度恰好反向,且速度大小不变.已知小钢球与钢板的作用时间极短,g 取10 m/s 2,则( )

A .钢板与水平面的夹角θ=60°

B .小钢球从水平抛出到刚要撞击钢板的过程中重力的冲量大小为1 N·s

C .小钢球撞击钢板的过程中其动量的变化量的大小为 10 2 kg·m/s

D .钢板对小钢球的冲量大小为 2 2 N·s

【解析】:由题意可知小钢球垂直撞击钢板.小钢球撞击钢板时的竖直分速度v y =2gh =10 m/s ,设小球的速度方向与水平方向的夹角为α,则tan α=v y

v x =1,解得α=45°,即钢板与水

平面的夹角θ=45°,选项A 错误;小钢球从水平抛出到刚要撞击钢板时所飞行的时间t =2h

g

=1 s ,重力冲量I =mgt =1 N·s ,选项B 正确;取垂直斜面向上为正方向,小钢球刚要撞击钢板时速度的大小为v 1=2v 0=10 2 m/s ,动量p 1=-mv 1=- 2 kg·m/s ,撞后小钢球的速度v 2=10 2 m/s ,动量p 2=mv 2= 2 kg·m/s ,小钢球的动量变化Δp =p 2-p 1=2 2 kg·m/s ,由动量定理可知,钢板对小钢球的冲量大小I =Δp =2 2 N·s ,选项C 错误,D 正确. 【答案】:BD

7.(多选)(2019·河南驻马店高三期末)如图所示,光滑水平直轨道上有三个质量均为m =3 kg 的物块A 、B 、C ,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以v 0=4 m/s 的速度朝B 开始运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然

后继续运动.假设B 和C 碰撞过程时间极短,则以下说法正确的是( )

A .从开始到弹簧最短时物块C 受到的冲量大小为1 N·s

B .从开始到弹簧最短时物块

C 受到的冲量大小为4 N·s C .从开始到A 与弹簧分离的过程中整个系统损失的机械能为3 J

D .从开始到A 与弹簧分离的过程中整个系统损失的机械能为9 J

【解析】:根据动量守恒定律,当A 、B 速度相等时,且与C 碰撞之前A 、B 的速度为v 1,则mv 0=2mv 1,解得v 1=2 m/s ;从开始到弹簧最短时,对A 、B 、C 系统,有mv 0=3mv 2,解得v 2=4

3 m/s ;从开始到弹簧最短时,对物块C ,由动量定理得I =mv 2=

4 N·s ,选项B

正确,A 错误.B 与C 相碰的过程,mv 1=2mv 3,解得v 3=1 m/s ,则从开始到A 与弹簧分离的过程中整个系统损失的机械能为ΔE =12mv 21-1

2×2mv 23=3 J ,选项C 正确,D 错误. 【答案】:BC

8.(2019·云南二模)如图所示,木块静止在光滑水平面上,两颗不同的子弹A 、B 从木块两侧同时射入木块,最终都停在木块内,这一过程中木块始终保持静止。若子弹A 射入的深度大于子弹B 射入的深度,则( )

A .子弹A 的质量一定比子弹

B 的质量大

B .入射过程中子弹A 受到的阻力比子弹B 受到的阻力大

C .子弹A 在木块中运动的时间比子弹B 在木块中运动的时间长

D .子弹A 射入木块时的初动能一定比子弹B 射入木块时的初动能大 【答案】 D

【解析】 由于木块始终保持静止状态,则两子弹对木块的推力大小相等,即两子弹所受的阻力大小相等,设为f ,根据动能定理得,对子弹A :-fd A =0-E k A ,得E k A =fd A ;对子弹B :

-fd B =0-E k B ,得E k B =fd B ,由于d A >d B ,则有子弹入射时的初动能E k A >E k B ,故B 错误,D 正确。两子弹和木块组成的系统动量守恒,则有2m A E k A =2m B E k B ,而E k A >E k B ,则m A

9.如图,光滑的水平地面上停着一个木箱和小车,木箱质量为m ,小车和人的总质量为M =4m ,人以对地速率v 将木箱水平推出,木箱碰墙后等速反弹回来,人接住木箱后再以同样大小的速率v 第二次推出木箱,木箱碰墙后又等速反弹回来……多次往复后,人将接不到木箱.求从开始推木箱到接不到木箱的整个过程,人所做的功.

