文档库 最新最全的文档下载
当前位置:文档库 › 椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题
椭圆知识点归纳总结和经典例题

椭圆的基本知识

1.椭圆的定义:把平面与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程:

12222=+b y a x (a >b >0) 12

2=+b

a (a >

b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0)

不必考虑焦点位置,求出方程

3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法

.

,.2,,1的轨迹中点求线段段轴作垂线

向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:

(相

关点法)设点M (x , y ),点P (x 0, y 0),

则x =x 0, y = 2

0y

得x 0=x , y 0=2y.

∵x 02

+y 02

=4, 得 x 2

+(2y )2

=4,

即.14

2

=+y x 所以点M 的轨迹是一个椭圆.

4.围. x 2≤a 2,y 2≤b 2

,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里.

5.椭圆的对称性

椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.

6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的

长半轴长.b 叫做椭圆的短半轴长.

|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a .

在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2

, 即c 2=a 2-b 2

7.椭圆的几何性质:

椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐

标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要22

22x y 1(a b 0)

a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出22

22y x 1(a b 0)a b

+=>>的有关性质。总结如下:

几点说明:

(1)长轴:线段12A A ,长为2a ;短轴:线段12B B ,长为2b ;焦点在长轴上。 (2)对于离心率e ,因为a>c>0,所以0

由于222

21c a b b e a a -===-,所以e 越趋近于1,b 越趋近于0,椭圆越扁平;e 越趋近于0,

b 越趋近于a ,椭圆越圆。

(3)观察下图,22||,||OB b OF c ==,所以22||B F a =,所以椭圆的离心率e = cos ∠OF 2B 2

8.直线与椭圆:

直线l :0Ax By C ++=(A 、B 不同时为0)

椭圆C :22

22x y 1(a b 0)a b

+=>>

那么如何来判断直线和椭圆的位置关系呢?将两方程联立得方程组,通过方程组的解的个数来判断

直线和椭圆交点的情况。方法如下:

222

201Ax By C x y a

b ++=??

?+=?? 消去y 得到关于x 的一元二次方程,化简后形式如下

20(0)mx nx p m ++=>, 24n mp ?=-

(1)当0?>时,方程组有两组解,故直线与椭圆有两个交点;

(2)当0?=时,方程组有一解,直线与椭圆有一个公共点(相切); (3)当0?<时,方程组无解,直线和椭圆没有公共点。

注:当直线与椭圆有两个公共点时,设其坐标为1122(,),(,)A x y B x y ,那么线段AB 的长度(即弦

长)为||AB =k ,

可得:||AB =

=12|x x -,然后我们可通过求出方程的根或用韦达定理求出。

椭圆典型例题

例1 已知椭圆0632

2

=-+m y mx 的一个焦点为(0,2)求m 的值.

分析:把椭圆的方程化为标准方程,由2=c ,根据关系2

2

2

c b a +=可求出m 的值.

解:方程变形为

1262

2=+m

y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2

262=-m ,5=m 适合.故5=m .

例2 已知椭圆的中心在原点,且经过点()03,

P ,b a 3=,求椭圆的标准方程.

分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,

求出参数a 和b (或2

a 和2

b )的值,即可求得椭圆的标准方程.

解:当焦点在x 轴上时,设其方程为()0122

22>>=+b a b

y a x .

由椭圆过点()03,

P ,知1092

2=+b

a .又

b a 3=,代入得12=b ,92

=a ,故椭圆的方程为19

22

=+y x . 当焦点在y 轴上时,设其方程为()0122

22>>=+b a b

x a y .

由椭圆过点()03,P ,知10

922

=+b

a .又

b a 3=,联立解得812=a ,92=b ,故椭圆的方程为19

812

2=+x y .

例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.

分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解.

(2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程.

解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由

20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,

故其方程为

()0136

1002

2≠=+y y x . (2)设()y x A ,,()y x G '',,则

()0136

1002

2≠'='+'y y x . ① 由题意有???

????='='33

y y x x ,代入①,得A 的轨迹方程为

()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3

5

2,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

解:设两焦点为1F 、2F ,且3541=

PF ,3

5

22=PF .从椭圆定义知52221=+=PF PF a .即5=a .

