文档库 最新最全的文档下载
当前位置:文档库 › 基频 谐波

基频 谐波

基频 谐波
基频 谐波

基波的定义是指工频的波形,是供电系统中正常供电的电压、电流波形。例如,50Hz的基波电流,表示,电流波形的频率为50个周波/秒,换言之,基波的每个周波的时间是20毫秒。

而谐波的定义是电力系统中之电压或电流讯号,除基频(50/60Hz)外之交流、周期性成份,皆称为谐波,因此,2次谐波,其频率为基波的2倍,即100Hz.

一般来说,电流系统中很少见到2次谐波,除了钢铁厂的电弧炉可能产生2次、4次等偶次谐波外,其他的负荷倒是比较少见。

基频

fundamental frequency

定义:将非正弦周期信号按傅里叶级数展开时,原信号的频率

自由振荡系统的最低振荡频率

复合波中的最低频率

〖fundamental〗∶复合振动或波形(如声波)的谐波成分,它具有最低频率,且通常具有最大振幅——亦称“基谐波”

射频和基频的区别是什么

射频和基频是扯不到一坨的两个东西:射频指的是中高频的一个频率范围,是相对于频率高低来

说的;基频是指的研究对象的固有频率,是相对于高次谐波来说的

什么是信号的基频和谐频? 在图像怎么看?用matlab怎么求?它们的意义是什么?谢谢

一般信号(除了纯粹正弦波外)都可以分解为基波和谐波,或者把它看成是由基波和谐波组成的。具体可以参考数学里的傅立叶分析。比如一个50赫的三角波,它的基频是50赫,100,150,200赫等频率成分是它的谐频。

在matlab里有个fft函数,直接求出信号的基波和谐波。

什么是谐波啊,频谱分析的主要作用是什么?

一个非正弦的信号由一个正弦的基频信号和基频整数倍的正弦信号组成,把非基波的这些信号称做谐波。

由于波形不同,基频信号和各谐波的分量是不同的,频谱分析就是对这些分量的幅度和频率特性的描述。如在频谱分析仪上可看到一跟根不同高度不同频率的谱线。

什么叫谐波信号

谐波,从字面解释,谐,有“多部分”的意思,谐和,指多部分协调有致。波,指的是波形(Wave)。合起来形容,就是有很多种波形合成的波形。

从高等数学中分析可知:任何周期性波形均可分解为一个基频正弦波加上许多高次频率的正弦波,高次频率是基频的整倍数(N,只能为整数),直流成分称为0次谐波,基波称为1次谐波,二次以上的波形称为高次谐波,其中偶次频率的波形称为偶次谐波,奇次频率的波形称为奇次谐波。例如一个基频为200 HZ的波形,其基波为200HZ,当它的波形不是纯正的正弦波时,便有失真存在,其200HZ以上的波形称为高次谐波,400HZ为二次谐波,600HZ为三次谐波,如此类推。

结构基频

所谓结构基频就是结构本身最小的那个固有频率。一个连续体结构原则上有无穷多固有频率,但我们计算固有频率时,通常将结构离散成有限阶数的进行求解,而求出的最低的那个固有频率就是结构基频。众所周知,结构基频是一个非常重要的数据。结构基频关系到是不是易于遭受某种频率外载荷的共振破坏;在有限元分析中,结构基频也关系到你的某种设置的计算是否能够收敛。

举例:查阅振动力学相关书籍可知,两端简支梁梁结构固有频率的计算公式:

wn=(n*pi)^2*SQRT(EI/mL^4)[1]

其中:pi就是圆周率,SQRT是开方,EI是梁的弯曲刚度,m是线密度,L是梁的长度。

则其基频为w1=pi^2*SQRT(EI/mL^4)

电力系统谐波的基本特性和测量,配网中的谐波源

电力系统谐波的基本特性和测量 谐波是一个周期电气量的正弦波分量,其频率是基波频率的整数倍数。理论上看,非线性负荷是配电网谐波的主要产生因素。非线性负荷吸收电流和外加端电压为非线性关系,这类负荷的电流不是正弦波,且引起电压波形畸变。周期性的畸变波形经过傅立叶级数分解后,那些大于基频的分量被称作谐波。 非线性负荷除了产生基频整次谐波外,还可能产生低于基频的次谐波,或高于基波的非整数倍谐波。电力系统中出现系统短路、开路等事故,而导致系统进入暂态过程引起的谐波,将不归属谐波治理的范畴。 要治理谐波改善供电品质,需要了解谐波类型。谐波按其性质和波动的快慢可分成四类:准稳态谐波、波动谐波、快速变化的谐波和间谐波四类。因其多样性和随机性,在实际工作中,要精确评估谐波量值非常困难,所以在IEC 6100-4-7标准中对前三类谐波进行了规定,推荐采用数理统计的方法对谐波进行测量。兼顾数理统计和数据压缩的需要,标准对测量时段以及通过测量值计算谐波值提出了建议。 国标GB/T 14549-1993采用观察期3s有效测量的各次谐波均方根值的95%概率作为评价谐波的标准。为简便实用,将实测值按由大到小的方式排序,在舍去前5%个大值后剩余的最大值,近似作为95%的概率值。 实际工作中,通常采用谐波测试仪来监测和分析谐波。一般来说,将用户接入公用电网的公共连接点作为谐波监测点,测量该点的电压和注入公共电网的电流后,通过对电压和电流的分析,取得谐波测量资

