文档库 最新最全的文档下载
当前位置:文档库 › 2014-1-14-计算方法A(研究生)

2014-1-14-计算方法A(研究生)

2014-1-14-计算方法A(研究生)
2014-1-14-计算方法A(研究生)

(勤奋、求是、创新、奉献)

2013~2014学年第一学期考试试卷

主考教师 ____江开忠 _

学院 _____________ 班级 __________ 姓名 __________ 学号 ___________

《 计 算 方 法 》(研究生)课程试卷A

(本卷考试时间 120 分钟)

一、 选择题(本题5个小题,每题2分,共10分)

1.某观测方法测得r 的近似值为0000.1=r ,具有5个有效数字,则2

r S =具有( )位有效数字.

A. 2

B. 3

C. 4

D.5 2.函数x x =)(?与2/)13()(2

-=x x φ在区间]1,1[-上( ). A. 线性相关 B. 线性无关但不正交 C. 正交但非标准正交 D. 标准正交

3.1

1141

()d (1)(0)(1)333

f x x f f f -≈

-++?的代数精确度为( ). A. 1 B. 2 C 3 D. 4

4.设???

?

??=5232A ,则A 的用-∞范数定义的条件数()Cond A ∞=( ).

A. 56

B. 42

C.14

D.4

5.用Euler 折线法解初值问题?

??=+='1)0(y y

x y ,取步长1.0=h ,算得=)2.0(y ( ).

A. 1

B. 1.1

C. 21.1

D. 22.1

二、 填空题(本题5个小题,每小题3分,共15分)

1.()1,n f x x =+ 则 n 阶差商01[,,...,]n f x x x = . 2.用梯形公式计算积分, 取4位有效数字,

≈?

1

25

.0dx x .

3.01x =-,10x =,21x =, ?

??≠==101

1)(1i i x l i ,则插值基函数)(1x l = .

4.A =???

?

??3211, 则A 经过LU 分解后,矩阵L 中的21l = . 5.函数3232

01

()(1)(1)(1)12

x x x S x x b x x x ?-≤≤=?-+-+-≤≤?,若()S x 是区间[0,2]上以0,1,2为节点的三次样条函数,则b = . 三、 计算题(本题12分) 给定求解常微分方程初值问题

{

00

(,)

()y f x y y x y '==的线性多步公式111[]n n n n n y y h f f f αβγ++-=+++,其中:

111(,)n n n f f x y +++=,(,)n n n f f x y =,111(,)n n n f f x y ---=试确定系数,,αβγ,使它具有尽可能高的精度,

并推导其局部截断误差主项。

已知1

11()[5()8(0)5)]9g x dx g g -≈++?为Gauss 求积公式,且其截断误差为(6)()()R g cg ξ= ((1,1))ξ∈-。(1) 设(6)()[,]f x C a b ∈,给出在区间[a , b ]上积分()()d b a

I f f x x =?的3点Gauss 求积公式。(2)

将[a , b ]分为n 等分,记b a

h n -=

,i x a ih =+,0i n ≤≤,112

1()2i i i x x x ++=+,01i n ≤≤-,试对()I f 构造

复化的3点Gauss 公式,记为(3)

()n G f .

五、 计算证明题(本题12分)

给定三维空间的一组点(,,)k k k x y z 如下表,利用最小二乘法求出空间一张过原点的平面来逼近这些点。

矩阵A 的ST 算法定义为:1)将A 作ST 分解11=A S T ,2)令211

=A T S ,并对2A 进行ST 分解222=A S T ,

3)重复2)的过程得到11,1,2,

n n n n --==A T S . 设1112??

= ???

A ,ST 分解取为矩阵的LU 分解。(1)求出

234,,A A A ;(2) 证明A 与n A 相似;(3) 观察n A 变化趋势,求lim n n →+∞

A .

