文档库 最新最全的文档下载
当前位置:文档库 › 流量计相位差检测方法

流量计相位差检测方法

流量计相位差检测方法
流量计相位差检测方法

科氏质量流量计相位差检测新方法

郑德智 樊尚春 邢维巍

(北京航空航天大学仪器科学与光电工程学院 北京 100083)

摘要 基于科氏质量流量计的工作机理和实际工作情况下的信号频谱分析,提出了切实可行的相位差检测新方法。设计了改进的FI R数字滤波器,实现了对原始输出信号的实时滤波处理,有效地抑制了噪声的干扰,为科氏质量流量计的高精度测量提供了保证。同时该新方法提高了系统的动态品质。实验结果表明,所提出的方法和设计的信号处理系统具有实用价值。

关键词 科氏质量流量计 FI R滤波器 相位差检测

中图分类号 T H814+.6 文献标识码 A 学科分类与代码 460.4030

The Novel Method of Phase Difference Detection in Coriolis Mass Flowmeter

Zheng Dezhi Fan Sha ngchun Xing Weiw ei

(School of Instrumentation,Beihang University,Beijing100083,China)

Abstract Based on the sensing mechanism of Co riolis mass flow meter and analyzing signal spect rum in actual w orki ng,the nov el applied method is devised fo r phase diff erence det ectio n.The improv ed FIR filt er i s designed and used for fil tering o rigi nal sig nals,so the noi se is rest rained ef fectiv ely and the measurement precision of the mass flowmeter is guaranteed.M eanwhile,the dynamic response perfo rmance of the syst em is improved by this novel method.The experimental resul ts showed that the method is well worthy applying.

Key words Co riolis mass flow meter FIR filter Phase dif ference det ection

1 引 言

科里奥利质量流量计(以下简称为科氏质量流量计,即CM F)是一种利用被测流体在振动测量管内产生与质量流量成正比的科氏力为原理所制成的一种直接式质量流量仪表。CM F直接敏感被测流体的质量流量,同时可以检测流体的密度、体积流量,是一种应用广泛的新型多功能流量测量仪表。

图1中双U型管工作在谐振状态,流体在管中沿箭头方向流动。由于哥氏效应(Coriolis Effect)的作用,U型管产生关于中心对称轴的一阶扭转“副振动”。该一阶扭转“副振动”相当于U型管自身的二阶弯曲振动。同时,该“副振动”直接与所流过的“质量流量(kg/s)”成比例。因此,通过检测U型管的“合成振动”在B,B’两点的相位差就可以得到流体的质量流量[1~2]

图1 U型管质量流量计工作机理

质量流量和相位差的关系为:

Q m k=K h B B(1)式中:Q

m

为流过管子的质量流量(kg/s);

第26卷第5期 仪 器 仪 表 学 报 2005年5月本文于2003年9月收到,系国家自然科学基金(60274039)资助项目。

k 为系统的主振动角频率(rad /s);

K 为与测量管的形状、尺寸、材料和激励信号等有关的系数(kg /s 2

);h B B ′

为B ,B

’的相位差(rad )。因此相位差检测在CM F 中至关重要,直接决定着系统的测量精度。

传统相位差检测多为模拟检测原理,即利用模拟比较器进行过零点检测,从而实现相位差检测。实际上,使用现场存在各种震动及电磁干扰,造成检测电路的输入信号中存在各种噪声。这些噪声分量会改变正弦波的过零点位置,从而影响相位差检测精度,因此必须采用模拟滤波器滤除噪声。但是模拟滤波器阶数有限,难以消除与有用信号频率接近的噪声,而且存在两路滤波器特性不一致及元件参数漂移等问题,造成检测误差。

数字信号处理方法可以有效避免元件参数漂移等问题,而且使更有效的噪声抑制方法成为可能。目前基于数字信号处理技术的相位差检测方法主要有两种:一种是利用FF T 在频域计算,一种是互相关求相位差。由于这两种算法要求整周期采样,而测量系统的信号周期不是固定的,因此需要一套较为复杂的测量电路来保证采样周期和信号周期的整数倍关系,而且运算方法较复杂

[3,5]

因此,作者提出采用数字式过零点的相位差检测新原理,即利用DSP 对信号的波形进行时域分析,计算出过零点的时间差,进而得出信号相位差

图2 相位差检测原理示意图

2 相位差检测原理

数字式的过零点检测原理计算两路信号的相位差,如图2所示。B 和B ’点的拾振信号经AD 同步采样后,得到一系列数据点,在过零点附近,对数据进行曲线拟和(图中曲线所示),求出拟和曲线与横轴交点,作为曲线的过零点,得到两路信号的过零点的时间差,由时间差即可算出信号的相位差。由前述相位差检测原

理分析可知,当原始信号中叠加有噪声时,有可能改变

信号过零点的位置,影响相位差的计算精度。

图3给出了某公司Υ50口径科氏质量流量计的一组现场测试数据的谱分析结果。

显然,信号中除了传感器工作频率f 0=77.32Hz 外,还存在着2f 0、3f 0和50Hz 工频信号。根据文献[6]的分析,2f 0和3f 0信号是由于传感器本身的非线性造成的,这与传感器的结构参数和工作状态有关。实验分析表明,这些干扰信号对相位差计算的精度有较大影响。因此在相位差计算之前,必须对信号进行滤波,提高信噪比。由于前述模拟滤波器的缺点,作者采用在DSP 中进行数字带通滤波的方案。

为了更好地再现原始信号,提高系统相位差检测的精度,采用了远高于信号频率的采样率f Sam ple =19.2kHz 。

这里所针对的实际传感器基本特性为:工作频率范围:65~110Hz 相位差范围:0.09~ 1.8°

因此选定数字滤波器通带略大于传感器工作频率范围55~120Hz;由于某些干扰信号的频率很接近传感器工作频率,为有效抑制这些干扰信号,滤波器过渡带必须足够陡峭,为实现此通带特性,通过分析仿真,初步选定3000阶FIR 滤波器实现带通滤波。

图3 现场数据处理前的频谱图

由于传统的3000阶数字滤波器运算量很大,在实

际的应用中很难实现。通过对现有比较成熟的数字滤波器的分析和计算机仿真,设计了改进的有限冲击响应带通滤波器(FIR)来实现实时滤波处理。带通滤波器结构如图4所示。

图4 改进的滤波算法结构

对AD 采集的数据人为进行二次采样,得到50个子序列,每一数据子序列都相当于原始信号经过频率

442

仪 器 仪 表 学 报 第26卷 

为19200/50=384Hz 采样得到的。利用标准的60阶FIR 带通滤波器(W n =[W 1,W 2]=[0.1432,0.3125])对抽取后每一个数据子序列进行滤波,对滤波器输出的50组数据进行反向合成,得到最终滤波结果。每一次滤波运算时,并非对50组数据同时进行FIR 滤波处理,而是只对当前一次采样所属的数据子序列进行61次乘法运算和60次加法运算。