从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F

PF Rt ?中,2

1

sin 12

21==∠PF PF F PF , 可求出6

21π

=

∠F PF ,3

526

cos

21=

?=π

PF c ,从而3102

22=-=c a b .

∴所求椭圆方程为

1103522=+y x 或15

1032

2=+y x . 例5 已知椭圆方程()0122

22>>=+b a b

y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是

椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示).

分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 2

1

=

?求面积.

解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 2

2

1F F 2

221PF PF +=12PF -·2

24cos c PF =α.①

由椭圆定义知: a PF PF 221=+ ②,则-①②2

得 α

cos 122

21+=?b PF PF . 故αsin 212121PF PF S PF F ?=? ααsin cos 12212+=

b 2

tan 2α

b =.

例6 已知动圆P 过定点()03,

-A ,且在定圆()64322

=+-y x B :的部与其相切,求动圆圆心P 的轨迹方程.

分析:关键是根据题意,列出点P 满足的关系式.

解:如图所示,设动圆P 和定圆B 切于点M .动点P 到两定点,

即定点()03,

-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,

半长轴为4,半短轴长为7342

2

=-=b 的椭圆的方程:

17

162

2=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.

例7 已知椭圆12

22

=+y x (1)求过点??

? ??2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;

(3)过()12,

A 引椭圆的割线,求截得的弦的中点的轨迹方程;

(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足2

1-

=?OQ OP k k , 求线段PQ 中点M 的轨迹方程. 分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.

解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则

??????

?=+=+=+=+④

,③,②,①,y y y x x x y x y x 2222222

1212

22

22121

①-②得

()()()()022*******=-++-+y y y y x x x x .

由题意知21

x x ≠,则上式两端同除以21x x -,有()()022*******=-+++x x y y y y x x ,

将③④代入得022

12

1=--+x x y y y

x .⑤

(1)将21=

x ,2

1

=y 代入⑤,得212121

-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程222

2

=+y x 得041662

=-

-y y ,04

16436>??-=?符合题意,0342=-+y x 为所求. (2)将

22

12

1=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆部分)

(3)将

2

12121--=--x y x x y y 代入⑤得所求轨迹方程为: 02222

2=--+y x y x .(椭圆部分)

(4)由①+②得 :

()

22

2

2212

221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 2122

22124y y y y y -=+, ⑨

将⑧⑨代入⑦得:

()

2244

242122

12=-+-y y y x x x , ⑩ 再将212121x x y y -

=代入⑩式得: 221242212212=??

?

??--+-x x y x x x , 即 12

12

2

=+y x .

此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决. 例8 已知椭圆142

2

=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点?

(2)若直线被椭圆截得的弦长为

5

10

2,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程142

2=+y x 得 ()142

2=++m x x ,

即01252

2=-++m mx x .()()

020*********

≥+-=-??-=?m m m ,解得2

525≤≤-

m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5

221m

x x -=+,51221-=m x x .

根据弦长公式得 :5102514521122

2

=-?

-??

? ??-?+m m .解得0=m .方程为x y =. 说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.

这里解决直线与椭圆的交点问题,一般考虑判别式?;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.

例9 以椭圆

13

122

2=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程. 分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.

解:如图所示,椭圆

13

122

2=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x . 解方程组??

?=+-=-+0

90

32y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.

所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,

∴()

363532

2

2

2

2

=-=-=c a b .因此,所求椭圆的方程为

136

452

2=+y x . 例10 已知方程

1352

2-=-+-k

y k x 表示椭圆,求k 的取值围. 解:由??

?

??-≠-<-<-,35,03,05k k k k 得53<

∴满足条件的k 的取值围是53<

说明:本题易出现如下错解:由??

?<-<-,

03,

05k k 得53<

出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.

例11 已知1cos sin 2

2

=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值围.

解:方程可化为1cos 1sin 122=+α

αy x .因为焦点在y 轴上,所以0sin 1

cos 1>>-αα. 因此0sin >α且1tan -<α从而)4

3

,2(

ππα∈. 说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1

>-α,这是容易忽视的地方.

(2)由焦点在y 轴上,知αcos 12-=a ,α

sin 12

=b . (3)求α的取值围时,应注意题目中的条件

πα<≤0.