(注:本题需要精确计算)

已知方程2

ln 40x x --=分别在(0,1)和(2,3)各有一个根,分别记为*x 和**x ,对*x 可构造迭代格式2

41n x n x e -+= (0,1,2,)n =求其近似值. (1)证明:对任意初值0(0,1)x ∈,上述迭代格式收敛。

并利用该迭代以00.5x =为初值求出(0,1)中的根(7110n n x x -+-≤终止迭代)。(2)为求**x ,请构造迭代

公式并证明其收敛。

迭代公式(1)

()k k +=+x

Bx d ,0,1,2,k =的n 阶迭代矩阵B 的谱半径()0ρ=B 。 (1) 证明对任

意初始向量0x ,至多迭代n 次就可得到方程组=+x Bx d 的精确解;(2)

取01/21/201/20? = ?

?-??

B ,1/211/2-??

?= ?-??d ,验证()0ρ=B ,并以0=x 0为初始向量验证(1)的结论。

统计学原理-计算公式

位值平均数计算公式 1、众数:是一组数据中出现次数最多的变量值 组距式分组下限公式:002 110m m d L M ??+??+= 0m L :代表众数组下限; 1100--=?m m f f :代表众数组频数—众数组前一组频数 0m d :代表组距; 1200+-=?m m f f :代表众数组频数—众数组后一组频数 2、中位数:是一组数据按顺序排序后,处于中间位置上的变量值。 中位数位置2 1+=n 分组向上累计公式:e e e e m m m m e d f S f L M ?-∑+=-12 e m L 代表中位数组下限; 1-e m S :代表中位数所在组之前各组的累计频数; e m f 代表中位数组频数; e m d 代表组距 3、四分位数:也称四分位点,它是通过三个点将全部数据等分为四部分,其中每部分包含 25%,处在25%和75%分位点上的数值就是四分位数。 其公式为:4 11+=n Q 212+=n Q (中位数) 4)1(33+=n Q 实例 数据总量: 7, 15, 36, 39, 40, 41 一共6项 Q1 的位置=(6+1)/4=1.75 Q2 的位置=(6+1)/2=3.5 Q3的位置=3(6+1)/4=5.25 Q1 = 7+(15-7)×(1.75-1)=13, Q2 = 36+(39-36)×(3.5-3)=37.5, Q3 = 40+(41-40)×(5.25-5)=40.25 数值平均数计算公式 1、简单算术平均数:是将总体单位的某一数量标志值之和除以总体单位。 其公式为:n x n x x x X n ∑=??++=21 2、加权算术平均数:受各组组中值及各组变量值出现的频数(即权数f )大小的影响,

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

统计学名词解释及公式

第1章统计与统计数据 一、学习指导 统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。本章各节的主要内容和学习要点如下表所示。 概念:统计学,描述统计,推断统计。 统计在工商管理中的应用。 统计的其他应用领域。 概念:分类数据,顺序数据,数值型数据。 不同数据的特点。 概念:观测数据,实验数据。 概念:截面数据,时间序列数据。 统计数据的间接来源。 二手数据的特点。 概念:抽样调查,普查。 数据的间接来源。 数据的收集方法。 调查方案的内容。 概念。抽样误差,非抽样误差。 统计数据的质量。 概念:总体,样本。 概念:参数,统计量。 概念:变量,分类变量,顺序变量,数值 型变量,连续型变量,离散型变量。 二、主要术语 1.统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。 2.描述统计:研究数据收集、处理和描述的统计学分支。 3.推断统计:研究如何利用样本数据来推断总体特征的统计学分支。 4.分类数据:只能归于某一类别的非数字型数据。 5.顺序数据:只能归于某一有序类别的非数字型数据。 6.数值型数据:按数字尺度测量的观察值。 7.观测数据:通过调查或观测而收集到的数据。 8.实验数据:在实验中控制实验对象而收集到的数据。 9.截面数据:在相同或近似相同的时间点上收集的数据。 10.时间序列数据:在不同时间上收集到的数据。