这种改进的FIR 滤波器保留了传统FIR 滤波器的线性相移的优点。同时在这种实时的信号处理系统中,在每一次采样时间间隔内,滤波计算只需要进行61次乘法运算和60次加法运算,而达到同样滤波效果的3000阶FIR 滤波器则需要3001次乘法运算和3000次加法运算,显然,计算量大大降低。

图5为利用上述带通算法,在DSP TM S320V C33上,将上述从现场采集回的原始数据进行滤波后,通过M at lab 分析的结果。

图5和图3比较可以看出,滤波的效果相当明显。此种算法很有效地抑制了信号的干扰,提高了信噪比,从而为后续相位差信号的提取提供了保障;由FIR 滤波器的特点可知,它满足线性相移的特性。对于质量流量计而言,由于其流体密度的改变,传感器谐振频率会随之变化,因此在不同时刻的采样值代表不同频率的信息,数字滤波器的特性就是要利用其前面N 个点的数据进行滤波,传统的非线性相移的滤波器将导致计算误差的存在,而只要质量流量计的两路信号通过同样系数的这种FIR 滤波器,所造成的两路信号的相移为线性,因此有效克服了传统滤波器对两路信号相位差的影响

图5 数据经滤波后的频谱图

改进FIR 带通滤波器提高了信号的信噪比,并且两路信号相移相同,因此,有效地保证了上述相位差检测算法的精度。为了满足系统的实时性,系统必须在两次采样时间间隔内,完成两路数据的滤波、曲线拟和以及过零点、相位差和频率的计算。过零点检测算法的结构如图6所示。通过软件实时检测滤波后数据,当出现

x (n )>0,x (n +1)<0或者x (n )<0,x (n +1)>0,即认为过零点在x (n )和x (n +1)之间,因此将x (n )前后各5个点存储到指定的存储单元,为切比雪夫曲线拟和提供原始数据。通过仿真计算,采用2次曲线拟和就可以达到很高的计算精度。拟和后的2次曲线,通过传统的解方程的形式来计算信号的过零点,在实际应用中舍弃解方程中在x (n )和x (n +1)之外的那个根。这样就可以根据两路信号的过零点来计算信号的相位差。由于系统的采样时间间隔为52.08μs (1/19200Hz ),DSP (以TM S 320V C 33为例)的运算速度为每个指令周期17ns,完成一次采样、滤波和相位差算法所需要指令周期为17ns ×2000=34μs ,所以在采样的时间间隔内D SP 完全可以完成计算,保证了系统的实时性

图6 相位差算法结构

3 实验结果

为了验证算法的精度,首先,在实验室环境下,利用N I -D AQ 6110E 两路16位DA 产生两路正弦信号,信号的幅值、频率和两路信号的相位均由计算机设定,而且信号上可以根据要求任意叠加进各种干扰信息,完全可以模拟现场信号情况。表1是根据前面对现场数据的分析,由N I-DAQ 生成的两路正弦信号,经过上述算法检测的相位差结果。信号频率f =80Hz ,幅值5V ,干扰信号包括频率f =160Hz,幅值0.5V 正弦信号,频率f =240Hz,幅值0.1V 正弦信号,频率f =50Hz ,幅值0.2V 正弦信号,以及幅值0.1V 的白噪声信号。

表1 实际测量结果及其相对误差

检测结果

设定的相位差(°)0.090.270.54计算的相位差(°)0.090170.269580.54067相对误差(%)0.188-0.156

0.124

检测结果设定的相位差(°)0.81 1.08 1.8计算的相位差(°)0.80917 1.07902 1.79852相对误差(%)

-0.102

-0.091

-0.082

(下转第477页)

443

 第5期科氏质量流量计相位差检测新方法

性可变,因而非常适用于SM -PD P 的驱动方式

。图8 SM -PDP 单边驱动方式

5 结 论

应用于CP T &CDT 会聚误差测量的栅极脉冲放大器是确保测量过程中精确同时屏显示R /G /B 光点和测试图形的必要设备,它消除了会聚误差测量时测试系统中存在的抖动误差,有效地提高了会聚误差的测量精度。优化设计栅极脉冲放大器,获得高重复频率的栅极驱动脉冲,才能满足显示各种测试图形的需求,这为采用正确的会聚误差测量方法建立了起点。此外,随着显示技术和其它科学技术的进步,高频功率脉冲

不仅在各种显示器件中的运用不断扩展,而且在通讯、自控、航天、环保以及微细加工等领域里的应用日益广泛,尤其是短波段功率脉冲的应用显得更为重要。 参考文献

1 管致中,等.电路、信号与系统.北京:人民教育出版社,

1979.274~324(上册第二分册),169~188(下册第一分册).

2 陈勇.脉冲放大器功率级的研究.重庆邮电学院学报,

1996,8(1):61~64.

3 杨晓伟,等.光点与会聚测试系统的设备需求与配置.真空科学与技术,2003,23(1):53~56.

4 Ya ng Xiao wei .M ea sur ement technique &mea sur ement

equipment.Philips Repor t T V R-650-00-GvV /DO 49,Ju-ly 2000,22~32.

作者简介

杨晓伟 1958年生 男 工程师 研究方向为显示驱

动与测量

E-mail :yx w@https://www.wendangku.net/doc/1f9849390.html,

(上接第443页) 从测量结果中可以看出,相位差测量在小信号时误差最大,为0.188%。实际的测量结果初步表明这种检测算法能够实现对相位差的高精度检测。目前正在利用实际流量标定装置对此套计算方法进行全面的试验研究。

4 结 论

在科氏质量流量计工作原理的基础上,对其拾振信号进行了分析,设计了新型的FIR 数字滤波器,进而提出了一套简单而有效的相位差检测新算法。仿真和实验结果表明,这种相位差检测算法完全达到了预期的设计要求,有效地消除了噪声对测量结果的影响,提高了系统测量的实时性。同时发现和验证了传感器由于非线性原因造成拾振信号中倍频信号的存在,对分析传感器的非线性具有指导意义。 参考文献

1 樊尚春.科里奥利直接质量流量计.中国学术期刊文摘,

1999,5(12):1552~1554.

2 M anus Henry.Self-v alida ting dig ita l Co riolis mass flow

https://www.wendangku.net/doc/1f9849390.html,puting &co nt rol engineering jo urnal.O cto-ber 2000:219

~227.3 Da mir Ilic,Josip Buto https://www.wendangku.net/doc/1f9849390.html,e of Pr ecise Digital V o lt-mete rs fo r Phase M ea sur ements.IEEE T ra nsactio ns o n Inst rumentatio n and M ea sur ements .April 2001,50(2):449~452.

4 樊尚春,周浩敏.信号与测试技术.北京:北京航空航天大学出版社,2002.

5 仝猛,陈明,黄平云,任萍,梁彦,范东远,陈秋.Co rio lis 质量流量计中的相位差检测方法研究.测控技术,2001,20(1):8~13.

6 宋明刚,樊尚春.非线性对Corio lis 质量流量测量管振动特性影响的理论研究.仪器仪表学报,2002,23(4):361~365.