【解析】:设人推出木箱n 次后,不再接到木箱,每次推出木箱后,小车和人获得的速率依次为v 1、v 2、v 3、…、v n ,设水平向右为正方向,由系统动量守恒得 第一次推木箱时:0=4mv 1-mv 第二次推木箱时:4mv 1+mv =4mv 2-mv ……

第n 次推木箱时:4mv n -1+mv =4mv n -mv 联立解得v n =2n -14v

人接不到木箱的条件为v n ≥v 解得n ≥2.5,取n =3

即人最多能推3次木箱,最终人的速度大小v 3=5

4v

由机械能守恒定律可得,人在整个过程中做的功 W =12×4mv 23+12mv 2=298mv 2. 【答案】:298

mv 2

10.(2019·江西吉安高三上学期五校联考)平板车上的跨栏运动如图所示,光滑水平地面上人与滑板A 一起以v 0=0.5 m/s 的速度前进,正前方不远处有一距离轨道高h =0.7875 m 的(不考虑滑板的高度)横杆,横杆另一侧有一静止滑板B ,当人与A 行至横杆前时,人相对滑板竖直向上起跳越过横杆,A 从横杆下方通过并与B 发生弹性碰撞,之后人刚好落到B 上,

不计空气阻力,已知m 人=40 kg ,m A =5 kg ,m B =10 kg ,g 取10 m/s 2。求:

(1)人相对滑板A 竖直向上起跳的最小速度(结果保留根号)及人跳离滑板A 时相对地面的最小速度;

(2)A 从横杆下方通过并与B 发生弹性碰撞后A 、B 的速度各多大; (3)最终人与B 的共同速度的大小。

【答案】 (1)15.75 m/s 4 m/s (2)-16 m/s 13 m/s (3)7

15 m/s

【解析】 (1)设人相对滑板A 起跳的竖直速度至少为v y ,则有v 2y =2gh 解得:v y =15.75 m/s

因为人与滑板A 的水平速度相同,所以人跳离滑板A 时相对地面的最小速度为v =v 20+v 2y

=4 m/s 。

(2)人跳起后,A 与B 碰撞前后动量守恒,机械能守恒,设碰后A 的速度为v 1,B 的速度为v 2,则有 m A v 0=m A v 1+m B v 2 12m A v 20=12m A v 21

+12m B v 22

解得:v 1=-16 m/s ,v 2=1

3

m/s 。

(3)人下落与B 作用前后,水平方向动量守恒,设共同速度为v 3,则有m 人v 0+m B v 2=(m 人+m B )v 3

代入数据得:v 3=7

15

m/s 。

11.(2019·山东青岛高三期末联考)如图所示,在光滑水平面上有一带挡板的长木板,挡板和长木板的总质量为m ,木板长度为L (挡板的厚度可忽略),挡板上固定有一个小炸药包(可视

为质量不计的点).木板左端有一质量也为m (可视为质点)的滑块.滑块与木板间的动摩擦因数恒定,整个系统处于静止状态.给滑块一个水平向右的初速度v 0,滑块相对木板向右运动,刚好能与小炸药包接触,接触瞬间小炸药包爆炸(此过程时间极短,爆炸后滑块与木板只在水平方向上运动,且完好无损),滑块向左运动,最终回到木板的左端,恰与木板相对静止.求:

(1)滑块与木板间的动摩擦因数;

(2)小炸药包爆炸完毕时滑块和木板的速度.

【解析】:(1)滑块相对木板向右运动,刚好能与炸药包接触,此时滑块和木板的速度相同,设滑块刚要与炸药包接触时的速度为v 1,以水平向右为正方向;滑块和木板组成的系统,滑块在木板上滑动的过程中,系统所受合外力为零,则该系统动量守恒,故有mv 0=2mv 1 解得v 1=1

2

v 0,方向水平向右

滑块在木板上滑动的过程中,由功能关系可知 μmgL =12mv 20-12·2mv 2

1 联立解得μ=v 204gL

.