11.抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推 断总体特征的数据收集方法。 12.普查:为特定目的而专门组织的全面调查。 13.总体:包含所研究的全部个体(数据)的集合。 14.样本:从总体中抽取的一部分元素的集合。 15.样本容量:也称样本量,是构成样本的元素数目。 16.参数:用来描述总体特征的概括性数字度量。 17.统计量:用来描述样本特征的概括性数字度量。 18.变量:说明现象某种特征的概念。 19.分类变量:说明事物类别的一个名称。 20.顺序变量:说明事物有序类别的一个名称。 21.数值型变量:说明事物数字特征的一个名称。 22.离散型变量:只能取可数值的变量。 23.连续型变量:可以在一个或多个区间中取任何值的变量。 四、习题答案 1.D 2.D 3.A 4.B 5.A 6.D 7.C 8.B 9.A 10.A 11.C、12.C 13.B 14.A 15.C 16.D 17.C 18.A 19.C 20.D 21.A 22.C 23.C 24.B 25.D 26.C 27.B 28.D 29.A 30.D 31.A 32.B 33.C 34.A 35.A 36.A 37.D 38.B 39.B 40.C 41.C 42.D 43.C 44.D 45.A 46.B 47.C 48.A 49.C 50.D 51.A 52.C 53.D 54.A 55.B

统计学主要计算公式72485

统计学主要计算公式(第三章) 1 11 1k i i k i i k i k i i i f f f f ====?? ? ???? ? ? ?? ? ? ???? ?? ?∑ ∑ ∑ ∑ ∑ N i i=1i i 一、算术平x 简单x=N x 均数加权x=频数权数x=x 1i i H i i i i m m x m m x x = = ∑∑∑∑二、调和平均数 ? = ?? ? ? =?? G G 简单x 三、几何平均数加权x 11/2/2m e m m e m f S M L i f f S M U i f -+?-=+ ??? ? -?=-???∑∑下限公式四、中位数上限公式 1012 20 12d M L i d d d M U i d d ? =+??+?? ?=-??+? 下限公式五、众数上限公式

() ()x x x x f f AD AD ? -?? ? -??? ∑ ∑∑六、平均差简单=N 加权= σ σ σ σ ??? ???? ??? ??? ????? ??? 七、标准差简单加权 简捷公式 简单 加权 100%100% AD AD V x V x σσ ? ??? ? ???? 平均差系数=八、离散系数标准差系数= 统计学主要计算公式(第五章) ( )( ) 11n n s s t t n αα α α αα σ σ μμμμμμ--?±±?? ?? ±±?? ? ?±±??22 22 22 一、参数估计(随机抽样)1.总体均值估计-单总体 正态总体,方差已知 =x z =x z 正态总体,方差未知=x =x 非正态总体,足够大=x z =x z

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

线性插值法计算公式解析

线性插值法计算公式解析 LELE was finally revised on the morning of December 16, 2020

线性插值法计算公式解析 2011年招标师考试实务真题第16题:某机电产品国际招标项目采用综合评价法评标。评标办法规定,产能指标评标总分值为10分,产能在100吨/日以上的为10分,80吨/日的为5分,60吨/日以下的为0分,中间产能按插值法计算分值。某投标人产能为95吨/日,应得()分。A. B.8.75 C. D. 分析:该题的考点属线性插值法又称为直线内插法,是评标办法的一种,很多学员无法理解公式含义,只能靠死记硬背,造成的结果是很快会遗忘,无法应对考试和工作中遇到的问题,对此本人从理论上进行推导,希望对学员有所帮助。 一、线性插值法两种图形及适用情形 F F F2

图一:适用于某项指标越低得分越高的项目 评分计算,如投标报价得分的计算 图二:适用于某项投标因素指标越高,得分越高的 情形,如生产效率等 二、公式推导 对于这个插值法,如何计算和运用呢,我个人认为考生在考试时先试着画一下上面的图,只有图出来了,根据三角函数定义,tana=角的对边比上邻边,从图上可以看出,∠A是始终保持不变的,因此,根据三角函数tana,我们可以得出这样的公式

图一:tana=(F1-F2)/(D2-D1)=(F-F2)/(D2-D)=(F1-F)/(D-D1),通过这个公式,我们可以进行多种推算,得出最终公式如下 F=F2+(F1-F2)*(D2-D)/ (D2-D1) 或者F= F1-(F1-F2)*(D-D1)/(D2-D1) 图二:tana=(F1-F2)/(D2-D1)=(F-F2)/ (D-D1)=(F1-F) /(D2-D) 通过这个公式我们不难得出公式: F= F2+(F1-F2)*(D-D1)/(D2-D1) 或者F=F1-(F1-F2)*(D2-D)/(D2-D1) 三:例题解析 例题一:某招标文件规定有效投标报价最高的得30分,有效投标报价最低的得60分,投标人的报价得分用线性插值法计算,在评审中,评委发现有效的最高报价为300万元,有效最低的报价为240万元,某A企业的有效投标报价为280万元,问他的价格得分为多少 分析,该题属于图一的适用情形,套用公式 计算步骤:F=60+(30-60)/(300-240)*(280-240)=40 例题二:某招标文件规定,水泵工作效率85%的3分,95%的8分,某投标人的水泵工作效率为92%,问工作效率指标得多少分