料。 相对单点的谐波测量而言,从区域或整个电网角度来看,谐波源的定位和确定谐波模型进而分析它是一个相对复杂的过程。谐波源定位,一般采用功率方向法和瞬时负荷参数分割法。而谐波模型分析的方法一般有三种:非线性时域仿真、非线性和线性频率分析。三种方法的相同点是对电网作适当的线性化处理,只是在处理非线性设备时采取了不同的模拟方式。 配网中的谐波源 严格意义上讲,电力网络的每个环节,包括发电、输电、配电、用电都可能产生谐波,其中产生谐波最多位于用电环节上。 发电机是由三相绕组组成的,理论上讲,发电机三相绕组必须完全对称,发电机内的铁心也必须完全均匀一致,才不致造成谐波的产生,但受工艺、环境以及制作技术等方面的限制,发电机总会产生少量的谐波。 输电和配电系统中存在大量的电力变压器。因变压器内铁心饱和,磁化曲线的非线特性以及额定工作磁密位于磁化曲线近饱和段上等诸多因素,致使磁化电流呈尖顶形,内含大量奇次谐波。变压器铁心饱和度越高,其工作点偏离线性就越远,产生的谐波电流就越大,严重时三次谐波电流可达额定电流的5%。 用电环节谐波源更多,晶闸管式整流设备、变频装置、充气电光源以及家用电器,都能产生一定量的谐波。

频点与对应频率【更新版】

频点与频率 1、CDMA800系统载频信道号与中心频率的计算 上行频宽:825MHz~835MHz 下行频宽:870MHz~880MHz 载频中心频率计算公式: 上行载频中心频率=0.03MHz×信道号n+825MHz 下行载频中心频率=0.03MHz×信道号n+870MHz 具体对应关系如下: 载频号信道号n 上行(MHz)下行(MHz) 1 37 826.11 871.11 2 78 827.34 872.34 3 119 828.57 873.57 4 160 829.80 874.80 5 201 831.03 876.03 6 242 832.26 877.26 7 283 833.49 878.49 频段信道号上行下行 GSM 0≤n≤125FUL=890+0.2×n (890~914.8MHz) FDL=935+0.2×n (935~959.8MHz) E-GSM 975≤n≤1023FUL=890+0.2×(n-1024) (880.2~889.8MHz) FDL=935+0.2×(n-1024) (925.2~934.8MHz) 具体对应关系如下: 信道上行下行信道上行下行信道上行下行信道上行下行 0 890 935 32 896.4 941.4 64 902.8 947.8 96 909.2 954.2 1 890. 2 935.2 3 3 896.6 941.6 65 903 948 97 909. 4 954.4 2 890.4 935.4 34 896.8 941.8 66 903.2 948.2 98 909.6 954.6 3 890.6 935.6 35 897 942 67 903. 4 948.4 99 909.8 954.8 4 890.8 935.8 36 897.2 942.2 68 903.6 948.6 100 910 955 5 891 93 6 3 7 897.4 942.4 69 903. 8 948.8 101 910.2 955.2 6 891.2 936.2 38 897.6 942.6 70 904 949 102 910.4 955.4 7 891.4 936.4 39 897.8 942.8 71 904.2 949.2 103 910.6 955.6 信道上行下行信道上行下行信道上行下行信道上行下行 8 891.6 936.6 40 898 943 72 904.4 949.4 104 910.8 955.8 9 891.8 936.8 41 898.2 943.2 73 904.6 949.6 105 911 956 10 892 937 42 898.4 943.4 74 904.8 949.8 106 911.2 956.2 11 892.2 937.2 43 898.6 943.6 75 905 950 107 911.4 956.4 12 892.4 937.4 44 898.8 943.8 76 905.2 950.2 108 911.6 956.6 13 892.6 937.6 45 899 944 77 905.4 950.4 109 911.8 956.8 14 892.8 937.8 46 899.2 944.2 78 905.6 950.6 110 912 957

应用Matlab对含噪声语音信号进行频谱分析及滤波

应用Matlab对含噪声的语音信号进行频谱分析及滤波 一、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。 二、实现步骤 1.语音信号的采集 利用Windows下的录音机,录制一段自己的话音,时间在1 s内。然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,(可用默认的采样频率或者自己设定采样频率)。 2.语音信号的频谱分析 要求首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性。 在采集得到的语音信号中加入正弦噪声信号,然后对加入噪声信号后的语音号进行快速傅里叶变换,得到信号的频谱特性。并利用sound试听前后语音信号的不同。

