文档库 最新最全的文档下载
当前位置:文档库 › 厦门理工线性代数作业答案第三章、向量与向量空间

厦门理工线性代数作业答案第三章、向量与向量空间

厦门理工线性代数作业答案第三章、向量与向量空间
厦门理工线性代数作业答案第三章、向量与向量空间

线性代数练习题 第三章 向量与向量空间

系 专业 班 姓名 学号

第一节 n 维向量 第二节 向量间的线性关系

一.选择题

1.n 维向量s ααα,,, 21)(01≠α线性相关的充分必要条件是 [ D ] (A )对于任何一组不全为零的数组都有02211=+++s s k k k ααα (B )s ααα,,, 21中任何)(s j j ≤个向量线性相关

(C )设),,,(s A ααα 21=,非齐次线性方程组B AX =有唯一解 (D )设),,,(s A ααα 21=,A 的行秩 < s .

2.若向量组γβα,,线性无关,向量组δβα,,线性相关,则 [ C ] (A )α必可由δγβ,,线性表示 (B )β必不可由δγα,,线性表示 (C )δ必可由γβα,,线性表示 (D )δ必不可由γβα,,线性表示 二.填空题:

1. 设T T T ),,(,),,(,),,(0431********===ααα 则=-21αα

(1,0,1)T - =-+32123ααα (0,1,2)T

2. 设)()()(αααααα+=++-321523,其中T

),,,(31521=α,T

)10,5,1,10(2=α

T ),,,(11143-=α,则=α (1,2,3,4)T

3. 已知T T T k ),,,(,),,,(,),,,(84120011211321---===ααα线性相关,则=k 2 4. 设向量组

),,(,),,(,),,(b a c b c a 000321===ααα线性无关,则c b a ,,满足关系式

0abc ≠

三.计算题:

1. 设向量()T

k 1,1,11+=α,T

k ),,(1112+=α,T k ),,(1113+=α,T

k k ),,(21=β,试问当k

为何值时(1)β可由321ααα,,线性表示,且表示式是唯一?

(2)β可由321ααα,,线性表示,且表示式不唯一? (3)β不能由321ααα,,线性表示?

解:见课本P87.

2.设向量123(1,0,2,3),(1,1,3,3),(1,1,2,1),T T T a ααα===-+4(1,2,4,8),T a α=+

(1,1,3,5)T b β=+,试问当,a b 为何值时,

(1)β不能由1234,,,αααα线性表示?

(2)β有1234,,,αααα的唯一线性表达式?并求出表达式。

解:??????

??

?

??++++-+-+-+→??

?

?

??

? ??+-+----→-???????

?

?+++-=b a a a a a a a b a r r r r r r a b a 12)

5)(1(0

001251000210102400125200

1210

12

1

10

01

20132581333423212

1

1

11111),,,,(2114134321βαααα

(1)当

(1)(5)

0,10,2

a a a

b ++=++≠且12341234(,,,)3(,,,,)4R R ααααααααβ=≠=

即:5,4,1,0a b a b =-≠=-≠或β不能由1234,,,αααα线性表示.

(2)β有1234,,,αααα的唯一线性表达式,即1234,,,αααα线性无关,1234,,,,ααααβ线性相关,即12341234(,,,)(,,,,)4R R ααααααααβ==,当51a a ≠-≠-且时,β有1234,,,αααα的唯一线性表达式。 表达式为12342228)12(1)

(5)(1)51(5)(1)

a a

b b a b b a b a a a a a a βαααα+--++++=

+++++++++

线性代数练习题 第三章 向量与向量空间

系 专业 班 姓名 学号

第三节 向量组的秩

一.选择题:

1.已知向量组4321αααα,,,线性无关,则下列向量组中线性无关的是 [ C ] (A )14433221αααααααα++++,,, (B )14433221αααααααα----,,, (C )14433221αααααααα-+++,,, (D )14433221αααααααα--++,,, 2.设向量β可由向量组m ααα,,, 21线性表示,但不能由向量组(Ⅰ):121-m ααα,,, 线性表示,记向量组(Ⅱ):βααα,,,,121-m ,则 [ B ] (A )m α不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示 (B )m α不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示 (C )m α可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示 (D )m α可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示

