文档库 最新最全的文档下载
当前位置:文档库 › 锚杆

锚杆

锚杆
锚杆

锚杆,英文“rockbolt”(准确称谓)"; 文章常用“Bolt”;"bolting"。(早期称谓)"anch or"

锚杆,将拉力传递到稳定的岩层或土体的锚固体系。它通常包括杆体(由钢绞线、钢筋、特制钢管等筋材组成)、注浆体、锚具、套管和可能使用的连接器。当采用钢绞线或高强钢丝束作杆体材料时,可称锚索。

岩石锚杆是置于岩体中并与岩体紧密接触的杆件。

在岩土施工领域经常把杆体上具有一定纵向拉力的成为锚杆,没有拉力就称为土钉或岩钉。

锚杆组成

组成锚杆必须具备几个因素:

①一个抗拉强度高于岩土体的杆体

②杆体一端可以和岩土体紧密接触形成

摩擦(或粘结)阻力

③杆体位于岩土体外部的另一端能够形成对岩土体的径向阻力

锚杆作为深入地层的受拉构件,它一端与工程构筑物连接,另一端深入地层中,整根锚杆分为自由段和锚固段,自由段时指将锚杆头处的拉力传至锚固体区域,其功能是对锚杆施加预应力;锚固段时指水泥浆体将预应力筋与土层粘结的区域,其功能是将锚固体与土层的粘结摩擦作用增大,增加锚固体的承压作用,将自由段的拉力传至土体深处。

根据上述定义,给出了锚杆的基本结构。

锚杆作用

锚杆是岩土体加固的杆件体系结构。

通过锚杆杆体的纵向拉力作用,克服岩

土体抗拉能力远远低于抗压能力的缺点。

表面上看是限制了岩土体脱离原体。

宏观上看是增加了岩土体的粘聚性。

从力学观点上是主要是提高了围岩体的粘聚力C和内摩擦角φ。

其实质上锚杆位于岩土体内与岩土体形成一个新的复合体。这个复合体中的锚杆是解决围岩体的抗拉能力低的缺点。从而使得岩土体自身的承载能力大大加强。

锚杆是当代煤矿当中巷道支护的最基本的组成部分,他将巷道的围岩束缚在

一起,使围岩自身支护自身.

现在锚杆不仅用于矿山,也用于工程技术中,对边坡,隧道,坝体进行主动加固。

锚杆分类

锚杆根据其使用的材料可以分为:木锚杆,钢锚杆,玻璃钢锚杆等等。

按锚固方式分为:端锚固,加长锚固和全长锚固

以下列举几个称谓的锚杆

(1)木锚杆。我国使用的木锚杆有两种,即普通木锚杆和压缩木锚杆。

(2)钢筋或钢丝绳砂浆锚杆。以水泥砂桨作为锚杆与围岩的粘结剂。

(3)倒楔式金属锚杆。这种锚杆曾经是使用最为广泛的锚杆形式之一。由于它加工简单,安装方便,具有一定的锚固力,因此这种锚杆在一定范围内至今还在使用。

(4)管缝式锚杆。是一种全长摩擦锚固式锚杆。这种锚杆具有安装简单、锚固可靠、初锚力大、长时锚固力随围岩移动而增长等特点。

(5)树脂锚杆。用树脂作为锚杆的粘结剂,成本较高。

(6)快硬膨胀水泥锚杆。采用普通硅酸盐水泥或矿渣硅酸盐水泥加入外加剂而成,具有速凝、早强、减水、膨胀等特点

(7)双快水泥锚杆。是由成品早强水泥和双快水泥按一定比例混合而成的。具有快硬快凝、早强的特点。

一、管缝式锚杆工作原理和特点

管缝式锚杆是一种全长锚固,主动加固围岩的新型锚杆,它立体部分是一根纵向开缝的高强度钢管,当安装于比管径稍小的钻孔时,可立即在全长范围内对孔壁施加径向压力和阻止围岩下滑的摩擦力,加上锚杆托盘托板的承托力,从而使围岩处于三向受力状态。在爆破振动围岩锚移等情况下,后期锚固力有明显增大,当围岩发生显著位移时,锚杆并不失去其支护抗力,它比涨壳式锚杆有更好的特性。