分别设计IIR和FIR滤波器,对加入噪声信号的语音信号进行去噪,画出并分析去噪后的语音信号的频谱,并进行前后试听对比。 3.数字滤波器设计 给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz(可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。

报告内容 一、实验原理 含噪声语音信号通过低通滤波器,高频的噪声信号会被过滤掉,得到清晰的无噪声语音信号。 二、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz (可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。 三、实验程序 1、原始信号采集和分析 clc;clear;close all; fs=10000; %语音信号采样频率为10000 x1=wavread('C:\Users\acer\Desktop\voice.wav'); %读取语音信号的数据,赋给x1 sound(x1,40000); %播放语音信号 y1=fft(x1,10240); %对信号做1024点FFT变换 f=fs*(0:1999)/1024; figure(1); plot(x1) %做原始语音信号的时域图形 title('原始语音信号'); xlabel('time n'); ylabel('fuzhi n'); figure(2); plot(f,abs(y1(1:2000))); %做原始语音信号的频谱图形 title('原始语音信号频谱') xlabel('Hz'); ylabel('fuzhi');

电力系统谐波源定位方法述评

第25卷第3期 2006年7月 电工电能新技术 Advanced Technology of Electrical Engineering and Energy Vol.25,No.3July 2006 收稿日期:2005 11 28 作者简介:徐志向(1980 ),男,浙江籍,硕士生,主攻电力系统谐波状态估计以及谐波源定位; 候世英(1962 ),女,重庆籍,副教授,主要从事谐波分析与仿真的研究;吕厚余(1947 ),男,重庆籍,教授,主要从事电能质量以及谐波监测的研究。 电力系统谐波源定位方法述评 徐志向1,2 ,侯世英1,2 ,吕厚余1,2 ,张 柯 1,2 (1 重庆大学电气工程学院,重庆400044; 2 重庆大学高电压与电工新技术教育部重点实验室,重庆400044) 摘要:研究谐波源的定位问题对于规模大、负荷复杂的实际电网有重要的意义。本文对现有的谐波源定位方法进行了分析和评述,并对谐波源定位研究的发展提出了看法。关键词:电力系统;谐波源定位;等效模型;谐波状态估计 中图分类号:TM711 文献标识码:A 文章编号:1003 3076(2006)03 0064 04 1 引言 随着电网中非线性负荷的不断增多,电力系统中的谐波污染问题变得日益严重,给电网的经济运行及用户的安全用电造成了极大的影响[1] 。为了及时解决电网中谐波治理课题,达到准确分清谐波责任,简单有效的治理目的,必须先明确电力系统中的谐波分布或谐波状态 [2] 。 分析谐波状态,首先要了解谐波源的位置。如果谐波源的位置已知,那么电网中的谐波分布就成为谐波的传播与扩散问题,也就是谐波潮流问题。以往的大多数文章集中在已知谐波源的情形下对谐波分布或补偿的研究 [3,4] 。但随着电网规模的增大, 实际系统中谐波源的位置存在不确定性,仍然用潮流方法来分析谐波的扩散与渗透,就会失去分析的主体。所以,在谐波源的位置未知的情况下,要对谐波影响进行分析,就需要对谐波源进行定位。 2 谐波源定位方法 谐波源定位可以分为两种情况 [5,6] 来解释,一种 是在PCC 点处把系统等效为两个部分,即供电侧U (utility)和用户侧C (customer),然后根据相应的等效电路模型,确定出是主谐波源的一侧,称之为基于等效电路模型的定位法[5] 。另一种就是对整个系统网络用谐波状态估计的方法,计算出系统各个节点的谐波电压以及支路的谐波电流,从而判断哪条支 路上含有谐波源[6] 。 多年来,对于基于等效电路模型定位法,基本结构都是单相模型,假设条件是系统运行在三相平衡的状态下;对于基于谐波状态估计的定位法来说,基本结构是单相模型;单频率非同步模型,量测量为有功功率P 、无功功率Q 、谐波电压V,假设条件是所有的电压、电流的频率固定,波形是理想正弦波;系统运行在三相平衡状态,系统网络是只有正序的三相对称系统 [7] 。 3 基于等效电路模型的定位法 [5] 系统的Norton(诺顿)等效电路模型如图1所示: 图1 Norton 等效电路Fig.1 Norton equivalent circuit 通过等效变换得到的Thevenin(戴维南)等效电 路模型如图2所示。 图中所示的PCC 点是公共电气耦合点。根据不同的定位依据[8] ,又可以分为功率定位法,阻抗定位法,灵敏度定位法。3 1 功率定位法( )有功功率定位法 有功功率定位法是工程上最常用的定位方法。