数值计算方法答案

数值计算方法习题一(2) 习题二(6) 习题三(15) 习题四(29) 习题五(37) 习题六(62) 习题七(70) 2009.9,9

习题一 1.设x >0相对误差为2%4x 的相对误差。 解:由自变量的误差对函数值引起误差的公式: (())(())'()()()() f x x f x f x x f x f x δδ?= ≈得 (1)()f x = 11 ()()*2%1% 22x x δδδ≈ ===; (2)4 ()f x x =时 44 4 ()()'()4()4*2%8%x x x x x x δδδ≈ === 2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。 (1)12.1x =;(2)12.10x =;(3)12.100x =。 解:由教材9P 关于1212.m n x a a a bb b =±型数的有效数字的结论,易得上面三个数的有效 数字位数分别为:3,4,5 3.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352) 哪个较精确? 解:(1)31.97+2.456+0.1352 ≈2 1 ((0.3197100.245610)0.1352)fl fl ?+?+ =2 (0.3443100.1352)fl ?+ =0.3457210? (2)31.97+(2.456+0.1352) 2 1 (0.319710(0.245610))fl fl ≈?+? = 21 (0.3197100.259110)fl ?+? =0.34562 10? 易见31.97+2.456+0.1352=0.3456122 10?,故(2)的计算结果较精确。 4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

统计学主要计算公式

统计学主要计算公式(第三章) 统计学主要计算公式(第五章) 010220102001001111221012221 22((((1,1)(1,1)(H H Z Z H H H Z Z H H H Z Z H H H F n n F F n n H S F S ααααασσσσχσσσσσσσσσσσσσ-?≠≥??>≥??<≤??≠--≤≤--22220022222002222002222224.方差检验(正态总体) 单总体: :=:拒绝双侧)(n-1)S =:=:拒绝单侧):=:拒绝单侧) 两方差之比检验 :=:拒绝=011112001111210(1,1)((1,1)(H H F F n n H H H F F n n H αασσσσσσσσ-???>≥--??<≤--??222222222222双侧):=:拒绝单侧):=:拒绝单侧) 统计学主要计算公式(第六章) 统计学主要计算公式(第七章) 统计学主要计算公式(第八章) d L d U 2 4-d U 4-d L d

01'201201101???????(1)(1)(1)t t t t t t t t t y y b b t y y b b t b t y ab b b y y a y a a a a -???=+???=++???=?? =++++=+-=-+-t t-1t t-1t-2t-n t+1t t 六、时间序列预测 一阶差分大致相同,趋势外推法模型测定二阶差分大致相同, (同回归模型)y 环比发展速度大体相同,y 自回归预测y (同回归模型) y y y 移动平均n 指数平滑y =ay y y 201(1)(1)n a a a a ++-++-t-1t-2t-n-1 y y 统计学主要计算公式(第九章)

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

最新《统计学原理》常用公式汇总及计算题目分析

《统计学原理》常用公式汇总及计算题目分析 第一部分常用公式 第三章统计整理 a)组距=上限-下限 b)组中值=(上限+下限)÷2 c)缺下限开口组组中值=上限-1/2邻组组距 d)缺上限开口组组中值=下限+1/2邻组组距 第四章综合指标 i.相对指标 1.结构相对指标=各组(或部分)总量/总体总量 2.比例相对指标=总体中某一部分数值/总体中另一部分数值 3.比较相对指标=甲单位某指标值/乙单位同类指标值 4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现 象总量指标 5.计划完成程度相对指标=实际数/计划数 =实际完成程度(%)/计划规定的完成程度(%) ii.平均指标