(2)设爆炸后滑块和木板的速度分别为v 1′和v 2′,最终滑块相对木板静止于木板的左端时速度为v 2,系统在爆炸前后动量守恒,则有 2mv 1=mv 1′+mv 2′ 2mv 1=2mv 2

系统爆炸后,对滑块在木板上运动的过程应用功能关系,则有 μmgL =12mv 1′2+12mv 2′2-1

2

·2mv 22 联立以上各式解得v 1′=0;v 2′=v 0,方向水平向右.

【答案】:(1)v 204gL

(2)滑块速度为0 木板速度为v 0,方向水平向右

12.(2019·福建莆田第一中学高考模拟)质量为m B =2 kg 的木板B 静止于光滑水平面上,质量为m A =6 kg 的物块A 停在B 的左端,质量为m C =2 kg 的小球C 用长为l =0.8 m 的轻绳悬挂在固定点O .现将小球C 及轻绳拉直至水平位置后由静止释放,小球C 在最低点与A 发生正碰,碰撞作用时间很短为Δt =1×10-

2 s ,之后小球C 反弹所能上升的最大高度h =0.2 m .已知A 、B 间的动摩擦因数μ=0.1,物块与小球均可视为质点,不计空气阻力,g 取10 m/s 2.求:

(1)小球C 与物块A 碰撞过程中所受的撞击力大小; (2)为使物块A 不滑离木板B ,木板B 至少多长?

【解析】:(1)C 下摆过程,根据动能定理,有 m C gl =12m C v 2C 所以 v C =2gl =4 m/s

C 反弹过程,根据动能定理,有-m C gh =0-1

2m C v C ′2

v C ′=2gh =2 m/s.

取向右为正方向,对C 根据动量定理,有 -F Δt =-m C v C ′-m C v C 解得F =1 200 N.

(2)C 与A 碰撞过程,根据动量守恒定律,有 m C v C =-m C v C ′+m A v A 所以 v A =2 m/s

A 恰好滑至木板

B 右端并与其共速时,B 的长度最小 根据动量守恒定律,有m A v A =(m A +m B )v 所以v =1.5 m/s

根据能量守恒定律, 有 μm A gx =12m A v 2A -12(m A +m B )v 2

所以x =0.5 m.

【答案】:(1)1 200 N (2)0.5 m

2021年高考物理选择题专题训练含答案 (1)

2021模拟模拟-选择题专项训练之交变电流 本考点是电磁感应的应用和延伸.高考对本章知识的考查主要体现在“三突出”:一是突出考查交变电流的产生过程;二是突出考查交变电流的图象和交变电流的四值;三是突出考查变压器.一般试题难度不大,且多以选择题的形式出现.对于电磁场和电磁波只作一般的了解.本考点知识易与力学和电学知识综合,如带电粒子在加有交变电压的平行金属板间的运动,交变电路的分析与计算等.同时,本考点知识也易与现代科技和信息技术相联系,如“电动自行车”、“磁悬浮列车”等.另外,远距离输电也要引起重视.尤其是不同情况下的有效值计算是高考考查的主要内容;对变压器的原理理解的同时,还要掌握变压器的静态计算和动态分析. 北京近5年高考真题 05北京18.正弦交变电源与电阻R、交流电压表按照图1所示的方式连接,R=10Ω,交流电压表的示数是10V。图2是交变电源输出电压u随时间t变化的图象。则( ) A.通过R的电流i R随时间t变化的规律是i R=2cos100πt (A) B.通过R的电流 i R 随时间t变化的规律是i R=2cos50πt (A) C.R两端的电压u R随时间t变化的规律是u R=52cos100πt (V) D.R两端的电压u R随时间t变化的规律是u R=52cos50πt (V) 07北京17、电阻R1、R2交流电源按照图1所示方式连接,R1=10Ω,R2=20Ω。合上开关后S后,通过电阻R2的正弦交变电流i随时间t变化的情况如图2所示。则() A、通过R1的电流的有效值是1.2A B、R1两端的电压有效值是6V C、通过R2的电流的有效值是1.22A D、R2两端的电压有效值是62V 08北京18.一理想变压器原、副线圈匝数比n1:n2=11:5。原线圈与正弦交变电源连接,输入电压u如图所示。副线圈仅接入一个10 Ω的电阻。则() A.流过电阻的电流是20 A B.与电阻并联的电压表的示数是1002V C.经过1分钟电阻发出的热量是6×103 J D.变压器的输入功率是1×103 W 北京08——09模拟题 08朝阳二模16.在电路的MN间加一如图所示正弦交流电,负载电阻为100Ω,若不考 虑电表内阻对电路的影响,则交流电压表和交流电流表的读数分别为()A.220V,2.20 AB.311V,2.20 AC.220V,3.11A D.311V,3.11A t/×10-2s U/V 311 -311 1 2 3 4 A V M ~ R V 交变电源 ~ 图1 u/V t/×10-2s O U m -U m 12 图2