移动通信系统频点划分和频率规划

移动通信系统频点划分 一、GSM900(上下行差45MHz) 说明: GSM频率在890M~915M(上行),935M~960M(下行),频点为0~124,其中95为临界频点。分配给移动公司的890M~909M,分配给联通公司的为909M~915M。其中对应移动的频点为0~94,联通的频点为96~124。 E-GSM 说明: GSM频率在880M~890M(上行),925M~935M(下行),频点为975~1024,其中1024为临界频点。 分配给移动公司的885M~890M,未分配给联通公司。其中对应移动的频点为1000~1023。 二、GSM1800(上下行差95MHz) 说明: GSM频率在1710M~1785M(上行),1805M~1880M(下行),频点为512~886。 分配给移动公司的1710M~1720M、1725M~1735M共20M、100个频点(其中 1730-1735MHz/1825-1830MHz是07年信息产业部新批),而上海、广东、北京特殊分配了 1720M~1725M(据集团公司技术部2006年2月通信资源管理信息)。广西移动全网可使用的频点范围为512~562、586~636共100个频点,分配给联通公司的为1745M~1755M。(其中一些地市1735M-1745M已经被联通占用) 1、频道间隔 相邻两频点间隔为为200kHz,每个频点采用时分多址(TDMA)方式,分为8个时隙,既8个信道(全速率),如GSM采用半速率话音编码后,每个频点可容纳16个半速率信道,可使系统容量扩大一倍,但其代价必然是导致语音质量的降低。 2、频道配置 绝对频点号和频道标称中心频率的关系为: GSM900MHz频段: f1(n)=+(n-1)×(移动台发,基站收) fh(n)=f1(n)+45MHz(基站发,移动台收);n∈[1,124] GSMl800MHz频段为: f1(n)=+(n-512)×(移动台发,基站收)

三次谐波与失真度

[编辑本段] 谐波失真简介 谐波失真(THD)指原有频率的各种倍频的有害干扰。放大1kHZ的频率信号时会产生2kHZ的2次谐波和3kHZ及许多更高次的谐波,理论上此数值越小,失真度越低。 由于放大器不够理想,输出的信号除了包含放大了的输入成分之外,还新添了一些原信号的2倍、3倍、4倍……甚至更高倍的频率成分(谐波),致使输出波形走样。这种因谐波引起的失真叫做谐波失真。 [编辑本段] 谐波失真解析 总谐波失真指音频信号源通过功率放大器时,由于非线性元件所引起的输出信号比输入信号多出的额外谐波成分。谐波失真是由于系统不是完全线性造成的,我们用新增加总谐波成份的均方根与原来信号有效值的百分比来表示。例如,一个放大器在输出10V的1000Hz时又加上Lv的2000Hz,这时就有1 0%的二次谐波失真。所有附加谐波电平之和称为总谐波失真。一般说来,10 00Hz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。但总谐波失真与频率有关,因此美国联邦贸易委员会于1974年规定,总谐波失真必须在20~20000Hz的全音频范围内测出,而且放大器的最大功率必须在负载为8欧扬声器、总谐波失真小于1%条件下测定。国际电工委员会规定的总谐波失真的最低要求为:前级放大器为0.5%,合并放大器小于等于0.7%,但实际上都可做到0.1%以下:FM立体声调谐器小于等于1.5%,实际上可做到0.5%以下;激光唱机更可做到0.01%以下。 由于测量失真度的现行方法是单一的正弦波,不能反映出放大器的全貌。实际的音乐信号是各种速率不同的复合波,其中包括速率转换、瞬态响应等动态指标。故高质量的放大器有时还注明互调失真、瞬态失真、瞬态互调失真等参数。 (l)互调失真(IMD):将互调失真仪输出的125Hz与lkHz的简谐信号合成波,按4:1的幅值输入到被测量的放大器中,从额定负载上测出互调失真系数。 (2)瞬态失真(TIM):将方波信号输入到放大器后,其输出波形包络的保持能力来表达。如放大器的转换速率不够,则方波信号即会产生变形,而产生瞬态失真。主要反映在快速的音乐突变信号中,如打击乐器、钢琴、木琴等,如瞬态失真大,则清脆的乐音将变得含混不清。

应用matlab对语音信号进行频谱分析及滤波.

数字信号处理 —综合实验报告 综合实验名称:应用MatLab对语音信号进行 频谱分析及滤波 系: 学生姓名: 班级: 学号: 成绩: 指导教师: 开课时间学年学期

目录 一.综合实验题目 (1) 二、综合实验目的和意义 (1) 2.1 综合实验目的 (1) 2.2 综合实验的意义 (1) 三.综合实验的主要内容和要求 (1) 3.2 综合实验的要求: (2) 四.实验的原理 (2) 4.1 数字滤波器的概念 (2) 4.2 数字滤波器的分类 (2) (1)根据单位冲激响应h(n)的时间特性分类 (2) 五.实验的步骤 (3) 下面对各步骤加以具体说明。 5.1语音信号的采集 (3) 5.2 语音信号的频谱分析; (3) 5.3 设计数字滤波器和画出其频率响应 (5) 5.3.1设计数字滤波器的性能指标: (5) 5.3.2 用Matlab设计数字滤波器 (6) 5.6 设计系统界面 (19) 六、心得体会 (20) 参考文献: (21)