3.设n 维向量组s ααα,,, 21的秩为3,则 [ C ] (A )s ααα,,, 21中任意3个向量线性无关 (B )s ααα,,, 21中无零向量

(C )s ααα,,, 21中任意4个向量线性相关 (D )s ααα,,, 21中任意两个向量线性无关 4.设n 维向量组s ααα,,, 21的秩为r ,则 [ C ]

(A )若s r =,则任何n 维向量都可用s ααα,,, 21线性表示 (B )若n s =,则任何n 维向量都可用s ααα,,, 21线性表示

(C )若n r =,则任何n 维向量都可用s ααα,,, 21线性表示 (D )若n s >,则n r = 二.填空题:

1.已知向量组),,,(,),,,(,),,,(25400021121321--==-=αααt 的秩为2,则t = 3 2.已知向量组),,,(43211=α,),,,(54322=α,),,,(65433=α,),,,(76544=α,则该向量组的秩为

2

3.向量组T

a ),,(131=α,T

b ),,(322=α,T ),,(1213=α,T

),,(1324=α的秩为2, 则a = 2 b = 5

三.计算题:

1.设T

),,,(51131=α,T

),,,(41122=α,T

),,,(31213=α,T

),,,(92254=α,T

d ),,,(262=β (1)试求4321αααα,,,的极大无关组

(2)d 为何值时,β可由4321αααα,,,的极大无关组线性表示,并写出表达式

解:(1)??

??

?

?

?

?

?-+→+????

???? ??---------→-????????

?

?=000001001010

1001

2121012100100211153934521112211

5123),,,(2

21323

23

41413123

14321r r r r r r r r r r r r r r r r r αααα 321321,,,3),,(αααααα=∴R 线性无关,且.214ααα+=

即321,,ααα是4321αααα,,,的极大无关组. (2)

??

??

?

??

??----+→+???????? ??-------→-????????

?

?=60004100

401020

01

260004210410021115334521116211

21

23

),,,(2

3121323

2341413123

1321d r r r r r r r r r d r r r r r r r r r r d βααα 当6=d 时,,3),,(),,,(321321==αααβαααR R β可由4321αααα,,,的极大无关组

321,,ααα线性表示,表达式.442321αααβ+-=

2.已知3阶矩阵A 有3维向量x 满足x A Ax x A 2

3

3-=,且向量组x A Ax x 2

,,线性无关。

(1)记),,(x A Ax x P 2=,求3阶矩阵B ,使PB AP =; (2)求 | A | 解:(1)2

3

2

2

,(,,)(,,3)AP PB AP Ax A x A x Ax A x Ax A x ===-

222000(,,3)(,,)103011Ax A x Ax A x x Ax A x ??

?

-= ? ?-??

000103011B ??

?= ? ?-??

(2)

22(,,),,,P x Ax A x x Ax A x =且向量组线性无关,

3333()3,R P P ??∴=即可逆.

11

0.A PBP P B P B --==??==则

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

线性代数 第三章向量

n维向量部分 这部分逻辑性非常强,考生必须要相当熟悉教材中的重要定理。从历年考试情况来看,线性相(无)关、线性表出、极大无关组、向量组的秩及等价、向量空间(数一)等内容是考试经常会涉及到的内容。常出现在选择题中。 回顾: n维向量的运算 1.定义:设 ,,k为数域P中的数,定义 ,称为向量与的和; ,称为向量与数k的数量乘积. 2.向量运算的基本性质 1) 2) 3) 4) 5) 6) 7) 8),9),, 10)若,则即,若,则或 1 向量组的秩、极大无关组的相关题型 知识点 极大线性无关组定义:设为中的一个向量组,它的一个部分组若满足 i) 线性无关 ii) 对任意的,可经线性表出 则称为向量组的一个极大线性无关组(简称极大无关组). 向量组的秩 定义:向量组的极大无关组所含向量个数称为这个向量组的秩.性质: 1)一个向量组线性无关的充要条件是它的秩与它所含向量个数相同. 一个向量组线性相关的充要条件是它的秩<它所含向量个数.2)等价向量组必有相同的秩.(注意:反之不然.) 3)若向量组可经向量组线性表出,则 秩秩. 例1 设向量组 (1)求此向量组的秩; (2)求此向量组的一个极大无关组,并将其余向量用该极大无关组表示。