作者简介

郑德智 1978年生 男 博士生 研究方向为科氏质

量流量计检测及非线性影响因素E -mail

:mickey zheng @https://www.wendangku.net/doc/1f9849390.html, 477

 第5期栅极脉冲放大器的研究与应用

空气流量计的检测原理

空气流量计的检测原理 随着科学技术的发展,我们不断引进先进技术,空气流量计的测试精度高,可以输出线形信号,信号处理简单,被广泛的应用于汽车,燃气、煤气等领域。 空气流量计的检测原理,空气流量计在管道里设置柱状物之后形成两列涡旋,根据涡旋出现的频率就可以测量流量。因为涡旋成两列平行状,并且左右交替出现,与街道两旁的路灯类似,所以有涡街之称。空气流量计设有两个进气通道,主通道和旁通道,进气流量的检测部分就设在主通道上,设置旁通道的目的是为了能够调整主通道的流量,以便使主通道的检测特性呈理想状态。也就是说,对排气量不同的发动机来说,通过改变空气流量计通道截面大小的方法,就可以用一种规格的空气流量计来覆盖多种发动机。主通道上的三角柱和数个涡旋放大板构成卡曼涡旋发生器。在产生卡曼涡旋处的两侧,相对地设置了属于电子检测装置的超声波发送器和超声波接受器,也可以把这两个部件归入空气流量计,这两个电子传感器产生的电信号经空气流量计的控制电路整形、放大后成理想波形,再输入到微机中。为了利用超声波检查涡旋,在涡旋通道的内壁上都粘有吸音材料,目的是防止超声波出现不规则反射。 空气流量计的优缺点,为了克服活门式空气流量计的缺点,即在保证测量精度的前提下,扩展测量范围,并且取消滑动触点,有开发出小型轻巧的空气流量计,即空气流量计。卡曼涡旋是一种物理现象,涡旋的检测方法、电子控制电路与检测精度根本无关,空气的通路面

积与涡旋发生柱的尺寸变化决定检测精度。又因为这种传感器的输出的是电子信号(频率),所以向系统的控制电路输入信号时,可以省去AD转换器。因此,从本质来看,空气流量计是适用于微机处理的信号。 空气流量计的测试精度高,可以输出线形信号,信号处理简单,且经过长期使用,性能不会发生变化,因为是检测体积流量所以不需要对温度及大气压力进行修正。

菲舍波特电磁流量计零点校正方法

电磁流量计零点校正方法 一 、 各键的功能所述如下: C/CE C/CE 键用于在操作模式与菜单之间切换。 STEP STEP 键是两个箭头键中的一个。STEP 用于向前滚动 菜单。所有需要的参数都可访问。 DATA DATA 键是两个箭头键中的一个。DATA 用于向后滚动 菜单。所有需要的参数都可访问。 ENTER 功能可通过长按向上箭头键激活。 ENTER 用于开呈关闭程序保护。此外,ENTER 还可 用于访问更改参数的数值,接受新值或者新的选 项,ENTER 功能有效时间为10秒。如果在10秒内 未输入,旧的数值将重新显示在转换器上。 注意:电磁流量计在进行“零点校正”时,必须保证流量计所处管道中是充满所测介质,且管道中的介质处于静止状态。 二、操作步骤 长 按 ENTER

在显示状态下按“C”键→进入菜单→连续按“STEP”键翻页至→“prog protection on”→长按“DATA”键(当屏幕闪烁时松手)进入此项→并变为“prog protection off”→连续按“STEP”键翻页至“Low flow cut-off 1%(小流量切除)”→长按“DATA”键(当屏幕闪烁时松手)进入此项“Low flow cut-off 1%”改变为“Low flow cut-off 0%”→长按“DATA”键保存→连续按“STEP”键翻页至“System zero adj ****mV”并记录原始数值→长按“DATA”键进入→按“STEP”翻页至“Automatic”(自动校准)→长按“DATA”确认,自动校准开始(时间约为1分钟,校准完后仪表会自动记录下校准值)校准完成后→连续按“STEP”翻页至→“Low flow cut-off 0%”→长按“DATA”进入此项→把“Low flow cut-off 0%”改变为“Low flow cut-off 1%以上”(数值输入方法:“DATA”键为增加数值、“STEP”为移动位置)更改完成后→长按“DATA”确认→连续按“STEP”翻页至→“prog protection off”→更改为“prog protection on”即可→按“C”键直至返回到主测量界面。 三、电磁流量计密码输入 在显示状态下按“C”→进入菜单→连续按“STEP”翻页至→ “CODE NUMBER”→长按“DATA”(当屏幕闪烁时松手)进入此 项→输入密码“4000”(数值输入方法如下:连续按4次“DATA” 键,增加数值。然后按3次“STEP“移动光标即输入了4000) →长按“DATA”确认,输入密码成功,输入密码后,可更改电

超声波时差法测量

题目:超声波传输时差法的测量 姓名: . 学号: . 班级: . 同组成员: . 指导教师: . 日期: .

关键词:超声波流量计,时差法,换能器,脉冲 第一部分:摘要 1.中文摘要: 超声波用于气体和流体的流速有许多优点。和传统的机械式流量仪表,电磁式流量仪表相比它的计量精度高,对管径的适应性强,非接触流体,使用方便,易于数字化管理等。 近年来,由于电子计术的发展,电子元器件的成本大幅度下降,思潮申博流量仪表的制造成本大大降低,超声波流量计也开始普及起来。 根据其原理,研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了一定的探讨和研究:根据流体力学及物理学的有关知识,对超声波流量计进行了相关了解。针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响。在多种测量原理及方法下,这里我们则采用的是多脉冲测量法的原理和应用。 当然,我们还要结合课题的实际情况,对时差法超声波流量计的硬件电路进行详细的分析和设计,讨论器件的选择、参数计算等技术问题,设计出了换能器发射和接收超声波的等效电路,当其换能器发射超声波时,相当于换能器给相应的计数环节给以上升沿脉冲使其开始计数,同理,当换能器接收超声波时也产生一个上升沿脉冲,来作用于相对应的计数器使其停止计数。 针对超声波流量计的工作环境,由于条件的限制,我们只能在普通环境下进行我们的课题设计。对造成超声波流量测量误差的各种因素我们也只能进行常规

的分析以及改进。 2.英文摘要: The FV ultrasonic flowmeter is designed to measure the fluid velocity of liquid within a closed conduit. The transducers are a non-contacting, clamp-on type, which will provide benefits of non-foulingoperation and easy installation. The FV transit-time flowmeter utilizes two transducers that function as both ultrasonic transmitters and receivers. The transducers are clamped on the outside of a closed pipe at a specific distance fromeach other. The transducers can be mounted in V-method where the sound transverses the pipe twice,or W-method where the sound transverses the pipe four times, or in Z-method where the transducersare mounted on opposite sides of the pipe and the sound crosses the pipe once. This selection of themounting method depends on pipe and liquid characteristics. The flow meter operates by