一.综合实验题目 应用MatLab对语音信号进行频谱分析及滤波 二、综合实验目的和意义 2.1 综合实验目的 为了巩固所学的数字信号处理理论知识,使学生对信号的采集、处理、传输、显示和存储等有一个系统的掌握和理解,再者,加强学生对Matlab软件在信号分析和处理的运用 综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。 2.2 综合实验的意义 语言是我们人类所特有的功能,它是传承和记载人类几千年文明史,没有语言就没有我们今天人类的文明。语音是语言最基本的表现形式,是相互传递信息最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。 语音信号处理属于信息科学的一个重要分支,大规模集成技术的高度发展和计算机技术的飞速前进,推动了这一技术的发展;它是研究用数字信号处理技术对语音信号进行处理的一门新兴学科,同时又是综合性的多学科领域和涉及面很广的交叉学科,因此我们进行语言信号处理具有时代的意义。 三.综合实验的主要内容和要求 3.1综合实验的主要内容: 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;综合实验应完成的工作: (1)语音信号的采集; (2)语音信号的频谱分析;

谐波源定位方法研究

谐波源定位方法研究 刘愈倬1,杨超颖1,王金浩1,李蒙赞1,任毅华2 (1.山西电力科学研究院,山西 30001;2.华北电力大学电气与电子工程学院,北京 102206)Research on Methods of Harmonic Sources Localization LIU Yu-zhuo1, Y ANG Chao-ying1, WANG Jin-hao1, LI Meng-zan1, REN Yi-hua2 (1.Shanxi Electric Power Research Institute, Shanxi 30001, China; 2.College of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China) Abstract: Methods of harmonic sources localization are summarized. Starting with the distribution of harmonic sources in distribution network, the existing methods of harmonic sources localization are divided into measures based on power direction and measures based on harmonic impedance. The former mainly includes active power direction method, reactive power direction method and the critical impedance method. The latter mainly consists of differential equations method and ratio method. The above methods are analyzed and reviewed and their respective advantages,shortcomings as well as applicability are also pointed out. Key words:power direction; harmonic impedance; harmonic sources localization; PCC (Point of Common Coupling) 摘要:对谐波源定位方法进行了总结。从实际配电网的谐波源分布情况入手,将现有的谐波源定位方法分为基于功率方向的方法和基于谐波阻抗的方法两大类。前者主要包括有功功率方向法、无功功率方向法和临界阻抗法等方法;后者主要包括微分方程法、比率法等方法。分析和评述了以上各种方法,并指出它们各自的优点、不足以及适用性。 关键词:功率方向;谐波阻抗;谐波源定位;公共连接点 0引言 随着整流装置、电弧炉、变频装置、电气化铁路等非线性负荷的大量接入,系统中电压、电流波形畸变造成的谐波污染问题日益严重,这给配电网的经济运行及用户的安全用电造成了极大的影响[1]。为了及时解决配电网中的谐波污染问题,达到分清谐波责任,简单有效的治理目的,正确识别综合负荷中的主要谐波源是至关重要的。 谐波源定位是通过测量某些点(如公共连接点)的电压、电流或功率值,在所测数据的基础上,采用相应的算法判定系统侧和用户侧谁是主要谐波源。若系统侧为主要谐波源,则对电压、电流畸变负主要责任;反之,则用户侧应承担主要责任。基于功率方向的方法简单直观、易于实现。然而,有功功率方向法[2]易受PCC两侧电压相角差δ的影响,不能正确判断主谐波源位置。无功功率方向法[3]和临界阻抗法[4]等方法易受谐波阻抗估计值的影响;基于谐波阻抗的方法[6-11]原理简单、清晰。然而,它的前提难以实现,因为谐波阻抗是在扰动情况下测量的,实际中的扰动具有随机性,很不稳定。本文对以上方法进行分析总结,希望能为促进谐波治理的快速发展提供参考。 1基于功率方向的方法 图1 谐波源等值模型 Fig.1 Equivalent model of harmonic source 1.1有功与无功功率方向法 有功功率方向法是传统的谐波源定位方法之一,若将系统侧到用户侧定义为正方向,由图1可得,公共连接点(PCC)的有功功率、无功功率分别为: c s c c s cos sin sin s h h h h c s c s E E Z Z P V I I I Z Z Z Z δδδ === ++ (1) (cos) s h s c c s E Q E E Z Z δ =- + (2) 其中, h P是h次谐波的有功功率, h Q是h次谐 波的无功功率, s E是系统侧等值谐波电压源, c E 是用户侧等值谐波电压源, h δ是h次谐波电压、谐波电流的相角差,δ是PCC两侧等值谐波电压源的相角差。 由式(1)可得:当0 > h P时,系统侧发出较多的谐波功率,则认为系统侧为主要谐波源;当0 < h P时,用户侧发出较多的谐波功率,则认为用户侧是主要谐波源。这种方法比较直观,曾为大家所普遍接受。然而文献[2]已证明了该方法的不合