例2 选择题 若向量组的秩为 r,则() (A)必定r秩(向量组II) (C)秩(向量组I)<秩(向量组II) (D)不能确定秩(向量组I)与秩(向量组II)的大小关系 2 向量组的线性相关性的判定或根据向量相关性求参数 知识点:1对向量组,设 若如果存在不全为零的数,使上式成立,则向量组线性相关。 若当且仅当上式才成立,则线性无关。 2 设向量组I:可由向量组II:线性表现,若 r>s , 则向量组I线性相关。(注意它的逆否定理) 3 利用矩阵的秩或行列式 设有 s个n维列向量组,设A=(), 则当秩A=s时,线性无关;当秩A

线性代数第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解: ∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4 T T =-----=- ∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]T T T αα+=-+-= 2.设 12[2,5,1,3],[10,1,5,10],T T αα== 3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α 解: ∵ 1236325αααα=+- [6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24], T T T T =+--= ∴ [1,2,3,4].T α= 3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ====L 时, 11220m m k k k ααα+++=L 成立, 则向量组12,,m αααK 线性相关 解:不正确.如:[][]121,2,3,4T T αα==,虽然 12000,αα+=但12,αα线性无关。 (2) 如果存在m 个不全为零的数12,,,,m k k k L 使 11220,m m k k k ααα+++≠L 则向量组12,,,m αααL 线性无关。 解: 不正确. 如[][]11121,2,2,4,1,2,T T k αα====存在k 使 121220,,.αααα+≠但显然线性相关 (3) 如果向量组12,,,m αααL 线性无关,则其中任何一个向量都 不能由其余向量线性表出. 解: 正确。(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m αααL 线性相关,与题没矛盾。 (4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。 解:不正确。例如:[][][]1230,0,0,0,1,0,0,0,1,T T T ααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。 (5) 如果向量β可由向量123,,ααα线性表示,即: 112233,k k k βααα=++则表示系数 123,,k k k 不全为零。 解:不正确。例如:[][][]120,0,0,1,0,0,0,1,0,T T T βαα=== []31230,0,1,000T αβααα==++,表示系数全为0。 (6) 若向量12,αα线性相关,12,ββ线性无关,则1212,,,ααββ线性相关.

线性代数教案-向量与向量空间

线性代数教学教案 第3章 向量与向量空间 授课序号01 教 学 基 本 指 标 教学课题 第3章 第1节 维向量及其线性运算 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合 教学重点 维向量的概念、向量的线性运算的性质 教学难点 向量的线性运算的性质 参考教材 同济版《线性代数》 作业布置 课后习题 大纲要求 理解维向量的概念 教 学 基 本 内 容 一. 维向量的概念 1.维向量:由个数组成的有序数组称为维向量. 2.称为维行向量,称为维列向量. 二.维向量的线性运算 1.定义: (1)分量全为0的向量称为零向量; (2)对于,称为的负向量; (3)对于,,当且仅当时,称与相等; (4)对于,,称为与的和; (5)对于,,称为与的差; (6)对于,为实数,称为的数乘,记为. 2.向量的线性运算的性质:对任意的维向量和数,有: n n n n n n n a a a ,,,21 n ),,,(21n a a a n 12?????????????? n a a a n n ()12T n αa ,a ,,a = ()12---T n a ,a ,,a αT n a a a ),,,(21 =αT n b b b ),,,(21 =β),,2,1(n i b a i i ==αβT n a a a ),,,(21 =αT n b b b ),,,(21 =βT n n b a b a b a ),,,(2211+++ αβT n a a a ),,,(21 =αT n b b b ),,,(21 =β()1122---T n n a b ,a b ,,a b αβT n a a a ),,,(21 =αk T n ka ka ka ),,,(21 ααk n γβα,,l k ,