1.简单算术平均数: 2.加权算术平均数或 iii.变异指标 1.全距=最大标志值-最小标志值 2.标准差: 简单σ= ;加权σ= 3.标准差系数: 第五章抽样估计 1.平均误差: 重复抽样: 不重复抽样: 2.抽样极限误差 3.重复抽样条件下: 平均数抽样时必要的样本数目

成数抽样时必要的样本数目 4.不重复抽样条件下: 平均数抽样时必要的样本数目 第七章相关分析 1.相关系数 2.配合回归方程y=a+bx 3.估计标准误: 第八章指数分数 一、综合指数的计算与分析 (1)数量指标指数

此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。 ( - ) 此差额说明由于数量指标的变动对价值量指标影响的绝对额。 (2)质量指标指数 此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。 ( - ) 此差额说明由于质量指标的变动对价值量指标影响的绝对额。 加权算术平均数指数= 加权调和平均数指数= (3)复杂现象总体总量指标变动的因素分析 相对数变动分析: = × 绝对值变动分析:

计算方法实验报告 插值

实验名称:插值计算 1引言 在生产和科研中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。 设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn. 插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。 通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。 2实验目的和要求 用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函 数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。

3算法描述 1.分段线性插值流程图

2.分段二次插值流程图

3.拉格朗日插值流程图

4程序代码及注释 1.分段线性插值

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

统计学主要计算公式

统计学主要计算公式(第三章) 1 11 1k i i k i i k i k i i i f f f f ====?? ? ???? ? ? ?? ? ? ???? ?? ?∑ ∑ ∑ ∑ ∑ N i i=1i i 一、算术平x 简单x=N x 均数加权x=频数权数x=x 1i i H i i i i m m x m m x x = = ∑∑∑∑二、调和平均数 ? = ?? ? ? =?? G G 简单x 三、几何平均数加权x 11/2/2m e m m e m f S M L i f f S M U i f -+?-=+ ??? ? -?=-???∑∑下限公式四、中位数上限公式 1012 20 12d M L i d d d M U i d d ? =+??+?? ?=-??+? 下限公式五、众数上限公式

()()x x x x f f AD AD ? -?? ? -??? ∑∑∑六、平均差简单= N 加权= σ σ σ σ ??? ???? ??? ??? ????? ??? 七、标准差简单加权 简捷公式 简单 加权 100% 100% AD AD V x V x σσ ? ??? ? ???? 平均差系数=八、离散系数标准差系数= 统计学主要计算公式(第五章) ( ) ( ) 11n n t t n αα αα αα μμμμμμ--?±±?? ?? ±±?? ? ?±±??22 22 22 一、参数估计(随机抽样)1.总体均值估计-单总体 正态总体,方差已知 =x z =x z 正态总体,方差未知=x =x 非正态总体,足够大=x z =x z

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

计算方法-刘师少版课后习题答案

1.1 设3.14, 3.1415, 3.1416分别作为π的近似值时所具有的有效数字位数 解 近似值x =3.14=0.314×101,即m =1,它的绝对误差是 -0.001 592 6…,有 31105.06592001.0-*?≤=- x x . 即n =3,故x =3.14有3位有效数字. x =3.14准确到小数点后第2位. 又近似值x =3.1416,它的绝对误差是0.0000074…,有 5-1*10?50≤00000740=-.. x x 即m =1,n =5,x =3.1416有5位有效数字. 而近似值x =3.1415,它的绝对误差是0.0000926…,有 4-1*10?50≤00009260=-.. x x 即m =1,n =4,x =3.1415有4位有效数字. 这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字 1.2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.0004 -0.00200 9000 9000.00 解 (1)∵ 2.0004=0.20004×101, m=1 绝对误差限:4105.0000049.020004.0-*?≤≤-=-x x x m -n =-4,m =1则n =5,故x =2.0004有5位有效数字 1x =2,相对误差限000025.010******** 1)1(1 =??=??=---n r x ε (2)∵ -0.00200= -0.2×10-2, m =-2 5105.00000049.0)00200.0(-*?≤≤--=-x x x m -n =-5, m =-2则n =3,故x =-0.00200有3位有效数字 1x =2,相对误差限3 110221 -??=r ε=0.0025 (3) ∵ 9000=0.9000×104, m =4, 0105.049.09000?<≤-=-*x x x m -n =0, m =4则n =4,故x =9000有4位有效数字 4 110921-??=r ε=0.000056 (4) ∵9000.00=0.900000×104, m =4, 2105.00049.000.9000-*?<≤-=-x x x m -n =-2, m =4则n =6,故x =9000.00有6位有效数字 相对误差限为6 110921-??=r ε=0.000 00056 由(3)与(4)可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 1.3 ln2=0.69314718…,精确到310-的近似值是多少? 解 精确到310-=0.001,即绝对误差限是ε=0.0005, 故至少要保留小数点后三位才可以.ln2≈0.693 2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过 31021-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f +=,则32)(x x f -=',由于