例12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程 分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,

可设其方程为12

2

=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.

解:设所求椭圆方程为12

2=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可

?????=?+-?=-?+?,

11)32(,

1)2()3(222

2n m n m 即???=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为15

152

2=+y x . 例13 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3

π

的直线交椭圆于A ,B 两点,求弦AB 的长.

分析:可以利用弦长公式]4))[(1(1212

212

212

x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求. 解:(法1)利用直线与椭圆相交的弦长公式求解.

2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点

在x 轴上,

所以椭圆方程为

19

362

2=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132

=?++x x .设1x ,2x 为方程两根,所以

13

37221-

=+x x ,

13

83621?=

x x ,

3

=k , 从而

13

48]4))[(1(1212212212=

-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.

由题意可知椭圆方程为19

362

2=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在

2

1F AF ?中,

3

cos

22112

212122π

F F AF F F AF AF -+=,即

2

1

362336)12(22???-?+=-m m m ;

所以3

46-=

m .同理在21F BF ?中,用余弦定理得346+=n ,所以1348

=+=n m AB .

(法3)利用焦半径求解.

先根据直线与椭圆联立的方程0836372132

=?++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.

再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.

例14 椭圆

19

252

2=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .

2

3

解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得

10221==+a MF MF ,所以82101012=-=-=MF MF ,

又因为ON 为21F MF ?的中位线,所以42

1

2==MF ON ,故答案为A .

说明:(1)椭圆定义:平面与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆. (2)椭圆上的点必定适合椭圆的这一定义,即a MF MF 221=+,利用这个等式可以解决椭圆上的点与焦点的有关距离.

例15 已知椭圆13

42

2=+

y x C :,试确定m 的取值围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.

分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点

M 在l 上.

利用上述条件建立m 的不等式即可求得m 的取值围. 解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点. ∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41

.由方程组???????

=++-=,134,41

22y

x n x y 消去y 得 0481681322=-+-n nx x ①。∴13821n x x =

+.于是1342210n x x x =+=,13

124100n

n x y =+-=, 即点M 的坐标为)1312,134(n n .∵点M 在直线m x y +=4上,∴m n n +?=1344.

解得m n 413

-=. ② 将式②代入式①得04816926132

2=-++m mx x ③

∵A ,B 是椭圆上的两点,∴0)48169(134)26(2

2

>-?-=?m m .解得13

13

213132<<-m . (法2)同解法1得出m n 413-

=,∴m m x -=-=)4

13

(1340, m m m m x y 34

13

)(414134100-=--?-=--=,即M 点坐标为)3,(m m --.

∵A ,B 为椭圆上的两点,∴M 点在椭圆的部,∴13

)3(4)(2

2<-+-m m .解得1313213132<<-m . (法3)设),(11y x A ,),(22y x B 是椭圆上关于l 对称的两点,直线AB 与l 的交点M 的坐标为),(00y x .

A ,

B 在椭圆上,∴

13

42

121=+y

x ,13

42

222=+y

x .两式相减得0))((4))((321212121=-++-+y y y y x x x x ,

即0)(24)(23210210=-?+-?y y y x x x .∴

)(43210

0212

1x x y x x x y y ≠-=--.

又∵直线l AB ⊥,∴1-=?l AB k k ,∴14430

-=?-

y x ,即003x y = ①。 又M 点在直线l 上,∴m x y +=004 ②。由①,②得M 点的坐标为)3,(m m --.以下同解法2. 说明:涉及椭圆上两点A ,B 关于直线l 恒对称,求有关参数的取值围问题,可以采用列参数满足的不等式:

(1)利用直线AB 与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式0>?,建立参数方程.

(2)利用弦AB 的中点),(00y x M 在椭圆部,满足12

020<+b

y

a x ,将0x ,0y 利用参数表示,建立参数不

等式.

例17 在面积为1的PMN ?中,2

1

tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.

解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .

则???

?

?????==+-=-.1,21,2cy c x y

c x y

∴??????

?===23

3

435c c y c

x 且即)32,325(P ∴???????=-=+,43,134********b a b a 得??

??