二、管缝式锚杆主要性能和规格

1、主要技术性能

(1)初始锚固力:3~7吨;

(2)管环拉脱荷载:8~10吨;

(3)锚杆管抗拉断能力:12~13吨;

(4)耐腐蚀性能比A3钢高20~30%,利于长期使用。

2、规格

(1)外径(毫米):Φ30,Φ33,Φ40,Φ43(±0.5)

(2)长度(毫米):1200、1500、1800、2000、2500

(还可以根据客户的需要规格生产);

(3)材质:16Mn,20 Mnsi;

管缝式锚杆现在煤矿使用比较少。

自旋锚杆

1 自旋锚杆概述自旋锚杆是螺旋锚杆的一种,如果合理使用就成为顶级锚杆。

螺旋锚杆是上世纪初期开发的软土层锚杆之一,因为这种锚杆施工简单快速被广泛应用在一些野外工程或岩土体的辅助锚固上。在长期的研究实践中,西安科技大学惠兴田教授深入分析传统螺旋锚杆并在1999年发明了一种新型的螺旋式锚杆→自旋锚杆。自旋锚杆扬弃传统螺旋锚杆的大锚叶结构,采用中空连续小旋丝结构,采用不同的施工工艺就使得自旋锚杆的应用发生了根本性变化。从而派生出一系列功能的一个全能体系。以下是各种类别自旋锚杆简述。

自攻旋进锚杆→在钻孔中自攻旋进安装不使用锚固剂就能达到70KN锚固力创新点:不使用锚固剂的全长锚固锚杆

优点:成本低,施工速度快

缺点:安装要求钻孔精确,各项参数配合恰当。施工中难以达到要求

自攻挤压旋进锚杆→在土层中无需钻孔直接挤压旋进安装锚固力20KN/m

创新点:不钻眼,不注浆的全长锚固锚杆

优点:挤压强化土体结构使土体承载力大大提高,施工速度快,锚固及时;

缺点:钻机扭矩要求大,适应性受限,个别情况下单位锚固力小。

自旋注浆锚杆→在钻孔中安装结束后利用自旋锚杆注浆就成为具有初锚力的自旋注浆锚杆

创新点:具有初锚力且是全长锚固的注浆锚杆

优点:具有一定初锚力,适应于各种松软岩土体

缺点:注浆程序占用时间,施工环境差,速度受限制

自旋树脂锚杆→在钻孔中安装的同时自旋锚杆将树脂药卷搅拌成为具有初锚力的自旋树脂锚杆

创新点:药卷搅拌结束立即施加预应力的树脂锚杆

优点:锚固可靠,适应性广

缺点:锚杆安装需要专用钻具

自钻自锚固锚杆→在自旋锚杆中空内放入钻杆使钻眼安装一次完成是具有初锚力的自钻锚杆

创新点:钻眼安装一次完成且具有初锚力的自钻锚杆

优点:有一定的初锚力,安装快速,适应于任何岩土层

缺点:安装需要专用钻具

自旋喷浆锚杆→在土层中边喷浆边钻进安装锚注一次完成锚固力35KN/m

创新点:钻眼安装和注浆一次完成的土层锚杆

优点:适应于松散岩土体

缺点:不能用于岩体破碎带松散体

2 全能自旋锚杆图解

全能锚杆图片解释

自钻、自旋、自锚固--任何地层都适应

注浆、喷浆、旋喷浆--任何情况都有效

自旋锚杆〓普通锚杆+自钻锚杆+注浆锚杆+特种锚杆

※普通锚杆→自旋树脂锚杆--自旋锚固与树脂锚固剂同时作用〓锚固可靠;施工速度快30%;可施加预应力

※自钻锚杆→自钻自锚固锚杆--克服常规自钻锚杆的只钻不锚的缺点,钻锚一体,一次完成〓软岩土体无需注浆;