统计学各章计算题公式及解题方法

统计学各章计算题公式及解题方法 第四章数据的概括性度量 1.组距式数值型数据众数的计算:确定众数组后代入公式计算: 下限公式:;上限公式:,其中,L为众数所在组 下限,U为众数所在组上限,为众数所在组次数与前一组次数之差,为众数所在组次数与后一组次数之差,d为众数所在组组距 2.中位数位置的确定:未分组数据为;组距分组数据为 3.未分组数据中位数计算公式: 4.单变量数列的中位数:先计算各组的累积次数(或累积频率)—根据位置公式确定中位 数所在的组—对照累积次数(或累积频率)确定中位数(该公式假定中位数组的频数在该组内均匀分布) 5.组距式数列的中位数计算公式: 下限公式:;上限公式:,其中,为中位数 所在组的频数,为中位数所在组前一组的累积频数,为中位数所在组后一组的 累积频数 6.四分位数位置的确定: 未分组数据:;组距分组数据: 7.简单均值: 8.加权均值:,其中,为各组组 中值 9.几何均值(用于计算平均发展速度): 10.四分位差(用于衡量中位数的代表性): 11.异众比率(用于衡量众数的代表性):

统计学各章计算题公式及解题方法 : 12.极差:未分组数据:;组距分组数据 13.平均差(离散程度):未分组数据:;组距分组数据: 14.总体方差:未分组数据:;分组数据: 15.总体标准差:未分组数据:;分组数据: 16.样本方差:未分组数据:;分组数据: 17.样本标准差:未分组数据:;分组数据: 18.标准分数: 19.离散系数: 第七章参数估计 1.的估计值: 置信水平α 90% 0.1 0.05 1.654 95% 0.05 0.025 1.96 99% 0.01 0.005 2.58 2.不同情况下总体均值的区间估计: 总体分布样本量σ已知σ未知 大样本(n≥30) 正态分布 小样本(n<30)

《数值计算方法》试题及答案

数值计算方法考试试题 一、选择题(每小题4分,共20分) 1. 误差根据来源可以分为四类,分别是( A ) A. 模型误差、观测误差、方法误差、舍入误差; B. 模型误差、测量误差、方法误差、截断误差; C. 模型误差、实验误差、方法误差、截断误差; D. 模型误差、建模误差、截断误差、舍入误差。 2. 若132)(3 56++-=x x x x f ,则其六阶差商 =]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。 3. 数值求积公式中的Simpson 公式的代数精度为 ( D ) A. 0; B. 1; C. 2; D. 3 。 4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B ) A. 都发散; B. 都收敛 C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散; D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。 5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C ) A. 02≤≤-h ; B. 0785.2≤≤-h ; C. 02≤≤-h λ; D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分) 1. 已知 ? ??? ??--='-=4321,)2,1(A x ,则 =2 x 5,= 1Ax 16 ,=2A 22115+ 2. 已知 3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。 3. 要使 20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。 三、利用下面数据表, 1. 用复化梯形公式计算积分 dx x f I )(6 .28 .1? =的近似值; 解:1.用复化梯形公式计算 取 2.048 .16.2,4=-= =h n 1分 分 分分7058337 .55))6.2()2.08.1(2)8.1((22.04)) ()(2)((231 1 1 4=+++=++=∑∑=-=f k f f b f x f a f h T k n k k 10.46675 8.03014 6.04241 4.42569 3.12014 f (x ) 2.6 2.4 2.2 2.0 1.8 x

相关文档