?==.3,

415

22b a ∴所求椭圆方程为13

1542

2=+y x 例18 已知)2,4(P 是直线l 被椭圆

19

362

2=+y x 所截得的线段的中点,求直线l 的方程. 分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去y (或x ),得到关于

x (或y )的一元二次方程,再由根与系数的关系,直接求出21x x +,21x x (或21y y +,21y y )的

值代入计算即得.

并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的. 解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程,整理得

036)24(4)24(8)14(222=--+--+k x k k x k ①

设直线与椭圆的交点为),(11y x A ,),(22y x B ,则1x 、2x 是①的两根,∴1

4)

24(8221+-=+k k k x x

∵)2,4(P 为AB 中点,∴14)24(4242

21+-=+=

k k k x x ,2

1

-=k .∴所求直线方程为082=-+y x . 方法二:设直线与椭圆交点),(11y x A ,),(22y x B .∵)2,4(P 为AB 中点,∴821=+x x ,421=+y y .

又∵A ,B 在椭圆上,∴3642

12

1=+y x ,3642

22

2=+y x 两式相减得0)(4)(2

22

12

22

1=-+-y y x x ,

即0))((4))((21212121=-++-+y y y y x x x x .∴

2

1

)(4)(21212121-=++-=--y y x x x x y y .∴直线方程为

082=-+y x .

方法三:设所求直线与椭圆的一个交点为),(y x A ,另一个交点)4,8(y x B --.

∵A 、B 在椭圆上,∴3642

2=+y x ①。 36)4(4)8(2

2

=-+-y x ②

从而A ,B 在方程①-②的图形082=-+y x 上,而过A 、B 的直线只有一条,∴直线方程为

082=-+y x .

说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法.

若已知焦点是)0,33(、)0,33(-的椭圆截直线082=-+y x 所得弦中点的横坐标是4,则如何求椭圆方程?

高中数学 命题知识点考点典型例题

高二数学选修1-1知识点 第一章:命题与逻辑结构 知识点: 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的逆否命题为“若q ?,则p ?”. 6、四种命题的真假性:

例题:一个命题与他们的逆命题、否命题、逆否命题这4个命题中()A.真命题与假命题的个数相同 B.真命题的个数一定是偶数 C.真命题的个数一定是奇数 D.真命题的个数可能是奇数,也可能是偶数 答案(找作业答案--->>上魔方格) 一个命题与他们的逆命题、否命题、逆否命题这4个命题, 原命题与逆否命题具有相同的真假性, 否命题与逆命题具有相同的真假性, ∴真命题的若有事成对出现的, 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. ?,则p是q的充分条件,q是p的必要条件. 7、若p q ?,则p是q的充要条件(充分必要条件). 若p q

椭圆知识点及经典例题

椭圆知识点及经典例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

椭圆知识点 知识要点小结: 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中 222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中 222b a c -=; 3.椭圆的参数方程)(sin cos 为参数??? ? ??==b y a x 注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和 222b a c -=; 3.椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c , )0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质 椭圆:122 22=+b y a x )0(>>b a 的简单几何性质

(1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :说明:把x 换成x -、或把 y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆122 22=+b y a x 是 以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围: 椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分 别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率: ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。 ②因为)0(>>c a ,所以e 的取值范围是)10(<

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

椭圆知识点总结附例题

圆锥曲线与方程 椭 圆 知识点 一.椭圆及其标准方程 1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c}; 这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。 (212F F a =时为线段21F F ,212F F a <无轨迹)。 2.标准方程: 222c a b =- ①焦点在x 轴上:122 22=+b y a x (a >b >0); 焦点F (±c ,0) ②焦点在y 轴上:122 22=+b x a y (a >b >0); 焦点F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 二.椭圆的简单几何性质: 1.范围 (1)椭圆12222=+b y a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+b x a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性 椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心

3.顶点 (1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ) (2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭 圆的长半轴长和短半轴长。 4.离心率 (1)我们把椭圆的焦距与长轴长的比 22c a ,即a c 称为椭圆的离心率, 记作e (10<

椭圆典型题型归纳(供参考)

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 练习: 1.6=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 2.10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 4.1m =+表示椭圆,则m 的取值范围是 5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的 另一个焦点2F 构成的2ABF ?的周长等于 ; 6.设圆22 (1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例1.方程22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程; 例4.求经过点(2,3)-且与椭圆22 9436x y +=有共同焦点的椭圆方程; 注:一般地,与椭圆22221x y a b +=共焦点的椭圆可设其方程为22 2221()x y k b a k b k +=>-++; (四)定义法求轨迹方程; 例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>

椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质 基础卷 1.设a , b , c 分别表示同一椭圆的长半轴长、短半轴长、半焦距,则a , b , c 的大小关系是 (A )a >b >c >0 (B )a >c >b >0 (C )a >c >0, a >b >0 (D )c >a >0, c >b >0 2.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为 (A ) 221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )22 11625 x y += 3.已知P 为椭圆 22 1916 x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为 (A ) 54 (B )45 (C )4 17 (D ) 7 4 7 4.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为 (A ) 23 (B )33 (C )3 16 (D ) 6 1 6 5.在椭圆122 22=+b y a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点顺次与某一焦点连接的线段长是r 1, r 2, r 3,则有 (A )r 1, r 2, r 3成等差数列 (B )r 1, r 2, r 3成等比数列 (C ) 123111,,r r r 成等差数列 (D )123 111 ,,r r r 成等比数列 6.椭圆 22 1925 x y +=的准线方程是 (A )x =± 254 (B )y =±165 (C )x =±165 (D )y =±25 4 7.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 . 8.对于椭圆C 1: 9x 2 +y 2 =36与椭圆C 2: 22 11612 x y +=,更接近于圆的一个是 . 9.椭圆122 22=+b y a x 上的点P (x 0, y 0)到左焦点的距离是r = . 10.已知定点A (-2, 3),F 是椭圆22 11612 x y +=的右焦点,在椭圆上求一点M ,使|AM |+2|MF |取得最小值。

椭圆知识点总结及经典习题.docx

圆锥曲线与方程--椭圆 知识点 一?椭圆及其标准方程 1椭圆的定义:平面内与两定点Fι, F2距离的和等于常数2a ■ F1F21J的点的轨迹叫做椭圆,即点集M={P∣∣PF ι∣+∣PF 2∣=2a,2a>∣F1F2∣=2c}; 这里两个定点F i, F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。 (2a = F1F2时为线段F i F2, 2a C RF?无轨迹)。 2 2 2 2?标准方程:c= a- b 2 2 χ+y _ 1 ①焦点在X轴上:盲TT = 1( a> b> 0);焦点F(± C, 0) a b 2 2 y X ②焦点在y轴上:—2 = 1(a>b>0);焦点F (0, ±C) a b 注意:①在两种标准方程中,总有a> b> 0,并且椭圆的焦点总在长轴上; 2 2 ②两种标准方程可用一般形式表示:X y =1或者mχ2+ny2=1 m n 二?椭圆的简单几何性质: 1. 范围 2 2 (1)椭圆X- y- =1 (a> b> 0)横坐标-a ≤x≤a ,纵坐标-b ≤X≤b a2b2 2 2 (2)椭圆-y2x2 =1 (a>b>0) 横坐标-b ≤X≤b,纵坐标-a ≤x≤a a2b2 2. 对称性 椭圆关于X轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心 3. 顶点 (1)椭圆的顶点:A (-a , 0), A (a, 0), B (0, -b), B- (0, b) (2)线段AA, BB分别叫做椭圆的长轴长等于2a,短轴长等于2b, a和b分别叫做椭

圆的长半轴长和短半轴长。 4 .离心率 (1) 我们把椭圆的焦距与长轴长的比 2c ,即E 称为椭圆的离心率, 2a a e = O 是圆; e 越接近于O (e 越小),椭圆就越接近于圆 e 越接近于1 ( e 越大),椭圆越扁; 注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关 小结一:基本元素 (1) 基本量:a 、b 、c 、e 、(共四个量), 特征三角形 (2) 基本点:顶点、焦点、中心(共七个点) (3) 基本线:对称轴(共两条线) 5 ?椭圆的的内外部 2 2 x 2 y 2 亠 —x o + y o W 1 (1) 点 P(X O , Y O )在椭圆-2 -每=1(a b - 0)的内部 J 2 U2 1 a b a b 2 2 x 2 y 2 亠 X O * y O 彳 (2) 点 P(x 0, y 0)在椭圆-2 =1(a b 0)的外部 2 TT 1. a b a b 6. 几何性质 (1) 点P 在椭圆上, 最大角? F 1PF 2 max =∕F 1 B 2F 2, (2) 最大距离,最小距离 7. 直线与椭圆的位置关系 (1) 位置关系的判定:联立方程组求根的判别式; (2) 弦长公式: ________________________ (3) 中点弦问题:韦达定理法、点差法 记作 e ( 0 < e < 1),