简化工序;提高功效50%

※注浆锚杆→自旋注浆锚杆--浆液从旋丝流动能保证旋丝间注浆饱满度,又能进入裂隙岩体〓注浆锚固效果可靠度99%

※特殊锚杆→自攻旋进锚杆;自旋喷浆锚杆〓软岩土体中无需钻眼;直接挤压旋进锚固;松散体中旋喷钻进安装加固和

锚固一次完成。

3 自旋锚杆体系

3.1 自攻旋进锚杆

3.1.1 直接自攻旋进——自攻挤压旋进锚杆锚杆上带钻头,用钻机直接带动锚杆旋入土体中。锚杆在旋进过程中挤压杆体周围土体,使紧贴杆体周围土体参数强化。

自攻挤压旋进锚杆不同于自钻锚杆,自钻锚杆的锚固全凭后期锚固注浆,注浆对于向上的孔很难达到饱和注浆,锚固可靠性较差。自旋锚杆自身形成锚固力安装结束就完成。任何角度都能够保障锚固力相同。

自攻挤压旋进锚杆适用条件:湿陷性黄土,淤泥,松散岩土

3.1.2 孔内自攻旋进——自攻旋进锚杆在预先钻好的孔中先钻孔,用钻机带动锚杆,在转动过程中使锚杆旋丝刻入钻孔壁内起到锚固作用。

3.2 自钻旋进锚杆

钻杆置于锚杆体内,边钻孔边安装锚杆。钻安一次完成,有利于保障锚固可靠性,施工速度快。

适用条件:任何地层,特别适用于松软破碎岩土体

3.3 自旋注浆锚杆

预先钻孔,将自旋锚杆旋入钻孔内,安装到位后利用杆体中空注浆,一部分浆液沿旋丝充满旋丝空间,一部分浆液渗入岩体加固岩层,使得岩体旋体锚固同时岩体得到加固注浆。

适用条件:任何地层,特别适用于松软破碎岩土体

3.4 自旋喷浆锚杆

在复杂土体层采用锚杆边旋进边注浆,这样旋喷钻进安装结束注浆就完成。

3.5 自旋树脂锚杆

在自旋锚杆前端放入树脂锚固剂,在自旋锚杆安装过程中树脂被加压并搅拌挤压使得树脂锚固剂充满旋丝,锚固剂和旋丝共同起到锚固作用。

锚杆边坡防护施工及其流程

锚杆边坡防护施工及其流程 边坡支护是指为保证边坡及其环境的安全,对边坡采取的支挡、加固与防护措施。 常用的支护结构型式有:重力式挡墙、扶壁式挡墙、悬臂式支护、板肋式或格构式锚杆挡墙支护、排桩式锚杆挡墙支护、锚喷支护、坡率法。 锚杆施工 锚杆支护是指在边坡、岩土深基坑等地表工程及隧道、采场等地下硐室施工中采用的一种加固支护方式。 用金属件、木件、聚合物件或其他材料制成杆柱,打入地表岩体或硐室周围岩体预先钻好的孔中,利用其头部、杆体的特殊构造和尾部托板(亦可不用),或依赖于黏结作用将围岩与稳定岩体结合在一起而产生悬吊效果、组合梁效果、补强效果,以达到支护的目的。 具有成本低、支护效果好、操作简便、使用灵活、占用施工净空少等优点。 施工流程 1、边坡开挖 锚杆支护应按设计规定分层、分段开挖,做到随时来挖,随时支护,随时喷混凝土,在完成上层作业面的喷射混凝土以前,不得进行下一层土的开挖。 当用机械进行开挖时,严禁边壁出现超挖或造成边壁土体松动或挡土结构的破坏。为防止边坡土体发生塌陷,对于易塌的土体可采用以下措施: a)对修整后的边壁立即喷上一层薄的砂浆或混凝土,待凝结后再进行钻孔; b) 在作业面上先安装钢筋网片喷射混凝土面层后,再进行钻孔并设置土钉; c) 在水平方向分小段间隔开挖; d) 先将开挖的边壁作成斜坡,待钻孔并设置土钉后再清坡; e) 开挖时沿开挖面垂直击入钢筋和钢管或注浆加固土体。 2、钻孔与锚杆制作