谐波抑制的方法及其特点

电力系统谐波抑制方法及其特点分析 随着电力电子技术的发展,接入电网的整流、换流设备和其他各种非线性负荷设备日益增加,这些电气设备产生大量的谐波电流注入电网,危及电力设备、用户设备和电力系统的安全运行。必须采取措施,抓紧治理,抑制电力系统谐波,把电网中的谐波含量控制在允许范围之内[1]。 电力系统谐波抑制是改善电能质量、净化电网的一个重要方面。对谐波抑制的方法主要有三种途径:第一种是在谐波源上采取措施,从改进电力电子装置入手,使注入电网的谐波电流减少,也就是最大限度地避免谐波的产生;第二种是在电力电子装置的交流侧利用LC无源滤波器和电力有源滤波器对谐波电流分别提供频域谐波补偿和时域谐波补偿。这类方法属于对已产生的谐波进行有效抑制的方法;第三种就是改善供电环境[2]。 1、降低谐波源的谐波含量 降低谐波源的谐波含量也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用,并避免因加装消谐装置而引发的其它负面影响。具体方法有: 1.1 增加换流装置的脉动数 换流装置是电网中的主要谐波源之一,其产生的谐波主要集中在特征谐波,非特征谐波含量通常很少,特征频谱为:n=kp士1,则可知脉动数p增加,n也相应增大,而工n、工l/n,故谐波电流将减少。因此,增加整流脉动数,可平滑波形,减少谐波。例如:当脉动数由6增加到12时,可有效的消除幅值较大的低频项,从而使谐波电流的有效值大大降低。 1.2 利用脉宽调制(PWM)技术 PWM技术,就是在所需的频率周期内,通过半导体器件的导通和关断把直流电压调制成等幅不等宽的系列交流电压脉冲,可达到抑制谐波的目的。若要消除某次特定谐波,可在控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性,根据输出波形的傅里叶级数展开式,使需要消除的谐波幅值为零,基波幅值为给定量,组成非线性超越方程组计算各个开关通断时刻,达到消除指定谐波和控制基波幅值的目的。PwM技术的优点是在载波频率高时,输出中所含低次谐波分量很小,从而提供了功率因数。目前被采用的PWM技术有最优脉宽调制(OPWM)、改进正弦脉宽调制、△调制、跟踪型PWM和自适应PWM控制等。 1.3 三相整流变压器采用Y,d(Y/△)或D,y(△/Y)的接线方式 这种接线方式可抑制3的倍数次的高次谐波,也可作为隔离变压器使用。以△/Y形接线方式为例:当高次谐波电流从晶闸管反串到变压器副边绕组内时,其中3的倍数次高次谐波电流无路可通,所以自然就被抑制而不存在。但将导致铁心内出现3的倍数次高次谐波磁通(三相相位一致),而该磁通将在变压器原边绕组内产生3的倍数次高次谐波电动势,从而产生3的倍数次的高次谐波电流。因为它们相位一致,只能在三角形绕组内产生环流,将能量消耗在绕组的电阻中,故原边绕组端子上不会出现3的倍数次的高次谐波电动势,不致使谐波注入公共电网。作为隔离变压器使用时,可使3N次谐波电流与配电系统相隔离。这种接线形式的优点是可以自然消除3的整数倍次的谐波。 1.4 采用多电平变流技术 也称整流电路的多重化,即将多个方波叠加,以消除次数较低的谐波,从而

高次谐波-百度百科

高次谐波(high order harmonic component) 对于任意一复合周期振动函数Y(T)按傅氏级数分解表示为:第一项称均值或直流分量,第二项为基波或基本振动,第三项称二次谐波,依次类推或把二次谐波以后的统称为高次谐波。 危害 与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰,感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰,电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。 高次谐波的危害具体表现在以下几个方面: ①变压器 电流和电压谐波将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产生共振及噪声。 ②感应电动机 电流和电压谐波同样使电动机铜损和铁损增加,温度升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。 ③电力电容器 当高次谐波产生时,由于频率增大,电容器阻抗瞬间减小,涌人大量电流,因而导致过热、甚至损坏电容器,还有可能发生共振,产生振动和噪声。 ④开关设备 由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。 ⑤保护电器 电流中含有的谐波会产生额外转距,改变电器动作特性,引起误动作,甚至改变其操作特性,或烧毁线圈。 ⑥计量仪表 计量仪表因为谐波会造成感应盘产生额外转距,引起误差,降低精度,甚至烧毁线圈。 ⑦电力电子设备

matlab声音信号频谱分析的课程设计

原语音信号 [y,fs,bits]=wavread('C:\Users\Administrator\Desktop\111.wav'); >> sound(y,fs,bits); >> n=length(y) n = 92611 >> Y=fft(y,n); >> subplot(2,1,1);plot(y); >> subplot(2,1,2);plot(abs(Y));