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高考物理二轮复习重点及策略

2019高考物理二轮复习重点及策略 一、考点网络化、系统化 通过知识网络结构理解知识内部的联系。因为高考试题近年来突出对物理思想本质、物理模型及知识内部逻辑关系的考察。 例如学习电场这章知识,必须要建立知识网络图,从电场力和电场能这两个角度去理解并掌握。 二、重视错题 错题和不会做的题,往往是考生知识的盲区、物理思想方法的盲区、解题思路的盲区。所以考生要认真应对高三复习以来的错题,问问自己为什么错了,错在哪儿,今后怎么避免这些错误。分析错题可以帮助考生提高复习效率、巩固复习成果,反思失败教训,及时在高考前发现和修补知识与技能方面的漏洞。充分重视通过考试考生出现的知识漏洞和对过程和方法分析的重要性。很多学生不够重视错题本的建立,都是在最后关头才想起要去做这件事情,北京新东方一对一的老师都是非常重视同时也要求学生一定要建立错题本,在大考对错题本进行复习,这样的效果和收获是很多同学所意想不到的。 三、跳出题海,突出高频考点 例如电磁感应、牛二定律、电学实验、交流电等,每年会考到,这些考点就要深层次的去挖掘并掌握。不要盲区的去大

量做题,通过典型例题来掌握解题思路和答题技巧;重视“物理过程与方法”;重视数学思想方法在物理学中的应用;通过一题多问,一题多变,一题多解,多题归一,全面提升分析问题和解决问题的能力;通过定量规范、有序的训练来提高应试能力。 四、提升解题能力 1、强化选择题的训练 注重对基础知识和基本概念的考查,在选择题上的失手将使部分考生在高考中输在起跑线上,因为选择题共48分。所以北京新东方中小学一对一盛海清老师老师建议同学们一定要做到会的题目都拿到分数,不错过。 2、加强对过程与方法的训练,提高解决综合问题的应试能力 2019年北京高考命题将加大落实考查“知识与技能”、“过程与方法”的力度,更加注重通过对解题过程和物理思维方法的考查来甄别考生的综合能力。分析是综合的基础,分析物理运动过程、条件、特征,要有分析的方法,主要有:定性分析、定量分析、因果分析、条件分析、结构功能分析等。在处理复杂物理问题是一般要定性分析可能情景、再定量分析确定物理情景、运动条件、运动特征。 如物体的平衡问题在力学部分出现,学生往往不会感到困难,在电场中出现就增加了难度,更容易出现问题的是在电

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。 (1)求导体棒刚进入凹槽时的速度大小; (2)求导体棒从开始下落到最终静止的过程中系统产生的热量; (3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4 P = 【解析】 【详解】 解:(1)根据机械能守恒定律,可得:212 mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s = (2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点 根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+= (3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得: 22 12111()22 mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+ 回路电功率:2 E P R =

高考物理二轮复习计划五步走

2019年高考物理二轮复习计划五步走 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 选考模块的复习不可掉以轻心,抓住规律区别对待。 选考模块的复习要突出对五个二级知识点的加强(选修3—4中四个,