线性代数练习册第三章答案(本)

第三章 行列式及其应用 §3-1 行列式的定义 一、填空题。 1、行列式a b c d =__ad bc -___;112 2 13141 ---=____-24____. 2、行列式 1 111 1 21 21 2 00 000 a a a a b b c c d d =______0_____. 3、已知行列式1111111 1 11111111 D -= -----,则32M =___4__;32A =___-4__. 4、已知排列2145697m n 为奇排列,则m =__8_;n =__3_. 5、4阶行列式中含1331a a 且符号为负的项是____ 13223144a a a a -____. 二、选择题。 1、方程01 1 0001x x x =的实根为__C___. (A )0; (B )1; (C )-1; (D )2. 2、若n 阶行列式中零元素的个数大于2n n -,则此行列式的值为__A__. (A )0; (B )1; (C )-1; (D )2. 3、排列396721584的逆序数为__C__. (A )18; (B )19; (C )20; (D )21 4、n 阶行列式001 020 00 D n = 的值为__D ___. (A )!n ; (B )!n -; (C )(1)!n n -; (D )(1)2 (1) !n n n --.

5、行列式312111321111x x x x x --中4 x 的系数为__A____. (A )-1; (B )1; (C )2; (D )3. 三、计算下列行列式 1、12 1 10001- 解:33 312 121 10(1)(1)1 11 001 r +--=-按展开 2、 1010120012301234 解:444321010 101 1200 4(1)120 1230 123 1234101 412024 003 r r +--=按c 展开 3、 11321011 23011 002 -- 解:

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

线性代数与概率统计及答案

线性代数部分 第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 5. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 6.设行列式 n a a a a =22 2112 11 , m a a a a =21 2311 13 ,则行列式 23 2221131211--a a a a a a 等于() A. m n - B.)(-n m + C. n m + D.n m - 二、填空题 1. 行列式=0 100111010100111.

2.行列式010...0002... 0......... 00 0 (10) 0 0 n n = -. 3.如果M a a a a a a a a a D ==333231 232221 131211 ,则=---=32 32 3331 2222232112121311133333 3a a a a a a a a a a a a D . 4.行列式= --+---+---1 1 1 1 111111111111x x x x . 5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为 . 6.齐次线性方程组??? ??=+-=+=++0 0202321 2 1321x x x kx x x x kx 仅有零解的充要条件是. 7.若齐次线性方程组?? ? ? ?=+--=+=++0 230520232132321kx x x x x x x x 有非零解,则k =. 三、计算题 2.y x y x x y x y y x y x +++; 3.解方程 00 11 01110111 0=x x x x ; 6. 111...1311...1112... 1 ... ...... 1 1 1 ...(1)b b n b ----

线性代数习题[第三章]-矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆 (2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ?? ??=--?? ??-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ?? ?? ??=???? ?? L L L L L L L 01,2,,i i a b i n ≠? ? ??=?? L 2.设12312323k A k k -?? ??=--?? ??-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3) ()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