1)钢管一端压扁,打入土体容易 2)压密注浆孔,藏在倒刺下面,为以后注浆准备 3)打入锚杆,专用机具使用 4)锚杆打入到位 5)焊接固定钢筋 6)锚杆与钢筋网片焊接细部 7)空气压缩机加压送石料 8)加入水泥细石料斗喷压机 9)大管送砂小管送水到头混合 3、注浆 1)注浆管在使用前应检查有无破裂和堵塞,接口处要牢固,防止注浆压力加大时开裂跑浆;注浆管应随锚杆同时插入,在灌浆过程中看见孔口出浆时再封闭孔口。 2)注浆前要用水引路、润湿输浆管道;灌浆后要及时清洗输浆管道、灌浆设备;灌浆后自然养护不少于7d。 4、喷射混凝土 1)在喷射混凝土前,面层内的钢筋网片牢固固定在边坡壁上并符合规定的保护层层厚的要求。 钢筋网片可用插入土中的钢筋固定,在混凝土喷射时应不出现移动。 2)钢筋网片焊接而成,网格允许偏差为10mm;钢筋网片铺设时每边的塔接长度不小于一个网格的边长。 5、成品保护 1)锚杆的非锚固段及锚头部分应及时作防腐处理。 2)成孔后及时安插锚杆,立即注浆,防止塌孔。 3)锚杆施工应合理安排施工顺序,夜间作业应有足够的照明设施,防止砂浆配合比不准确。 锚杆类型

4-全长锚杆拉拔力

https://www.wendangku.net/doc/1b9873020.html, 全长锚固锚杆拉拔试验研究 朱自强,何现启 (中南大学信息物理工程学院,长沙,410083) 摘要: 支护设计最基本的指标是支护能力,即支护的最大承载力。锚杆的支护能力是锚杆对围岩的最大锚固力,由于锚杆在岩土介质中受力的复杂性、多变性,因此锚固能力的计算十分困难。工程中常用拉拔试验来确定粘锚能力,但由于拉拔试验时锚杆体上的粘结剪应力分布与锚杆实际工作时不同,拉拔力并不能作为锚杆的粘锚能力。研究认为,可根据拉拔试验和锚杆的实际承载状态下载荷分布规律的不同,得出了最大拉拔力和锚固力之间的关系,为正确地利用拉技试验来检验锚杆安装质量和评估锚杆锚固能力提供了理论依据。 关键词:全长锚固锚杆;拉拔试验;锚固力;最大拉拔力 study on full-grouted bolt pullout test abstract:supporting ability(maximal bearing capacity) is the basic index of supporting design。The supporting ability of bolt is the maximal anchoring force of bolt towards surrounding rock。Because of complex and variable stress of full-grouted bolts in rock and soil media,it is very difficult to determine the anchoring ability of them。We always use pullout test to determine the anchoring force ,but in pullout tes the distribition of shearing stress on bolt is different from practical situation,so pullout force cannot be used as the anchoring force of the bolt。From the study ,we known the difference of load distribution of bolt between pullout test and practical situation and get out the relation between maximal pullout force and anchoring force 。It povide the basic thereo for the tes of the quality of the bolt installation and the appraise of anchoring force using pullout test. key words: full-grouted bolt;pullout test;anchoring force;maximal pullout force 一、 概述 随着锚固技术应用范围的不断扩大,锚杆种类越来越多,锚杆的单体承载能力也不断地加大和提高。全长锚固锚杆作为锚杆的一种重要类型,在地下工程支护中得到了广泛应用。其与端锚锚杆相比有如下优点: (1)全长锚固的作用主要是提高了锚固岩体的关键力学参数粘结强度C、内摩擦角φ值 及对围岩提供了支护反力Δσ,而端部锚固的作用是仅对围岩提供了支护反力Δσ. (2)在相同条件下,全长锚固的锚固作用效果是端部锚固的整数倍[1]。 对全长锚固锚杆的作用机理,科技工作者和工程技术人员作了大量的研究工作,得出了许多有益的结论。但是,由于问题的复杂性,再加上端头锚固锚杆在地下工程中应用较早,人们在研究中忽视了全长锚固锚杆和端头锚固锚杆在受力机制上的区别,不正确地套用了端头锚固锚杆的支护理论和设计方法,严重阻碍了人们对全长锚固锚杆支护规律性的认识。近年来,国内外许多单位和科技工作者对全长锚固锚杆的作用机理,采用模拟试验、理论分析、数值计算、现场实测等研究方法,开展了较为系统的研究工作。随着研究的不断深入,人们对全长锚固锚杆的作用机理有了一个比较清楚地认识,取得了一大批研究成果。逐步认识到对于全长锚固锚杆,拉拔试验时锚杆的受力状态和实际完全不同,因此用拉拔试验来反映这类锚杆的锚固能力是不确切的。