选修3—5中一个)。由于分数的限制,该部分的复习重点应该放在扩大知识面上,特别是选修3—3,没有二级要求的知识点,应该是考生最容易拿分的版块,希望认真钻研教材。课本是知识之源,对这几部分的内容一定要做到熟读、精读课本,看懂、弄透,一次不够就两次,两次不行需再来,绝不能留任何的死角,包括课后的阅读材料、小实验、小资料等,因为大多的信息题是从这里取材的。 实验部分一直是高考复习的重点和难点 实验的理论部分一般在第一轮中进行,我们把“走进实验室”放在第二轮。历年来尽管在实验部分花费不少的时间和精力,但掌握的情况往往是不尽如人意,学生中高分、低分悬殊较大,原因在于很多学生思想重视不够、学习方法不对。实验中最重要的是掌握实验目的和原理,特别是《课程标准》下,高考更加注重考查实验原理的迁移能力,即使是考查教材上的原实验,也是改容换面而推出的。原理是为目的服务的,每个实验所选择的器材源于实验原理,电学中的控制电路与测量电路之间的关系是难以把握的地方。复习中还要注意器材选择的基本原则,灵活地运用这些基本原则是二轮实验复习的一个目的。针对每一个实验,注意做到“三个掌握、五个会”,即掌握实验目的、步骤、原理;会控制条件、会使用仪器、会观察分析、会处理数据并得出相应的结论、会设计简单的实验方案。选做题中考实验的可能性也很大,不要忽视这方面内容。 突出重点知识,狠抓主干知识,落实核心知识 二轮复习中我们不可能再面面俱到,切忌“眉毛胡子一把抓”,而且时

高考物理二轮复习攻略

2019高考物理二轮复习攻略 物理在绝大多数的省份既是会考科目又是高考科目,在高中的学习中占有重要地位。以下是查字典物理网为大家整理的高考物理二轮复习攻略,希望可以解决您所遇到的相关问题,加油,查字典物理网一直陪伴您。 一、知识板块:以小综合为主,不求大而全 第一轮复习基本上都是以单元,章节为体系。侧重全面弄懂基本概念,透彻理解基本规律,熟练运用基本公式解答个体类物理问题。综合应用程度不太高。实际上知识与技能的综合是客观存在,所以,我们因势利导把知识进行适当综合。但要循序渐进,以小综合为主,不求一步到位的大而全。 所谓小综合,就是大家一眼就能审视出一个问题涉及那两个知识点,可能用到那几个物理公式的。譬如: 1.力和物体的运动综合问题(力的平衡、直线运动、牛顿定律、平抛运动、匀速圆周运动); 2.万有引力定律的应用问题; 3.机械振动和机械波; 4.动能定理与机械能守恒定律; 5.气体性质问题; 6.带电粒子在电场中的直线运动(匀速、匀加速、匀减速、往复运动),曲线运动(类平抛、圆周运动); 7.直流电路分析问题:①动态分析,②故障分析;

8.电磁感应中的综合问题:①导体棒切割磁感线(单根、双根、U形导轨、形导轨、O形导轨;导轨水平放置、竖直放置、倾斜放置等各种情景),②闭合线圈穿过有界磁场(线圈有正方形、矩形、三角形、圆形、梯形等),(有边界单个磁场,有分界衔接磁场)、(线圈有竖直方向穿过、水平方向穿过等各种情景); 9.物理实验专题复习:①应用性实验,②设计性实验,③探究性实验; 10.物理信息给予题(新概念、新规律、数据、表格、图像等) 11.联系实际新情景题(文字描述新情景、图字展现新情景、建物理模型,重物理过程分析); 12.常用的几种物理思维方法; 13.物理学习中常用的物理方法。 二、方法板块:以基本方法为主,不哗众取宠 分析研究和解答物理问题,离不开物理思想,这种思想直觉反应是思维方法。平时学习中大家已经接触和应用过多种方法,但仍是比较零乱的。因此,有必要适当地加于归纳总结,能知道一些方法的适用情况,区别普遍性与特殊性。其中要以基本方法为主。即必须掌握,熟练应用且平时用得最多的几种方法。 如受力分析法:从中判断研究对象受几个力,是恒力还是变力;过程分析法:能把较复杂的物理问题分析成若干简单的

高考物理专题一(受力分析)(含例题、练习题及答案)