空气流量计故障分析检测

空气流量计故障分析检测 空气流量计是用来计量发动机进气量的传感器,在汽车电控燃油喷射系统中,把空气流量信号和发动机转速信号一起作为喷油时间的基准信号。空气流量计的发展大体上经历了4代:L 型、D型、热线式、热模式。发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要,下面通过两个例子加以说明。 一、故障一 凌志LS400轿车高速闯车。发动机在原地加速时运转正常。当汽车行驶速度在120~14 0公里左右时,汽车会出现闯动的现象,有时闯动频繁,有时只是偶尔闯动,感觉好像是发动机 间歇断火。故障分析:发动机空载运转时正常,而故障只在120km/h车速以上时发生,或者说是有较大负荷时故障才出现,因此故障原因可能是发动机高速断火、断油、喷油量突然减少,或者是废气再循环、汽油蒸气回收系统、进气控制系统、氧传感器闭环控制系统等在高速时工作不正常造成的。检修:读取故障代码,无码检查点火系统,将示波器接到一个点火线圈的中央高压线,试车、闯车时点火高压为8KV~10KV,正常,点火波形良好;将示波器接到另一个点火线圈的中央高压线,再试车出现故障时点火波形也良好。后来将示波器逐个接到各缸的高压线,再试车,结果发现闯车时各缸的高压都正常,波形都止常,可见闯车的原因不是点火系统造成的,应查找其他方面的原因。将示波器接到第一缸喷油器控制端,试车,观察喷油时间的变化情况,闯车该气缸的喷油时间正常,为3.5ms左右。然后将示波器逐个接到其余气缸的喷油器控制端,再试车,观察喷油时间的变化情况,闯车时每个气缸的喷油时间都无异常。也不能说明故障是喷油量造成的。接上电脑检测故障诊断仪,读取数据流,从获得的数据来看,当系统由闭环控制进入开环控制时,车速在120km/h左右,是容易出现闯车的时候。断开氧传感器接线, 强迫发动机常处于开环控制,接着试车,故障依旧。其他数据都正常。最后怀疑可能是某个传感器的信号不稳定,影响了发动机的动态工作,而且这个信号在诊断仪上又看不出问题。关键的传感器有曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器、空气流量计、车速传感器等。将示波器逐个接到曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器,试车出现故障时这些信号都正常。将示波器接到空气流量计(涡流式)信号端,试车,出现故障时发

时差法超声波流量计

时差法超声波流量计

1 引言 超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。随着超声波流量计的技术的不断成熟和用户对它的逐渐认可,超声波流量计市场正以前所未有的发展速度向前发展。 2 超声波流量计分类 根据对信号检测的原理,超声波流量计可分为多普勒法、波束偏移法、噪声发、相关法等。 2.1 多普勒法 多普勒法是应用声学中多普勒原理,检测反射声波与发射声波之间的频率偏移量即可以测定流体的流动速度,进而测出流体流量。其工作原理如图1所示。 图1 多普勒法工作原理图 Fig.1 Theory of Doppler approach 管壁两侧分别装有发射和接收两个超声波换能器,发射器向含有固体颗粒的流体中发射频率为0f 的连续超声波。根据多普勒效应,在中间相交区的频率为1f ,接收器收到的经固体颗粒反射后的超声波频率为 2f ,当粒子流速均为u 时,其关系为: )sin 21()sin 1()sin 1(02012C u f C u f C u f f β ββ-≈-=- = (1) β sin 2)(020f C f f u -= (2) 多普勒法只能用来测量含有固体颗粒的流体,比如血液、污水、蒸汽等。 2.2 波束偏移法 波束偏移法是根据测量由于流体流动而引起的超声波束偏移角来确定流体流速的。其测量原理如图2所示。

图2 波束偏移法原理图 Fig.2 Theory of beam-excursion approach 流速越大,偏移角越大,而两接收器收到的信号强度差值也越大,因此测出两接收器的信号强度差值可确定流体的流速。波束偏移法用于测量准确度要求不高的高速流体流量测量。 3 时差法原理 3.1 时差法 时差法超声波流量计就是利用声波在流体中顺流、逆流传播相同距离时存在时间差,而传播时间的差异与被测流体的流动速度有关系,因此测出时间的差异就可以得出流体的流速。基本原理如图3所示。 图3 时差法工作原理图 Fig.3 Theory of transit-time method 超声波换能器A 、B 是一对可轮流发射或接收超声波脉冲的换能器。设超声波信号在被测流体中的速度为C ,顺流从A 到B 时间为1t ,逆流从B 到A 时间为2t ,外界传输延迟总时间为0t 。则由几何关系可知 01sin cos /t v C d t ++= θ θ (3) 02sin cos /t v C d t +-= θ θ (4) 由于2 C >> θ2 2 sin v ,则

空气流量计的检测方法

空气流量计的检测方法 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

空气流量计的检测方法空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU根据空气计量传感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传感器——空气流量计。②间接测量方法传感器——进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1)机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2)卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3)热线式空气流量计。热线式空气流量计按其热线形又分为3种。 ①热丝式——将加热丝均匀分布在计量通道内。热丝式空气流量计(图1)精度高、分布均匀,可精确计量空气量,但由于热丝很细~且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。

②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导较差,影响计量精度。 ③热阻式——将加热丝绕成线圈形式固定在石英玻璃管内或暴露在空气通道内。由于热阻式空气流量计热丝被固定,故热线寿命延长,但由于热阻面积很小,只能部分采空气流量,要求空气通道内空气流速均匀,所以常在进气侧安装梳流格栅。 由于热膜式和热阻式空气流量计均是部分采集空气计量空气量,故精度较热丝式较差。另外,热丝式、热膜式和热阻式空气流量计还都易受空气中水分及灰尘的污染,所以在控制电路上都做了专门的设计,每次打开点火开关或关闭点火开关后,流量计中的热丝会由电路提供瞬时大电流加热,使热丝瞬间产生高温(700-1 000℃),烧掉污染在热丝、热膜或热阻表面的杂质,保持空气流量计量精度。 轿车使用的空气流量计,属“L”型热膜式空气流量计,安装在空气滤清器壳体与进气软管之间。其核心部件是流量传感元件和热电阻(均为铂膜式电阻)组合在一起构成热膜电阻。在传感器内部的进气通道上设有一个矩形护套,相当于取样管,热膜电阻设在护套中。为了防止污物沉积到热膜电阻上而影响测量精度,在护套的空气入口一侧设有空气过滤层,用以过滤空气中的污物。为了防止进气温度变化使测量精度受到影响,在护套内还设有一个铂膜式温度补偿电阻,温补电阻设置在热膜电阻前面靠近空气入口一侧。温度补偿电阻和热膜电阻与传感器内部控制电路连接,