第三章线性代数方程组

第3章 线性代数方程组 3.1.1 矩阵秩的定义 定义1 矩阵A 的k 阶子式 在n m ?矩阵A 中任取k 行,k 列()()n m k ,m in 1≤≤,位于这k 行,k 列交叉点处的元素按原来次序组成的行列式,称为A 的一个k 阶子式。 定义2矩阵A 的秩 设在矩阵A 中有一个不等于零的r 阶子式D ,且所有的r +1阶子式(如果有的话)全等于零,那么D 称为矩阵A 的最高阶非零子式,数r 称为矩阵A 的秩,记为)(A rank ,简记为()A r 。 定义3 满秩阵 设A 为n 阶方阵,若()A r =A ,则称A 为满秩阵。 3.1.2 矩阵秩的性质 (1)()();A r A r T = (2)()(),A r A r =λ其中0≠λ; (3)()0=A r 等价于0=A ; (4)()()n m A r n m ,m in ≤?; (5)设A ,B 为同阶矩阵,则 ()()()B r A r B A r +≤+ (1) 设A 为n m ?矩阵,B 为s n ?矩阵,则 ()()()() ()()()n B r A r AB r B r A r AB r -+≥≤,min 特别当AB =0时,()()n B r A r ≤+成立。 (7)()()()()()()B r A r B D A r B r A r B C A r B r A r B A r +≥?? ????+≥??????+=??????0000 3.1.3 矩阵秩的有关结论 (1)初等变换不改变矩阵的秩,即 若A ∽B,则()()B r A r =

(2)矩阵乘上一个可逆阵不改变原矩阵的秩,即当A 可逆时,有 ()()B r AB r =;()()B r BA r = (3) 设A 为n 阶方阵,则其转置伴随阵的秩为 () ()()()?? ? ??-≤-===2 011 *n A r n A r n A r n A r (4)设A 为方阵,则()n A r A =?≠0。 3.1.4 矩阵秩的求法 (1)用定义求矩阵的秩。 (2)用初等变换法求矩阵的秩。 (3)用性质求矩阵的秩。 (4)用有关结论求矩阵的秩。 (5)用齐次线性方称组的基础解系讨论矩阵的秩。 3.1.5 系数矩阵可逆的线性代数方程组的求解 问题:求b Ax =的解,其中0≠A 。 方法(1) 克莱娒法则 ()n i A D x i i ,2,1== ,其中i D 为右端列b 取代A 的第i 列所构成的行列式。 方法(2)逆矩阵法 b A x 1 1 --=,其中A A A *1 =-或用()()1-?→?A I I A 行求1 -A 。 方法(3) G 法 将增广矩阵()b A 经过行初等变换化为行梯形阵,回代求解。 方法(3)G -J 法 将增广矩阵()b A 经过行初等变换化为行标准形后得解。 3.1.6 齐次线性方程组 0=?x A n m (1)齐次线性方程组有解的条件 0=x 为0=Ax 的平凡解。 当()n A r =时,0=Ax 只有零解。 ()n A r 时,0=Ax 有含()A r n -个参数的无穷多组解。 注0=Ax 有非零解()n A r ?。 (2)齐次线性方程组解的求法

线性代数向量空间自测题(附答案)

《第四章 向量空间》 自测题 (75分钟) 一、选择、填空(20分,每小题4分) 1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。 (A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量; (C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量; (D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。 2.设R 4 的一组基为,,,,4321αααα令 414433322211,,,ααβααβααβααβ+=+=+=+=, 则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。 3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。 4. 设W 是所有二阶实对称矩阵构成的线性空间,即?? ? ???????∈???? ??=R a a a a a W ij 2212 1211,则它的维数为 ,一组基为 。 5.若A=????? ? ? ?????? ?? ? - 10 0021021b a 为正交矩阵,且|A|=-1,则a = ,= 。 二、计算题(60分) 1.(15分)设R 3的两组基为: T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T (1)求由基321,,ααα到基321,,βββ的过渡矩阵。 (2)求α关于这两组基的坐标。 (3)将321,,βββ化为一组标准正交基。 2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,