高考定位 受力分析、物体的平衡问题是力学的基本问题,主要考查力的产生条件、力的大小方向的判断(难点:弹力、摩擦力)、力的合成与分解、平衡条件的应用、动态平衡问题的分析、连接体问题的分析,涉及的思想方法有:整体法与隔离法、假设法、正交分解法、矢量三角形法、等效思想等.高考试题命题特点:这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是牛顿运动定律、功和能、电磁学的内容结合起来考查,考查时注重物理思维与物理能力的考核. 考题1对物体受力分析的考查 例1如图1所示,质量为m的木块A放在质量为M的三角形斜面B上,现用大小均为F,方向相反的水平力分别推A和B,它们均静止不动,则() 图1 A.A与B之间不一定存在摩擦力 B.B与地面之间可能存在摩擦力 C.B对A的支持力一定大于mg D.地面对B的支持力的大小一定等于(M+m)g 审题突破B、D选项考察地面对B的作用力故可以:先对物体A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;A、C选项考察物体A、B之间的受力,应当隔离,物体A受力少,故:隔离物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力. 解析对A、B整体受力分析,如图, 受到重力(M+m)g、支持力F N和已知的两个推力,水平方向:由于两个推力的合力为零,故

整体与地面间没有摩擦力;竖直方向:有F N=(M+m)g,故B错误,D正确;再对物体A受力分析,受重力mg、推力F、斜面体B对A的支持力F N′和摩擦力F f,在沿斜面方向:①当推力F沿斜面分量大于重力的下滑分量时,摩擦力的方向沿斜面向下,②当推力F沿斜面分量小于重力的下滑分量时,摩擦力的方向沿斜面向上,③当推力F沿斜面分量等于重力的下滑分量时,摩擦力为零,设斜面倾斜角为θ,在垂直斜面方向:F N′=mg cos θ+F sin θ,所以B对A的支持力不一定大于mg,故A正确,C错误.故选择A、D. 答案AD 1.(单选)(2014·广东·14)如图2所示,水平地面上堆放着原木,关于原木P在支撑点M、N处受力的方向,下列说法正确的是() 图2 A.M处受到的支持力竖直向上 B.N处受到的支持力竖直向上 C.M处受到的静摩擦力沿MN方向 D.N处受到的静摩擦力沿水平方向 答案 A 解析M处支持力方向与支持面(地面)垂直,即竖直向上,选项A正确;N处支持力方向与支持面(原木接触面)垂直,即垂直MN向上,故选项B错误;摩擦力与接触面平行,故选项C、D错误. 2.(单选)如图3所示,一根轻杆的两端固定两个质量均为m的相同小球A、B,用两根细绳悬挂在天花板上,虚线为竖直线,α=θ=30°,β=60°,求轻杆对A球的作用力() 图3 A.mg B.3mg C. 3 3mg D. 3 2mg

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

高考物理大题专题训练专用(带答案)

高考物理大题常考题型专项练习 题型一:追击问题 题型二:牛顿运动问题 题型三:牛顿运动和能量结合问题 题型四:单机械能问题 题型五:动量和能量的结合 题型六:安培力/电磁感应相关问题 题型七:电场和能量相关问题 题型八:带电粒子在电场/磁场/复合场中的运动 题型一:追击问题3 1. (2014年全国卷1,24,12分★★★)公路上行驶的两汽车之间应保持一定的安全距离。 当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s。当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。 答案:v=20m/s 2.(2018年全国卷II,4,12分★★★★★)汽车A在水平冰雪路面上行驶,驾驶员发现其 正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B 的质量分别为2.0×103 kg和1.5×103kg,两车与该冰雪路面 间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车 轮均没有滚动,重力加速度大小g = 10m/s2.求: (1)碰撞后的瞬间B车速度的大小; (2)碰撞前的瞬间A车速度的大小. 答案.(1)v B′ = 3.0 m/s (2)v A = 4.3m/s 3.(2019年全国卷II,25,20分★★★★★)一质量为m=2000kg的汽车以某一速度在平直

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

高考物理二轮复习 专题十 高考物理模型

2013年高考二轮复习专题十 高考物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含详细答案

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含 详细答案 一、临界状态的假设解决物理试题 1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求: (1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。 【答案】(1)0.3;(2)1 3 ;(3)2m 【解析】 【分析】 【详解】 (1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小 21241m /s 3m /s 1 v a t ==?-?= 若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则 1mg ma μ= 联立可得 0.3μ= (2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律 2mg Ma μ= 得 1 3 m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能

2 20 1 1() 22 mgL mv M m v μ=-+ 解得 L =2m 2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。圆形底面的直径为2R ,圆筒的高度为R 。 (1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率; (2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。 【答案】(1)5n ≥甲;(2)2n >乙 【解析】 【详解】 (1)盛满甲液体,如图甲所示,P 点刚好全反射时为最小折射率,有 1 sin n C = 由几何关系知 2 2 2sin 2R C R R = ??+ ? ?? 解得 5n =则甲液体的折射率应为 5n ≥甲