电磁流量计使用方法

电磁流量计的应用 作者:任溢 摘要:本文简要介绍了电磁流量计的测量原理、结构与分类、特点,较具体地分析了其选型及安装注意事项。 关键字:电磁流量计测量范围测量介质励磁系统衬里材料接地 电磁流量计是利用电磁感应原理造成的流量测量仪表,可用来测量导电液体体积流量(流速)。变送器几乎没有压力损失,内部无活动部件,用涂层或衬里易解决腐蚀性介质流量的测量。检测过程中不受被测量介质的温度、压力、密度、粘度及流动状态等变化的影响。没有测量滞后的现象。 1 电磁流量计的工作原理 电磁流量计是依据法拉第电磁感应定律来测量管内流体流量的测量装置。当流体在管道中流动时,相当于一根具有一定电导率的导体的切割磁力线,于是液体柱两端会产生感应电动势。它的大小与流量成正比,并通过电极将此信号引至电路转换器。 E=4BQ/πD式中:E――感应电动势;Q――流量;B――磁感应强度;D――流量计公称通径。由上式可知,管道直径D和磁感应强度B不变时,感应电势E和体积流量Q之间成正比。 sinωt,得 但是上式是在均匀直流磁场条件下导出的,由于直流磁场易使管道中的导电介质发生极化,会影响测量精度,因此工业上常采用交流磁场,B=B m sinωt Q=πDE/4B m 式中:ω――交变磁场的角频率; B ――交变磁场磁感应强度最大值。 m 由上式可知,感应电势E与被测量介质的体积流量Q成正比。但变送器输出的E是一个微弱的交流信号,其中包含有各种干扰成分,而且信号内阻变化高达几万欧姆,因此,要求转换器是一个高输入阻抗,且能抑制各种干扰成分的交流毫伏转换器,将感应电动势转换成4~20mADC的统一信号,以供显示、调节和控制,也可送到计算机进行处理。 2 电磁流量计的结构 电磁流量计一般由四部分组成:测量管、励磁系统、检测部分、变送部分。 考虑到防腐蚀的要求,测量管内部一般都加衬里材料。电磁流量计的励磁方式主要有高频励磁、低频励磁、脉冲DC励磁。由于工业的不断发展,有的厂家已经一种新的励磁方式—双频励磁,它克服了高频、低频励磁的缺点,具有“不受流量噪声影响”,“响应速度快”,“零点稳定性高”,“精度高”等优点。 检测部分主要包括电极和干扰调整部分,由于电极要和被测介质直接接触,要具有较强的抗腐蚀性。 变送器的主要作用是将传感器信号转换成与介质体积流量成正比的标准信号输出(0~20mA、4~20mA、0~10KHz)。并且要有较高的稳定性、精度和较强的抗干扰能力。 3 电磁流量计的主要性能参数和特点

时差法超声波流量计_2006_硕士论文-

重庆大学硕士学位论文中文摘要 摘要 超声波流量计由于具有非接触式测量、测量范围宽、安装简便、以及特别适合大管径及危险性流体流量测量等优点,被供水、石油、化工、电力等部门广泛应用。然而,由于超声波流量计只是在近几十年才出现的一种新型仪表,还有很多不完善的地方,比如成本较高、精度不够等,有必要对其加以改进和提高。 本论文通过充分调研及查阅大量的文献资料,选择时差法超声波流量计为研究对象,对如何提高系统的精度及系统稳定性和可靠性问题进行了深入的理论研究,并设计了具体的硬件电路,主要工作及创新有: 1.研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了较深入的研究;根据流体力学及物理学的有关知识,对超声波流量计进行了修正,并给出了不同情况下流量修正系数的计算公式; 2.针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响;介绍了几种常用提高超声波测时精度方法的同时,讨论并采用了超声波时差测量的新方法——多脉冲测量法的原理和应用; 3.结合课题的实际情况,对时差法超声波流量计的硬件电路进行了详细的分析和设计,讨论了器件的选择、参数计算等技术问题,设计出了匹配性能良好的发射、接收电路;在信号调理上,除了常规的滤波电路外,还采用了自动增益放大电路来提高信号的可靠性;而且,采用主从单片机协同工作的方式,提高了系统的稳定性;在软件方面,给出了系统的软件流程图并较详细地叙述了算法的实现; 4.针对流量计的工作环境,对流量计系统的抗干扰性进行了研究,并采取了相应的软、硬件措施; 5.对造成超声波流量测量误差的各种因素进行了详细的分析、研究,并应用误差理论,对时差法超声波流量计的各种可能的误差进行了误差分配和合成;对硬件电路和软件进行了试验性的验证,给出了实验结果。 关键词:超声波流量计,时差法,传播时间

超声波流量计的测量原理

超声波流量计的测量原理 超声波流量计 超声波流量计是一种非接触式流量测量仪表,近20多年发展迅速,已成为流量测量仪表中一种不可缺少的仪表。尤其在大管径管道流量测量,含有固体颗粒的两相流的流量测量,对腐蚀性介质和易燃易爆介质的流量侧量,河流和水渠等敞开渠道的流量及非充满水管的流量测量等方面,与其他测量方法相比,具有明显的优点。 超声波流量计的测量原理 超声波流量计是利用超声波在流体中的传播特性实现流量测量的。电磁流量计超声波在流体中传播时,将载上流体流速的信息。因此,通过接收到的超声波,就可以检测出被测流体的流速,再换算成流量,从而实现测量流量的目的。 利用超声波测量流且的方法很多。根据对信号检测的方式,大致可分为传播速度法、多普勒法、相关法、波束偏移法等。在工业生产测量中应用传播速度法最为普遍。 1.传播速度法 根据在流动流体中超声波顺流与逆流传播速度的视差与被测流体流速有关的原理,检测出流体流速的方法,称为传播速度法。很据具体测最参数的不同,又可分为时差法、相差法和频差法。 传播速度法的基本原理如图2.59所示。远传式水表从两个作为发射器的超声换能器T, , T,发出两束超声波脉冲。各自达到下、上游两个作为接收器的超声换能器R,和RZ。设流体静止时超声波声速为C,发射器与接收器的间距为L。则当流体速度为时,顺流的传播时间为式中,L, C均为常量,所以只要能测得时差At,就可得到流体流速。,进而求得流最p。这就是时差法。 时差法存在两方面间题:一是计算公式中包括有声速C,可拆卸螺翼式水表它受流体成分、沮度影响较大,从而给测量带来误差;另一是顺、逆传播时差At的数量级很小(约为10-’一10"9s),测量Lt,过去需用复杂的电子线路才能实现。 相差法是通过测量上述两超声波信号的相位差△lp来代替测量时间差6r的方法。如图2.61,设顺流方向声波信号的相位为9).二“:;逆流方向声波信号的相位为T2 =则结合式(2.56)可得逆、顺流信号的相位差为式中。—声波信号的角频率。 此方法可通过提高。来取得较大的相位差乙甲,滴水计数水表从而可提高测量精度。但此方法仍然没有解决计算公式中包含声速C的影响。 频差法是通过测量顺流和逆流时超声波脉冲的重复频率差来测量流量的方法。该方法是将发射器发射的超声波脉冲信号,经接受器接受并放大后,再次切换到发射器重新发射,形成“回鸣”,并如此重复进行。由于超声波脉冲信号是在发射器一流体一接收器一放大电路一发射器系统内循环的,故此法又称为声还法。脉冲在生还系统中一个来回所需时间的倒数称为声还频率(即重复频率),它的周