公开课椭圆习题课教学设计

椭圆习题课 北京化工大学附属中学李爱惠 教材版本:高中数学人教A版选修2-1,第二章圆锥曲线与方程的第四节 一、教学背景分析 (1)学习内容分析: 已经学习了椭圆的定义、标准方程和几何性质这些基础知识,本节课在学习了这些基础知识和基本方法的前提下,以椭圆的焦点三角形为平台,进一步研究用定义和性质解决椭圆问题的方法,并了解与运用椭圆和其它知识点的联系。为后面学习双曲线、抛物线的概念打下良好的基础,学会利用圆锥曲线的定义来解决相关问题的一般性方法,让学生经历解析法解题的过程;本节椭圆习题课的学习是对其学习内容的进一步深化和提高。 (2)学生状况分析 1.学生水平:所任教的班级是普通理科班,有些学生思维水平相对较好,具有一定的分析、解决问题的能力。但因本班是我校的普通班,学生数学基础弱,计算能力弱,对试题的分析解决要在老师的引导下慢慢训练。 2.认知基础:学生在学习这节课之前,已掌握了椭圆的定义和标准方程,也具备自主利用椭圆定义和性质解决一些简单的椭圆问题,所以说从知识和学习方式上来说学生已具备了进一步自行探索和解决问题的基本能力。 3.可能存在的学习困难:等价转化有一定困难;同时代数运算方面有困难;椭圆与三角、不等式等其它知识点的联系存在困难。 二、教法和学法的选择 解析几何要体现用代数研究几何,要教会学生抓住焦点三角形中的不变量和变量,用定义建立运算关系解决几何问题。学生已经对椭圆的定义、性质有了一定的掌握,所以本节课我采用了“启发引导”式的教学方法,重点突出以下两点: (1)以老师引导与学生探究相结合作为本节的学习方法。 (2)教学过程中突出数形结合、方程等数学思想方法的渗透。 以信息技术演示与学生动手实际操作相结合为主要教学手段。

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

(完整版)椭圆常见题型总结

椭圆常见题型总结 1、椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决; 椭圆 22 2 21(0)x y a b a b +=>>上一点00(,)P x y 和焦点1(,0)c F -,2(,0)c F 为顶点的12PF F ?中,12F PF α=∠,则当P 为短轴端点时α最大,且 ① 122PF PF a +=; ②22 2 12122cos 4c PF PF PF PF α=+-; ③12 121 sin 2PF F S PF PF α?= =2tan 2 b α?(b 短轴长) 2、直线与椭圆的位置关系:直线y kx b =+与椭圆22 221(0)x y a b a b +=>>交于 1122(,),(,)A x y B x y 两点,则12AB x =-=3、椭圆的中点弦:设1122(,),(,)A x y B x y 是椭圆22 221(0)x y a b a b +=>>上不同两点, 00(,)M x y 是线段AB 的中点,可运用点差法可得直线AB 斜率,且20 20 AB b x k a y =-; 4、椭圆的离心率 范围:01e <<,e 越大,椭圆就越扁。 求椭圆离心率时注意运用:c a e = ,222c b a += 5、椭圆的焦半径 若00(,)P x y 是离心率为e 的椭圆22 221(0)x y a b a b +=>>上任一点,焦点 为1(,0)c F -,2(,0)c F ,则焦半径10PF a ex =+,10PF a ex =-; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定2 a ,2 b 值,结合焦点位置直接写出椭圆方程; ⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出2 a ,2 b ,从而求出标准方程; ⑶在不知道焦点的情况下可设椭圆方程为221Ax By +=;

高二数学椭圆的知识点整理

第1讲 课题:椭圆 课 型:复习巩固 上课时间:2013年10月3日 教学目标: (1)了解圆锥曲线的来历; (2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题; 教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; 知识清单 一、椭圆的定义: (1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之 比为常数e ,当10<>=+F F a a PF PF ; (){} .02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程: 焦点在x 轴: ()0122 22>>=+b a b y a x ; 焦点在y 轴: ()0122 22>>=+b a b x a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足 .222c b a += 四、二元二次方程表示椭圆的充要条件 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:

上式化为12 2=+C By C Ax ,122=+B C y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当 B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上. 五、椭圆的几何性质(以()0122 22>>=+b a b y a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式 1,122 22≤≤b y a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3.顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5.离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=, 即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆. 6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为a b 2 2.