【物理】 物理动量守恒定律专题练习(及答案)

【物理】 物理动量守恒定律专题练习(及答案) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求:

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

动量守恒定律 练习题及答案

动量守恒定律 一、单选题(每题3分,共36分) 1.下列关于物体的动量和动能的说法,正确的是 ( ) A .物体的动量发生变化,其动能一定发生变化 B .物体的动能发生变化,其动量一定发生变化 C .若两个物体的动量相同,它们的动能也一定相同 D .两物体中动能大的物体,其动量也一定大 2.为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同大小的动量 C .相同的动能 D .相同的质量 3.质量为M 的小车在光滑水平面上以速度v 向东行驶,一个质量为m 的小球从距地面H 高处自由落下,正好落入车中,此后小车的速度将 ( ) A .增大 B .减小 C .不变 D .先减小后增大 4.甲、乙两物体质量相同,以相同的初速度在粗糙的水平面上滑行,甲物体比乙物体先停下来,下面说法正确的是 ( ) A .滑行过程中,甲物体所受冲量大 B .滑行过程中,乙物体所受冲量大 C .滑行过程中,甲、乙两物体所受的冲量相同 D .无法比较 5.A 、B 两刚性球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg·m /s ,B 球的动量是7kg·m /s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是 ( ) A .-4kg·m/s 、14kg·m/s B .3kg·m/s 、9kg·m/s C .-5kg·m/s 、17kg·m/s D .6kg·m /s 、6kg·m/s 6.质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中, 地面对钢球冲量的方向和大小为 ( ) A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 7.质量为m 的α粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳 核获得的速度为 ( ) A .06v B .20v C .02v D .03 v 8.在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向 相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0P A .①② B.①③④ C.①②④ D.②③ 9.质量为1.0kg 的小球从高20 m 处自由下落到软垫上,反弹后上升的最大高度为5.O m .小球与软垫接触的时间是1.0s ,在接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g 取10m/s 2) ( ) A .10N·s B .20N·s C .30N·s D .40N·s 10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外力冲量是 ( ) A .-20N·s B.20N·s C .-4N·s D .-12N·s 11.竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( ) 12.一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 ( ) A .子弹射入沙袋过程中系统动量和机械能都守恒 B .子弹射入沙袋过程中系统动量和机械能都不守恒 C .共同上摆阶段系统动量守恒,机械能不守恒 D .共同上摆阶段系统动量不守恒,机械能守恒 二、多选题(每题4分,共16分) 13.下列情况下系统动量守恒的是 ( )A .两球在光滑的水平面上相互碰撞 B .飞行的手榴弹在空中爆炸 C .大炮发射炮弹时,炮身和炮弹组成的系统 D .用肩部紧紧抵住步枪枪托射击,枪身和子弹组成的系统 14.两物体相互作用前后的总动量不变,则两物体组成的系统一定 ( ) A .不受外力作用 B .不受外力或所受合外力为零 C .每个物体动量改变量的值相同 D .每个物体动量改变量的值不同

高考物理二轮复习计划(一)

2019年高考物理二轮复习计划(一) 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 抓住主干知识及主干知识之间的综合 高中物理的主干知识是力学和电磁学部分,在各部分的综合应用中,

主要以下面几种方式的综合较多:①牛顿三定律与匀变速直线运动和曲线运动的综合(主要体现在动力学和天体问题、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式);②以带电粒子在电场、磁场中运动为模型的电学与力学的综合,如利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场 中的运动、利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动、利用能量观点解决带电粒子在电场中的运动;③电磁感应现象与闭合电路欧姆定律的综合,用力与运动观点和能量观点解决导体在匀强磁场中的运动问题;④串、并联电路规律与实验的综合(这是近几年高考实验命题的热点),如通过粗略地计算选择实验器材和电表的量程、确定滑动变阻器的连接方法、确定电流表的内外接法等。对以上知识一定要特别重视,尽可能做到每个内容都过关,绝不能掉以轻心,要分别安排不同的专题重点强化,这是我们二轮复习的重中之重,希望在这些地方有所突破。

相关文档
相关文档 最新文档