考研线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数 向量空间

第五节 向量空间 分布图示 ★ 向量空间 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 子空间 ★ 例6 ★ 例7 ★ 向量空间的基与维数 ★ 例8 ★ 例9 ★ 向量在基下的坐标 ★ 例10 ★ 关于集合的坐标系的注记 ★ 例11 ★ 内容小结 ★ 课堂练习 ★ 习题3-5 内容要点 一、向量空间与子空间 定义1 设V 为n 维向量的集合,若集合V 非空,且集合V 对于n 维向量的加法及数乘两种运算封闭, 即 (1) 若,,V V ∈∈βα则V ∈+βα; (2) 若,,R V ∈∈λα则V ∈λα. 则称集合V 为R 上的向量空间. 记所有n 维向量的集合为n R , 由n 维向量的线性运算规律,容易验证集合n R 对于加法及数乘两种运算封闭. 因而集合n R 构成一向量空间, 称n R 为n 维向量空间. 注:3=n 时, 三维向量空间3R 表示实体空间; 2=n 时, 维向量空间2R 二表示平面; 1=n 时, 一维向量空间1R 表示数轴. 3>n 时, n R 没有直观的几何形象. 定义2 设有向量空间1V 和2V , 若向量空间21V V ?, 则称1V 是2V 的子空间. 二、向量空间的基与维数 定义3 设V 是向量空间, 若有r 个向量V r ∈ααα,,,21 , 且满足 (1) r αα,,1 线性无关; (2) V 中任一向量都可由r αα,,1 线性表示. 则称向量组r αα,,1 为向量空间V 的一个基, 数r 称为向量空间V 的维数,记为r V =dim 并称V 为r 维向量空间. 注: (1) 只含零向量的向量空间称为0维向量空间, 它没有基; (2) 若把向量空间V 看作向量组,则V 的基就是向量组的极大无关组, V 的维数就是向量组的秩; (3) 若向量组r αα,,1 是向量空间V 的一个基,则V 可表示为 }.,,,,|{2111R x x V r r r ∈++==λλλαλαλ 此时, V 又称为由基r αα,,1 所生成的向量空间. 故数组r λλ,,1 称为向量x 在基r αα,,1 中的坐标. 注: 如果在向量空间V 中取定一个基r a a a ,,,21 , 那么V 中任一向量x 可惟一地表示为 ,2211r r a a a x λλλ+++= 数组r λλλ,,,21 称为向量x 在基r a a a ,,,21 中的坐标.

线性代数第三章课后习题

习题三 (A ) 1. 用矩阵的初等变换把下列矩阵A 化为行阶梯形矩阵、行最简形矩阵及标准形矩阵: (1) 112332141022-?? ?= ? ???(2)111113 1320461135-?? ?- ?= ? ???(3)2451212211 1212136363--? ? ? -- ?= ? -- ?---?? 2.设A 123012425? ? ?=- ? ???,010(1,2)100001? ? ?= ? ???E ,100(3,2(5))010051?? ? = ? ??? E . 试求(1,2)E A ;(1,2)AE ;(3,2(5))E A . 3.用初等变换求下列方阵的逆矩阵: (1) A 101110012?? ?=- ? ??? (2)A 211124347--?? ?=- ? ?-??(3)A 1111022200330004?? ? ?= ? ??? 4.用初等变换解下列矩阵方程: (1) 设A 101110120? ? ? = ? ???,102102-?? ?= ? ??? B ,且AX =B ,求X . (2)设A 220213010? ? ?= ? ??? ,且+AX =A X ,求X . 5.设矩阵A 122324111222-?? ?=-- ? ?-?? ,计算A 的全部三阶子式,并求()R A . 6.在秩为r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?请举例说明. 7.从矩阵A 中划掉一行得到矩阵B ,问A ,B 的秩的大小关系怎样? 请举例说明. 8.求下列矩阵A 的秩: (1) 310211311344?? ? =-- ? ?--??(2 )1121224230610304-?? ?- ?= ?- ?-??(3)1221 12480 22423336064--? ? ? - ?= ?-- ?--?? (4) 112205123λλλ-?? ?= ? ?-?? (5) 111 111λ λλ?? ? = ? ???