空气流量计的检测方法

空气流量计的检测方法 空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU 根据空气计量传 感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传 感器一一空气流量计。②间接测量方法传感器一一进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1) 机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO 调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2) 卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3) 热线式空气流量计。热线式空气流量计按其热线形又分为 3 种。 ①热丝式一一将加热丝均匀分布在计量通道内。热丝式空气流量计(图1) 精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由 于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导 较差,影响计量精度。

科隆电磁流量计检测过程报告

电磁流量计首先要满足的要求:①满管②流态稳定原理:法拉第电磁感应定律 传感器的检查方法 1、励磁线圈(7-8)阻值30-170欧姆。少于此范围,接线错误,高于此范围接线断路。 2、励磁线圈(7、8)对地1的绝缘电阻>20M 欧姆,用兆欧表。 3、1-2和1-3间电阻的阻值1K-1M欧姆。两阻值应当大致相等,偏差10%。少于此范围,排出管内流体再次测量,如果仍然很低,电极线路短路。高于此范围,电极接线断路或电极污损。如果极大差异,电极接线断路或电极污损。 工具:万用表、兆欧表 注意点: 1、记录下接线的位置 7 紫色 8 绿色 9 黄色 1 黑色 2 白色 3 红色 2、测量阻值前万用表、兆欧表调零 3、有时需线1、2、3搭一起放电 4、拆卸信号输出线时,防止接线头搭在一起,可能烧坏PLC 5、打开箱、壳体时要断电 转换器的检查方法 X=Q100%*7074/GK*DN2,通过比例算出理论值,根据档位测出实际值,算出偏差, 误差在1%以内为正常。(GS8A) 工具:GS8A\GS6A模拟信号发生器 注意点: 1、记录下转换器上仪表的信息: 仪表的编号 瞬时流量 累计流量 2、在C菜单的1.1.X中查看: 励磁频率 GK GKL 3、C菜单的5.3.3中查看: 量程

4、在打档位前GS8A/GS6A调零。 实例: 1:温岭市供水有限公司。将励磁频率由1/6改为1/18后,瞬时流量由开始300m3/h 左右,降到275m3/h左右,原流量计瞬时流量在275m3/h左右时,存在25m3/h 左右的偏差,现已正常。 2:温州绿地污水处理有限公司。正负波动4000~5000m3/h。对仪表传感器进行检查,发现流量波动是由信号干扰引起,没充分接地,将转换器外壳接地后,波动消失。

电磁流量计传感器的检查方法

电磁流量计传感器的检查方法流量系统0003.10 电磁流量计传感器的检查方法 1 适用范围 该方法适用于上海威尔泰工业自动化股份有限公司生产的分体型或一体型电磁流量计 传感器的检查.该检查仅针对传感器正常工作的物理参数,不涉及安装条件,流体条件等使 用条件. 2 术语和定义 2.1 励磁线圈 传感器中用于产生励磁工作磁场的部件. 2.2 信号电极 传感器中用于感应流量信号的部件. 3 测试设备 万用表(数字式) 兆欧表(500V) 4 测试条件 温度:室温 相对湿度:45%~85% 5 技术要求 5.1 目测传感器外观良好,无断裂,碰撞等明显机械损伤. 5.2 励磁线圈(M1,M2)阻值大于5.5欧姆,小于110欧姆. 5.3 励磁线圈(M1,M2)对地(3)的绝缘电阻>20M欧姆. 5.3 流体充满管路时,两信号电极(1,2)对地(3)电阻阻值分别大于500欧姆,小于2M 欧姆,且两值之比不超过10;传感器拆离管道清洁干燥后该值大于20M欧姆. 6 测量及记录 6.1 依据用户现场情况,选择合适的测试点进行测量. 6.2 符合要求可不必记录,对不符合要求的项目记录测量项目及测量值. 7 测量注意事项 7.1 技术要求的阻值为通常条件下值,边界条件时应考虑温度补偿. 7.2 测量时接线盒处保持干燥,同时考虑空气湿度对测量的影响. 7.3 对运行无明显异常的在用仪表或已作灌封处理的,建议从转换器断开处仅测量信号电极 的对地电阻. 8处置 8.1 符合技术要求的传感器可以正常使用. 8.2 超出技术要求时,应充分考虑第7条的测量注意事项,综合现场因素采取现场修复,现 场补充等措施,如电极清洗,可靠接地等,尽量避免更换传感器给用户造成的再次施工的不

空气流量计检测

空气流量计在电喷轿车上的重要作用,它是喷油控制的基本信号,也是决定信号。此信号的好坏将影响混合气的配比,也直接影响发动机的动力性、稳定性及污染性。当空气流量计信号发生故障时,电控单元将故障码存贮的同时,也将进气量的测量权交于节气门位置信号替代,这是电控单元的一大功能,即失效保护功能。可想而知,好的空气流量计信号与节气门位置信号有着一定的差距。前者精度高,发动机各工况均好,后者精度差,相比之下,发动机各工况的控制稍有差别。当空气流量计信号出现偏差(不准确)时,电控单元将按错误信号进行控制喷油,使混合气浓了或是稀了,造成发动机转速不稳及动力不足。此种故障在我国国产车型上经常发生,特别是大众车系,更换空气流量计的工作是普遍现象。由于热膜式空气流量计不设自洁功能,常常被脏物影响,同样造成信号不准确。信号不准确的传感器比损坏的传感器危害更大。为了准确有效的检测空气流量计是好是坏还是信号偏差,我们通过理论的探讨及实际经验的积累而总结出一套行而有效的检查方法,供大家参考。 如:一辆大众车系的轿车怠速不稳,加速不良,怀疑热膜式空气流量计信号有问题。可以在发动机运转的状况下拔下空气流量计的插头,观察发动机的变化情况,将会出现以下三种情况。 (1)故障消失。说明此空气流量计信号有偏差,并没有损坏,电控单元一直按有偏差的错误信号进行控制喷油。由于混合比失调。发动机燃烧不正常,将会出现发动机转速不稳或动力不良现象。当拔下空气流量计插头时,电控单元检测不到进气信号,便会立即进入失效保护功能,以节气门位置传感器信号替代空气流量计信号,使发动机继续以替代值进行工作。拔下流量计插头,故障消失,正是说明了拔插头前信号不正确,拔插头后信号正确,故障消失。 一般情况下,故障现象可以表明混合气的浓度。为了确认,我们用检测的方法,以数据说话。在插头的信号端测量动态信号电压,怠速工况下,标准电压为0.8~1.4V;加速到全负荷时,电压信号可接近4V。此车实测值.怠速时为0.3V,加速到满负荷时只有3V。由此可以确认,空气流量计有问题,信号电压整体偏低,故障原因有两种能:①零件质量问题,应更换。②脏污问题,只要用清洗剂清洗即可恢复。 (2)故障依旧。说明此空气流量计早已损坏或线路不良,造成电控单元根本没收到信号或收到的是超值信号,电控单元确认空气流量计信号不良,进入到失效保护功能,同时将故障码存入存贮器,故障指示灯闪烁(指装有指示灯的发动机)。此时拔下空气流量计插头与不拔插头结果是一样的,故障现象不会发生变化。那么当前的故障不应是流量计信号不良所影响的,而是由其他原因所致。当真正的原因找到后,务必更换空气流量计。 (3)故障现象稍有变化。说明此空气流量计是好的。拔下空气流量计插头前,电控单元根据空气流量计信号进行控制,喷油量准确,发动机各工况均好;当拔下空气流量计插头时,电控单元根据节气门位置传感器信号进行控制,喷油量有差异(可从数据流中读出这微小的变化值),发动机工况相对稍差。