加噪声 >> [y,fs,bits]=wavread('C:\Users\Administrator\Desktop\111.wav'); >> sound(y,fs,bits); >> n=length(y) n = 92611 >> Noise=0.2*randn(n,2); >> s=y+Noise; >> sound(s) >> subplot(2,1,1); >> plot(s) >> S=fft(s); >> subplot(2,1,2); >> plot(abs(S)) >> title('加噪语音信号的频谱波形')

FIR 低通滤波器 fp=1000;fc=1200;As=100;Ap=1;fs=30000; >> wc=2*fc/fs;wp=2*fp/fs; >> N=ceil((As-7.95)/(14.36*(wc-wp)/2))+1; >> beta=0.1102*(As-8.7); >> Win=Kaiser(N+1,beta); b=fir1(N,wc,Win); >> freqz(b,1,512,fs); >> s_low=filter(b,1,s); >> plot(s_low);title('信号经过低通滤波器的时域图') >> S_low=fft(s_low,n); >> plot(abs(S_low));title('信号经过低通滤波的频谱') >> sound(s_low,fs,bits)

关于三次谐波

三次谐波电流主要来自于单相整流电路。 图示的是一个典型的单相整流电路,电路中的电容是平滑电容,大部分整流电路中都包含这个电容,否则直流电压的纹波很大。这个电容是导致三次谐波电流的主要原因。 熟悉电路的人都知道,平滑电容的电压被充电到交流电的峰值后,就维持在交流电峰值附近。当交流电的电压低于电容上的电压时,电网上没有电流流入负载。这时,负载的电流由电容供给,随着输出电流,电容的电压开始降低,在某个时刻,交流电的电压会高于电容上的电压,这时,电网上才会有电流流入电容(给电容充电,使电容上的电压升高)和负载中。因此,电网仅在接近电压峰值的时刻向负载输入电流,电流的形状为脉冲状。 通过付立叶分析可知,这种脉冲状的波形包含丰富的三次谐波成分。 脉冲状的电流中包含了高次谐波成分,3次谐波电流最大。传统负荷与现代符合的重要区别是,传统负荷大部分是线性负荷,现代负荷大部分是非线性负荷:

1.通信设备、UPS电源 2.电脑为代表的信息设备、办公自动化设备 3.大型医疗设备 4.电视机为代表的家用电器,特别是变频空调、电磁炉等 5.节能灯、调光灯等照明设备 6.大尺寸的LED屏幕 电视机和计算机电流波形 调光灯和节能灯电流波形

电视机和计算机的电流为很窄的脉冲波,这是很典型的单相整流电路的电流波形,实际上,任何使用开关电源作为直流电源的设备都。会产生这种电流的波形。这是三次谐波电流的主要来源。 目前大量使用的大尺寸LED屏幕,采用很多开关电源并联供电,因此LED 屏幕产生的3次谐波电流很大。 节能灯也是目前常见的负载,他的电流也是脉冲状的。实际上,现代建筑物中,节能灯导致的三次谐波电流已经成为主要的危害。 三次谐波引起跳闸 常识告诉我们,电流的持续时间短了,要保持一定的有效值,就必须具有更高的峰值。

数字信号处理在语音信号分析中的应用

《数字信号处理》 课程设计报告 数字信号处理在语音信号分析中的应用 专业班级: 姓名: 学号:

目录 摘要 (3) 1、绪论 (3) 2、课程设计的具体内容 (4) 2.1.1、读取语音信号的任务 (4) 2.1.2、任务分析和解决方案 (5) 2.1.4、运行结果和相应的分析 (5) 2.2、IIR滤波器设计和滤波处理 (6) 2.2.1、设计任务 (6) 2.2.2、任务分析和解决方案 (7) 2.2.3、编程得到的MATLAB代码 (7) 2.2.4、运行结果和相应的分析 (7) 2.3、FIR滤波器设计和滤波处理 (9) 2.3.1、设计任务 (9) 2.3.2、任务分析和解决方案 (9) 2.3.3、编程得到的MATLAB代码 (9) 2.3.4、运行结果和相应的分析 (11) 3、总结 (13) 4、存在的不足及建议 (13) 5、参考文献 (13)

数字信号处理设计任务书 摘要 语音信号滤波处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前 发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。本设计通过录制一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab平台对语音信号进行加噪然后再除去噪声,进一步设计两种种滤波器即高通滤波器、带通滤波器,基于这两种滤波器设计原理,对含加噪的语音信号进行滤波处理。最后对比滤波前后的语音信号的时域和频域特性,回放含噪语音信号和去噪语音信号。论文从理论和实践上比较了不同数字滤波器的滤波效果。 1.绪论 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能,声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。 随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,电话、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。数字滤波器是数字信号处理的基础,用来对