椭圆知识点及经典例题

椭圆知识点 知识要点小结: 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中2 22b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中2 22b a c -=; 3.椭圆的参数方程)(sin cos 为参数?? ? ?? ?==b y a x 注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和2 2 2 b a c -=; 3.椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质 椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、 或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆122 22=+b y a x 是以x 轴、y 轴为对称轴 的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

椭圆题型归纳大全

椭圆题型归纳大全

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆2 2:(4)100 C x y ++=相内切,且 过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 例2. 方程 2 x =++所表示的曲线是 练习: 1.方程 6 =对应的图形是 ( ) A.直线 B. 线段 C. 椭圆 D. 圆 2. 10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 3.方程 10 =成立的充要条件是 ( ) A. 2 2 12516x y += B.2 2 1 259 x y += C. 22 11625 x y += D. 22 1925 x y +=

4. 1 m =+表示椭圆,则 m 的取值范围是 5.过椭圆2 2941 x y +=的一个焦点1 F 的直线与椭圆相 交于,A B 两点,则,A B 两点与椭圆的另一个焦点2 F 构成的2 ABF ?的周长等于 ; 6.设圆2 2(1) 25 x y ++=的圆心为C ,(1,0)A 是圆内一定点, Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点 M ,则点M 的轨迹方程 为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例 1.方程 22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例 2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例 3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点 1 P 、2 (P ,求椭圆的方程;

椭圆的讲义

海豚教育个性化简案 海豚教育个性化教案(真题演练)

海豚教育个性化教案

A . 45 B .23 C .22 D .2 1 例2:已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12 2=+n y m x 的离心率为 例3:在ABC △中,3,2||,300===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率 e = . 【变式训练】 1. 椭圆的两个焦点把两条准线间距离三等分,则椭圆离心率为( ) A. 63 B.33 C.2 3 D. 不确定 2. 椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( ) 3. 以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于___________。 2:求离心率的取值范围 例1:已知椭圆12222=+b y a x (0>>b a ),F 1,F 2是两个焦点,若椭圆上存在一点P ,使3 221π =∠PF F ,求 其离心率e 的取值范围。 例2:已知椭圆122 22=+b y a x (0>>b a )与x 轴的正半轴交于A ,0是原点,若椭圆上存在一点M ,使MA ⊥MO , 求椭圆离心率的取值范围。 例3:已知椭圆12222=+b y a x (0>>b a ),以a ,b ,c 为系数的关于x 的方程02 =++c bx ax 无实根,求 其离心率e 的取值范围。 题型四:椭圆的其他几何性质的运用(范围、对称性等) 例1:已知实数y x ,满足12 42 2=+y x ,求x y x -+22的最大值与最小值

椭圆知识点归纳总结和经典例题

椭圆的基本知识 1.椭圆的定义:把平面与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 12 2=+b a (a > b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0) 不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线 向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解: (相 关点法)设点M (x , y ),点P (x 0, y 0), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得 x 2 +(2y )2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2 , 即c 2=a 2-b 2 . 7.椭圆的几何性质:

选修2-1数学椭圆综合知识点+大量例题

椭圆的性质 ▓椭圆的围 椭圆上的点都位于直线x=±a 和y=±b 围成的矩形,所以坐标满足|x|≤a ,|y|≤b. ▓椭圆的离心率 ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作22c c e a a = =。②因为a >c >0,所以e 的取值围是0<e <1。e 越接近1,则c 就越接近a ,从而22b a c =-越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。当且仅当a=b 时,c=0,这时两个焦点重合,图形变为圆,方程为x 2 +y 2 =a 2 。 ▓椭圆122 22=+b y a x 的图象中线段的几何特征(如下图):(1)12 2PF PF a +=,1212 ||||||||PF PF e PM PM ==,2 122||||a PM PM c +=;(2)12BF BF a ==,12OF OF c ==,2221A B A B a b ==+;(3)1122A F A F a c ==-,1221A F A F a c ==+,c a PF c a +≤≤-1; ▓椭圆标准方程中的三个量a 、b 、c 的几何意义 椭圆标准方程中,a 、b 、c 三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的,分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:a >b >0,a >c >0,且a 2 =b 2 +c 2 。 ▓椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看x 2 、y 2 的分母的大小,哪个分母大,焦点就在哪个坐标轴上。 ▓平面点与椭圆的位置关系 椭圆将平面分成三部分:椭圆上、椭圆、椭圆外,因此,平面上的点与椭圆的位置关系有三种,任给一点M (x,y ),若点M (x,y )在 椭圆上,则有22 221x y a b +=(0)a b >>;若点M (x,y )在椭圆,则有 22221x y a b +<(0)a b >>;若点M (x,y )在椭圆外,则有22 221x y a b +>(0)a b >>. ▓直线与椭圆的相交弦 设直线y kx b =+交椭圆22 221x y a b +=(0)a b >>于点111222(,),(,),P x y P x y 两点,则 22 121212||()() PP x x y y =-+-= 22 121212 ()[1( )]y y x x x x --+-= 2121|| k x x +-同理可得 12122 1 ||1||(0)PP y y k k =+ -≠这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:2121212||()4x x x x x x -=--;2121212||()4y y y y y y -=-- ▓例 1. 已知椭圆的对称轴为坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且 2 cos 3 OFA ∠= ,求椭圆的方程。

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

椭圆常见题型与典型方法归纳 考点一 椭圆的定义 椭圆的第一定义:我们把平面内与两个定点12,F F 的距离的和等于常数 1.22(2)a a F F >的点的轨迹叫做椭圆.这两 定点12,F F 叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距. 椭圆的第二定义:我们把平面内与一个定点的距离和它到一条定直线的距离的比是常数e= a c (0>焦点的坐标分别为 (,0),(,0)c c - 2焦点在y 轴上 标准方程是:22 221y x a b +=(其中222,0).b a c a b =->>焦点的坐标分别为 (0,),(0,)c c - 3焦点位置判断 哪项分母大焦点就在相应的轴上 如 求22 179 x y + =的焦点坐标 4 椭圆过两定点,焦点位置不确定时可设椭圆方程为221mx ny +=(其中0,0m n >>) 例 已知椭圆过两点1),(2)42 A B --,求椭圆标准方程 5 与122 22=+b y a x (a >b >0)共焦点的椭圆为12222=+++k b y k a x 二 重难点问题探析: 1.要有用定义的意识

(完整版)圆锥曲线知识点+例题+练习含答案(整理)

圆锥曲线 一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。 其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。 注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质: 3.常用结论:(1)椭圆)0(122 22>>=+b a b y a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两 点,则2ABF ?的周长= (2)设椭圆)0(122 22>>=+b a b y a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线 交椭圆于Q P ,两点,则Q P ,的坐标分别是 =||PQ 二、双曲线:

(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。 注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; (2)双曲线的标准方程、图象及几何性质: 中心在原点,焦点在x 轴上 中心在原点,焦点在y 轴上 标准 方程 )0,0(122 22>>=-b a b y a x )0,0(122 22>>=-b a b x a y 图 形 顶 点 )0,(),0,(21a A a A - ),0(),,0(21a B a B - 对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2 焦 点 )0,(),0,(21c F c F - ),0(),,0(21c F c F - 焦 距 )0(2||21>=c c F F 222 b a c += 离心率 )1(>= e a c e (离心率越大,开口越大) 渐近线 x a b y ± = x b a y ± = 通 径 22b a (3)双曲线的渐近线: ①求双曲线122 2 2 =-b y a x 的渐近线,可令其右边的1为0,即得022 2 2 =-b y a x , 因式分解得到0x y a b ±=。 ②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222y x ; (4)等轴双曲线为222t y x =-2

相关文档
相关文档 最新文档