如何验证电磁流量计

如何验证电磁流量计 由于电磁流量计必须是在线连续使用,几乎不可能拆除再运输到国家计量检测中心进行检定。因此,对于现场使用的大口径电磁流量计的精度验证是很有必要的。电磁流量计的精度验证对于电磁流量计的管理,保证其精确度和可靠性,积累原始的比对数据,做日后的验证和核对也是非常有用的。电磁流量计的精度验证可利用清水池容积和电磁流量计校验设备。对电磁流量计精度进行全面验证,以确定电磁流量计在水厂应用过程中的精度,确保计量数据真实可信或是否更换电磁流量计。 1.采用目测法和仪表法,用GS8 检查传感器的励磁线圈阻值、信号线之间的绝缘电阻、接地电阻等项目是否符合出厂前的标准,电磁流量计转换器零点、输出电流等是否满足精度要求。具体检测方法为:(1)测量励磁线圈阻值判断励磁线圈是否有匝间短路现象(测线号“7”与“8”之间的电阻值),电阻值应在30 欧~170 欧之间。若电阻与出厂记录相同,则认为线圈良好,进而间接评估电磁流量计传感器的磁场强度未发生变化。(2)测量励磁线圈对地(测线号“1”和“7”或“8”)绝缘电阻来判断传感器是否受潮,电阻 值应大于20 兆欧。(3)测量电极与液体接触电阻值(测线号“1”和“2”及“1”和“3”),间接评估电极、衬里层表面大体状况。如电极表面和衬里层是否附着沉积层,沉积层是具有导电性还是绝缘性。它们之间的电阻值应在1 千欧~1 兆欧之间,并且线号“1”和“2”及“1”和“3”的电阻值应大致对称。(4)关闭管路上的阀门,检查电磁流量计在充满液体且液体无流动的情况下的整机零点。视情况作适当的调整。(5)检查信号电缆、励磁电缆各芯线的绝缘电阻,检查屏蔽层是否完好。 (6)使用GS8 校验仪器,测试转换器的输出电流。当给定零流量时,输出电流应为:4.00mA;当给定100%流量时,输出电流应为:20.00mA。输出电流值的误差应优于1.5%。(7)测试励磁电流值(转换器端子“7”和“8”之间),励磁电

消防智能电磁流量计流量检测系统设计

消防智能电磁流量计流量检测系统设计 发表时间:2015-02-06T13:52:59.297Z 来源:《科学与技术》2014年第12期下供稿作者:焦宏伟 [导读] 通过面向对象的编程和调试,为社会、企业创造财富与工作方便。智能水枪流量测试系统将提高社会、企业的工作效率。 上海第二工业大学城市建设与环境工程学院焦宏伟 摘要:消防专用的传统水泵由于缺少水流量、泡沫流量的检测,以及缺少相关体系的自动化报表,使得相关企业对于检测水流量、泡沫流量需求很高。基于企业需求,本项目设计了一套消防智能电磁流量计流量检测系统。由于流量检测数据量大,对于数据处理提出了更高的要求。需要做到方便、安全、准确、可靠地讲数据进行处理。人机界面的设计理念避免了检测人员大量操作各种文档、以及大量表格。 关键词:电磁流量计;人机界面;检测1.1 研究意义企业对于检测系统需求高涨,可以在误差允许范围内检测水流量、泡沫流量。方便检测人员工作,提高检测效率。可以在电脑上进行管理员操作并且可以实现对检测数据各种操作,比如存储、查询、显示、删除、打印、动态曲线展示等功能,从而缩短检测周期,提高社会劳动效率。 1.2 国内外研究现状:国外的西尼尔公司等生产的电磁流量计已经很成熟,但是国内还缺少相关的可以花较低代价实现集成系统,即做到消防智能电磁流量计流量检测系统。 2.1 设计目标设计以一套可以对水流量、泡沫流量进行自动检测,并且可以实现对检测数据的存储、查询、显示、删除、打印、动态曲线展示等功能。 2.2 研究内容:2.2.1 环境监测多传感器融合算法设计和实现消防智能电磁流量计流量检测系统具有5 电磁流量计和5 个转换器。分别是:AMF-4-1010 是一款直径为4 毫米的泡沫液电磁流量计,常用的流量范围是0.075~11L/M ;SE11-FR15EF1A1T01G00 是一款直径是15 毫米泡沫液电磁流量计,常用的流量范围是5~100L/M;SE11-FT50EF1A1T01G00是一款直径50 毫米的水流量电磁流量计,常用流量50~1000L/M;SE11-FT1HEE1A1T01G00 是一款直径100 毫米的水流量电磁流量检测计,常用流量200~4000L/M ;SV21- W2A010BNT02K00 是一款直径100 毫米的空气压缩机电磁流量检测计,常用流量范围500~7500L/M。当有水或泡沫等流体充满管道从管道里通过时,SE11-FR15EF1A1T01G00、SE11-FT50EF1A1T01G00 、SE11-FT50EF1A1T01G00 、SE11-FT1HEE1A1T01G00 会输出标准的工业信号4~20 毫安电流,当输出电流为4 毫安时流量计的流量为0,当输出20 毫安时,流量计对应最大流量。而SV21- W2A010BNT02K00 回输出1.54~20 毫安电流,同理,当输出电流为1.54 毫安时流量计的流量为0,当输出20 毫安时,流量计对应最大流量。 3.1 实验步骤1.理论分析,通过软件模拟实现设计要求采用是微软公司推出的开发环境是目前最流行的Windows平台应用程序开发环境,同时带来了 NET Framework 4.0、Microsoft Visual Studio 2010 CTP( Community TechnologyPreview--CTP),并且支持开发面向Windows 7 的应用程序。除了Microsoft SQL Server,它还支持IBM DB2 和Oracle 数据库。 2.优化算法,提高设计要求ModBus 网络只是一个主机,所有通信都由他发出。网络可支持247 个之多的远程从属控制器,但实际所支持的从机数要由所用通信设备决定。采用这个系统,各PC 可以和中心主机交换信息而不影响各PC 执行本身的控制任务。由于ModBus通讯协议通讯安全可靠,所以选择数据通讯协议是ModBus 通讯协议。所选硬件设备是研华科技有限公司的数据采集卡—ADAM4117。由于电脑接口都是USB 接口,所以通过485通讯转换成USB 通讯协议转换器,将电脑和采集卡连接起来。 3.最终设计产品,实战检验通过测试,数据误差在千分之八左右。 3.2 分清楚给单元职能,然后进行设计。 4.1 设计任务的完成登陆界面输入登录用户名与密码,即可进入消防智能电磁流量计流量检测系统,进行检测操作。下图是主界面的展示,利用TBCONTRAL 控件组成的多界面人机界面交互界面。分别是主界面、4 毫米泡沫动态流量界面、15 毫米水流量动态界面、100 毫米水流量动态界面、100 毫米空气压缩动态界面。 AMF-4-1010 的转换器接上220 伏特的电压,这只好转换器;SE11-FR15EF1A1T01G00 的转换器接上220 伏特的电压,同时按第一个键和第四个键,按第四个键,出现00000 输入009454 后,同时按第一个和第四个键,出现语言,一直按第三键找到空管报警允许,按第四键,把允许修改为禁止后,按最后一个键不松直到返回页面。同时按第一个键和第四个键,找到设置,输入09454 密码,然后同时按第一个和第四个键,显示语言,按第三键翻页,一直找到需要的东西,按第四个键后,按第三个键修改,修改后,返回按第四个键不松5