谐波产生的根本原因及治理对策

谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真在电力系统中对谐波的抑制就是如何减少或消除注入系统的谐波电流,以便把谐波 电压控制在限定值之内,抑制谐波电流主要有四方面的措施: 1)降低谐波源的谐波含量。也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用。2)采取脉宽调制(PWM)法。采用脉宽调制(PWM)技术,在所需要的频率周期内,将直流电压调制成等幅不等宽的系列交流电压脉冲,这种方法可以大大抑制谐波的产生。3)在谐波源处吸收谐波电流。这类方法是对已有 的谐波进行有效抑制的方法,这是目前电力系统使用最广泛的抑制谐波方法。4)改善供电系统及环境。对于供电系统来说,谐波的产生不可避免,但通过加大供电系统短路容量、提高供电系统的电压等级、加大供电设备的容量、尽可能保持三相负载平衡等措施都可以提高电网抗谐波的能力。选择合理的供电电压并尽可能保持三相电压平衡,可以有效地减小谐波 对电网的影响。谐波源由较大容量的供电点或高一级电压的电网供电,承受谐波的能力将会 增大。对谐波源负荷由专门的线路供电, 减少谐波对其它负荷的影响,也有助于集中抑制和消除高次谐波。 谐波的产生原因及其危害介绍 一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。[/B][/size] 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。

谐波标准评述

谐波标准评述 解绍锋1,2,李群湛1 (1.西南交通大学电气工程学院,四川成都610031;2.铁道第一勘察设计院电化处,陕西西安710043) 摘要:通过对关于谐波的三个国际标准和技术文件——IEC61000-3-6、G5/4和IEEE Std519-1992从几个方面进行了对比分析,包括系统规划水平、用户谐波发射限值的分配方法、评估方法和电力系统谐波阻抗,为掌握目前国际上谐波标准的发展动向提供帮助,为提高我国谐波标准的科学性提供参考。 关键词:谐波;IEC61000-3-6;G5/4;IEEE Std519-1992 0引言 随着电力电子技术的迅速发展,特别是冶金、电力牵引和高压直流输电等领域采用大功率电力电子器件,产生了大量谐波注入电力系统,使电网中的谐波电压水平逐年增高,并引起了一系列问题,如局部谐波共振、有功损耗加大、并联电容器过热和损坏、计量误差、继电保护装置误动等。为了保证系统设备的安全和电网的安全运行,必须对注入电力系统的谐波加以限制,主要手段之一即制定相应谐波标准。 限制电力系统谐波水平主要通过限制用户的谐波发射水平来实现,而限制用户谐波发射水平的依据是相关谐波标准。制定谐波标准时应根据电网的实际情况,并遵循对电网和用户公平的原则。合理的谐波标准能使用户谐波发射水平受到限制,减少谐波的不良影响,保证电网的安全运行,提高供电质量。若制定的标准过于宽松,就可能造成谐波水平严重超过电力系统的承受能力,引起供电质量下降;反之,则可能使非线性用户即使采取技术措施也难以达到制定的标准,造成不必要的浪费。由于目前各国对高压电力系统认识的一致性远低于低压电力系统,因此本文主要针对高压电力系统进行讨论。 目前很多电力电子和电力工程领域的国际组织均成立了专门的机构对谐波进行广泛深入的研究,如国际电工委员会(IEC)、英国电力协会(EA)和美国电气与电子工程师学会(IEEE)。 作为管理谐波国际技术标准的机构,IEC陆续出版了IEC61000电磁兼容系列标准和技术报告,其中涉及中高压电网谐波及其限值的是IEC61000-3-6[1],其性质为第3类技术报告。IEC61000-3-6主要以CIGRE的2个文件[2-4]为基础制定而成,其最主要的特点在于设置了电力系统任意一点兼容水平,并指出规划水平要低于兼容水平。我国已经将IEC61000-3-6等同采用为GB/Z17625.4-2000[5]。 英国是对电力系统谐波问题认识比较早的国家之一。英国早在1976年就颁布了Engineering Recommendation G5/3作为对电力系统谐波限制标准之一[6],为我国和其它国家的谐波标准制定提供了实际经验,具有很大参考价值。我国的GB/T14549-93就是在参考英国的G5/3基础上制定的[7]。另外,英国基于G5/3于2001年正式颁布了Engineering Recommendation G5/4[8]。与G5/3相比,G5/4在高压电力系统谐波规划值和新用户接入电网的评估方法方面均有所变化。 美国IEEE工业应用协会自1973年起开始制定谐波标准,并于1981年发布了第一版IEEE Std519-1981“IEEE Guide for Harmonic Control and Reactive Compensation of Static Power Converters”[9]。1986年电力工程师协会加入到工业应用协会,并将IEEE Std519-1981由“导则”更新为“推荐惯例”。这就是目前国际上广泛使用的IEEE Std519-1992“IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems”[10]。 鉴于上述三个有关谐波的技术文件均有比较广泛的应用,具有一定的代表性,因此将这三个谐波技术文件做一比较分析将有利于掌握目前国际上有关谐波的最新研究成果和谐波标准的发展动向,为提高我国谐波标准的合理性提供参考。1规划水平 1.1IEC61000-3-6 表1IEC61000-3-6总谐波电压畸变率(THD)规划水平公共连接点(PCC)电压U n≤35kV35kV

相关文档