居余马线性代数第三章课后习题

第三章 课后习题及解答 将1,2题中的向量α表示成4321,,,αααα的线性组合: 1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T 4T 3T 21T --=--=--===αααααT 2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα 解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得 14321=+++k k k k 24321=--+k k k k 14321=-+-k k k k 14321=+--k k k k 解得.41 ,41,41,454321-=-=== k k k k 所以43214 1 414145ααααα--+= . 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得 02321=++k k k ,04321=+++k k k k , 0342=-k k ,1421=-+k k k . 解得 .0,1,0,14321=-===k k k k 所以31ααα-=.

判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T 3T 2T 1===ααα 4. ()().3,0,7,142,1,3,0,)4,2,1,1(T 3T 2T 1==-=βββ, 解: 3.设存在 321,,k k k 使得0332211=++αααk k k ,即 ??? ??=++=++=+0650320321 32131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关. 4.设存在 321,,k k k 使得0332211=++βββk k k ,即 ?????? ?=++=++=+-=+0 142407203033213212 131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件. 解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性 无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是 0=α. 6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A 1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1 ,3)T T T =--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223?????? ? ? ? ? ? ?+-=+- ? ? ?-- ? ? ?-??????ααα1251613109491512561037???????? ? ? ? ? ? ? ? ?=+-= ? ? ? ?--- ? ? ? ?--???????? . 2.从以下方程中求向量α 1233()2()5()-++=+αααααα, 其中123(2,5,1,3),(10,1,5,10),(4,1 ,1,1).T T T ===-ααα 解 由方程得1233322550-++--=αααααα, 1232104651112 632532515118310124???????? ? ? ? ? ? ? ? ?=+-=+-= ? ? ? ?- ? ? ? ?????????αααα 故12 34?? ? ?= ? ??? α,即(1,2,3,4)T =α. 3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα 4.证明: 包含零向量的向量组线性相关. 证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有 12110α0αα00α0α0,0i i s k k -++++++++=≠ 而0,0,,0,,0,,0k 不全为0,故向量组线性相关. 5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关. 6.判断下列向量组的线性相关性

线性代数第三章(答案)

第三章 矩阵的初等变换与线性方程组 一、填空题 1、 设???? ?? ? ??=n n n n n n b a b a b a b a b a b a b a b a b a A 2 1 2221 212111,其中),,2,1(,0,0n i b a i i =≠≠,则=)(A R ____ 2、 设n 阶矩阵A 的各行元素之和均为零,且=)(A R n -1,则线性方程组AX =0 的通解为________ 3、 设四阶方阵的秩为2,其伴随矩阵的秩为_______ 4、 设?????? ? ??=---112 11 22 221 21n n n n n n a a a a a a a a a A ,??????? ??=n x x x X 21,???? ??? ??=111 B ,其中 ),,2,1,,(n j i j i a a j i =≠≠,则线性方程组B AX =的解是________ 5、 已知????? ? ?=10 0210 002 P ,??? ? ? ? ?=20 0020 001A ,则=-1001)(AP P ________ 6、 设A ,B 均为n 阶矩阵AB =0,且A +B=E,则=+)()(B R A R _________ 7、 设矩阵n m A ?的秩为r ,P 为m 阶可逆矩阵,则)(PA R =________ 8、 矩阵??? ?? ??--34031302 1201 的行最简形矩阵为___________ 9、 矩阵??? ? ? ? ?----17 4 03430 1320的行最简形矩阵为__________ 10、 从矩阵A 中划去一行得到矩阵B ,则)(______)(B R A R 从矩阵A 中增加一行得到矩阵B ,则)(______)(B R A R