电磁流量计的检测方法

电磁流量计的检测方法 刖言 电磁流量计广泛应用于流程工业和公用事业,按要求测量仪表须在受控状态下运行和定期检定。流量仪表流量值的检查方法通常有离线和现场在线检查两种。因这两种方法都有缺陷,实践中广大用户探索出若干在现场间接检查方法,验证或评估电磁流量计流量测量值是否已超过原始校准精确度等级范围,为继续使用或需进一步检查提供依据。 在线检查的现状 现在尚缺乏对电磁流量计在线检查的全面了解,仅见到几家日本企业近年发表的实 施非实流在线检查的报导;另外,上海地区几年前已开始探索和制订“在线检验方法” 等。 1.化学工业 电磁流量计在化学工业中应用以流量控制为主,所测流体以酸、碱性液和浆液居多, 多具有腐蚀 性和磨耗性。电磁流量计实际应用中发生故障和失效,多是由于腐蚀泄漏、绝缘下降、电极沾污或附着 异物等引起的。 电磁流量计传统的定期维护检查是将流量传感器卸下管线清扫和检查,然后实施流量校准。为减少流量传感器从管道上卸装损伤衬里,先在管线上测量绝缘电阻等推断有无异常现象,再决定下一步是否卸下管线检查或实流流量校准。三菱化学(株)3种检查方式所占比重是:(1)只作在线检查占35% (2)卸下管线作接液部位清扫后检查占22% ⑶离线作实流校准占43% 2.水务业 (1)(日)东京都水道局 东京都水道局对电磁流量计每年做一次全面检查,检查内容为:外观检查,转换器 特性试验,测量值校准,测量各部电压,测量绝缘电阻,确认电路。仪表检查调整时因 零点漂移,调整零点显得十分重要,而“在线调零”必须使被测介质停止流动,却不易办到。因此在现场只能省略包含有传感器运作的检查,仅实施转换器的校准。将本次检查结果和历史数据比较确定仪表是继续使用、修补还是更新。传感器按所测励磁线圈绝缘电阻劣化程度决定更新与否。 (2)上海自来水公司和原水公司 上世纪90年代以来,上海自来水公司和原水公司开始摸索在线检查和验证有无异 常现象的方法。无停役可能的管线分别检查流量传感器和转换器,用模拟信号器和其他通用仪表测试转换器,具有较高的校准精确度(取决于模拟信号器精确度),其方法与离线检查相同。传感器检查则以测试电极接液电阻,检查励磁线圈包括励磁连接电缆的绝 缘电阻和铜电阻,以及检查转换器输出的励磁电流,核对磁场强度等间接方法。有停役条件的管线,还 可从预设在传感器附近入孔进入,检查电级和衬里污秽/沉积状况并清 洗。

影响超声波流量计(热量表)测量精度的主要因素

淮安嘉可自动化仪表有限公司 影响超声波流量计(热量表)测量精度的主要因素 1、上下游直管段的影响 由于时差式超声波流量计标定系数K值是雷诺数函数,所以当流体从层流过渡到紊流时,其流速分布不均匀,标定系数K值将产生较大的变化,从而影响测量准确度。根据设计要求换能器应安装在上游直管段为10倍管径、下游直管段5倍管径的位置,对于上游存在泵、阀等设备时,需要按照“距离紊流、震动、热源、噪声和射线源越远越好”的要求做,换能器应安装在上游直管段30倍管径以上的位置。直管段长度是保证时差式超声波流量计测量准确度的重要因素之一。 2、安装管道参数设置的影响 根据时差式超声波流量计流量计量公式q v=(π/4)D2v,(q v瞬时流量,D管道直径,V流体流速m/s)当管道材质及尺寸设置与实际管道尺寸不符时,将使理论管道流通截面积与实际管道流通截面积产生误差,导致计算结果不准确。换能器的安装距离是根据流体性质、管道材质、内外管径、安装方式等参数综合运算的结果。据有关资料介绍,如果管道内径误差±1%,则引起约±3%的流量误差。如果安装距离误差±1 mm将产生±1.5%以内的流量误差。由此可见,只有正确设置管道参数,换能器才能安装正确。因此,管道参数设置的准确性直接影响着时差式超声波流量计测量准确度。

淮安嘉可自动化仪表有限公司 3、换能器安装的影响 时差法超声波流量计测量器件换能器声波的传输分为直线式和反射式,反射式按安装方式又有V式、Z式、W式,可根据管径、所测流体性质,有无管衬以及现场安装条件进行选择。另外换能器必须安装在与管线正切的方向,否则会影响声波的发射和接收,进而影响时差法超声波流量计的测量准确度。 4、被测流体含气量的影响 不溶气体具有非常低的声阻抗,可能造成声束分散,含气量大时,将减弱声波信号强度,因此被测流体含气量对超声波流量计测量数据有很大影响。在实际供热生产中,所有热量表安装的外部条件匀已很好地满足设计要求,但当锅炉出水温度低于80℃时,热量表工作正常,当锅炉出水温度高于80℃时,管道内会有细小的气泡产生,在闭环的锅炉系统中,这些气泡使终裹挟在流体里,从而影响时差法超声波流量计测量准确度,造成热量值的误差,影响热量调节工作。 要想消除这些气泡,可以在锅炉出口安装一个大于出口管径的聚气装置,加长流量计上游的直管段距离,还可以采取安装紊流装置的设施,以减少和消除被测介质内的含气量,保证热量表的测量准确性。5、耦合剂的影响 为了保证换能器能够与管道充分接触,安装换能器时需要在管道表面均匀地涂一层耦合剂,一般厚度为1mm,并将耦合剂内的气泡和颗粒挤出去,换能器的发射面应紧密地贴在管壁上。

相关文档