线性代数 第三章 测验

(1)设n 阶方阵A 的秩rn (5)设A 是m ×n 矩阵,AX=0是非齐次线性方程组AX=B 所对应的齐次线性方程组,则下列结论正确的是:( ) (A )若AX=0仅有零解,则AX=B 有唯一解; (B )若AX=0有非零解,则AX=B 有无穷多解; (C )若AX=B 有无穷多个解,则AX=0仅有零解; (D )若AX=B 有无穷多个解,则AX=0有非零解。 (6)设向量组(Ⅰ):α1,α2,…,αr 可由向量组(Ⅱ):β1,β2,…,βS 线性表示,则( ) (A )当rS 时,向量组(Ⅱ)必线性相关; (C )当rS 时,向量组(Ⅰ)必线性相关; 7. 已知一个向量组为???? ? ???????--=????????????-=????????????=????????????=????????????=1311,4152,2312,1021,120154321ααααα,求该向量组的秩及该向量组的一个最大线性无关组, 并把其余列向量用该最大无关组线性表示.. 8. 当λ取何值时,非齐次线性方程组12312321231x x x x x x x x x λλλλλ?++=?++=??++=? (1) 有唯一解;(2)无解;(3)有无 穷多解,并求通解.

北京邮电大学版 线性代数 课后题答案

习题 三 (A 类) 1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2) 2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α. 解:由3(α1-α)+2(α2+α)=5(α3+α) 整理得:α=1 6(3α1+2α2-5α3),即α=16 (6,12,18,24) =(1,2,3,4) 3.(1)× (2)× (3)√ (4)× (5)× 4. 判别下列向量组的线性相关性. (1)α1=(2,5), α2=(-1,3); (2) α1=(1,2), α2=(2,3), α3=(4,3); (3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2); (4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1). 解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关. 5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设 112123123()()0,k k k αααααα+++++= 即 123123233()()0.k k k k k k ααα+++++= 由123,,ααα线性无关,有 123233 0,0,0.k k k k k k ++=?? +=??=? 所以1230, k k k ===即 112123,,αααααα+++线性无关. 6.问a 为何值时,向量组 '''123(1,2,3),(3,1,2),(2,3,)a ααα==-= 线性相关,并将3α用12,αα线性表示. 解: 1 3 2 2137(5),32A a a =-=-当a =5时, 312111.77ααα= +

线性代数————第3章:线性方程组

线性代数————第3章:线性方程组 一、例题解析: 1.单项选择题 (1)向量组[][][][] αααα1234110100111001====,,,,,,,,,,,的极大线性无关组是( )。 A. αα12, B. αα24, C. ααα134,, D. ααα123,, 解:因为向量组ααα123,,线性无关,而向量组ααα134,,线性相关,所以原向量组的极大线性无关组是ααα123,,。 正确答案:D (2)设线性方程组的增广矩阵为? ? ????? ?? ???--000 0103006211041231,则此线性方程组的一般解中自 由元的个数为( )。 A. 1 B. 2 C. 3 D. 4 解:因为方程组中未知量个数是4,增广矩阵的秩)(B A r =3,所以 一般解的自由元个数 = 方程组中未知量个数 - )(B A r = 4-3=1 所以,线性方程组的一般解中自由元的个数为1。 正确答案:A (3)n 元齐次线性方程组0=AX 有非零解的充分必要条件是( )。 A. n A r =)( B. n A r >)( C. n A r <)( D. )(A r 与n 无关 解:n 元齐次线性方程组0=AX 有非零解的充分必要条件是n A r >)( 正确答案:C (4)设线性方程组B AX =的两个解21,X X )(21X X ≠,则下列向量中( )一定是B AX =的解。 A. 21X X + B. 21X X - C. 212X X - D. 122X X - 解:因为B B B AX AX X X A =-=-=-22)2(1212, 所以122X X -是线性方程组B AX =的解。 正确答案:D 2. 填空题 (1)一个向量组中如有零向量,则此向量组一定线性 。 解:设0, m αα,,1 为一组n 维向量,取00≠k ,01===m k k ,则 0k 0 +m m k k α++α 11= 0 由定义可知,向量组0, m αα,,1 线性相关。 正确答案:相关 (2)线性方程组B AX =中的一般解的自由元的个数是2,其中A 是54?矩阵,则方程组增广矩阵)(B A r = 。 解:因为一般解的自由元个数 = 方程组中未知量个数 - )(B A r

相关文档 最新文档