锚杆基本试验

锚杆基本试验 7.3.1 锚杆基本试验采用的地层条件、杆体材料、锚杆参数和施工工艺必须与工程锚杆相同,试验数量不应少于3根。 7.3.1【条文说明】鉴于岩土层条件的多变性,为了准确地确定锚杆的极限承载力,本条对试验锚杆的数量以及结构参数和施工工艺作了规定。但需指出,这是对同一地层而言的,若同一工程有不同的地层条件,则应相应的增加基本试验锚杆组数。美国、德国、英国有关标准规定的锚杆基本试验数量为3根。 7.3.2锚杆基本试验的预估试验荷载不宜超过锚杆杆体承载力标准值的0.9倍。基本试验应采用分级循环加荷,加荷等级和位移观测时间应符合表7.3.2的规定 表7.3.2 锚杆基本试验的加荷等级和观测时间 加荷增量A S f pt k 加荷标 准 循环数 预估试验荷载 加荷量% 初始荷载- - - - 10 - - - - 第一循环10 - - - 30 - - - 10 第二循环10 30 - - 50 - - 30 10 第三循环10 30 50 - 70 - 50 30 10

第四循环10 30 50 70 80 70 50 30 10 第五循环10 30 50 70 90 70 50 30 10 第六循环10 30 50 70 100 70 50 30 10 观测时间间隔 (min) 5 5 5 5 10 5 5 5 5 注:1 第五循环前加荷速率为100kN/min,第六循环的加荷速率为50kN/min; 2 在每级加荷等级观测时间内,测读位移不应少于3次; 3 在每级加荷等级观测时间内,锚头位移增量小于0.1㎜时,可施加下一级荷载,否则应延长观测时间,直至锚头位移增量在2h内小于2.0㎜时,方可施加下一级荷载。 7.3.2【条文说明】基本试验对锚杆施加循环荷载是为了区分锚杆在不同等级荷载作用下的弹性位移和塑性位移,以判断锚杆参数的合理性和确定锚杆的极限拉力。国外有关规范规定的锚杆基本试验的合理性和确定锚杆的极限拉力。国外有关规定的锚杆基本试验加荷等级与观测时间见表 7.3.2-1~7.3.2-3。 表7.3.2-1 各国基本试验分级加荷数值 国名初始荷载值第一次加荷 值 各次加荷增 值 德国0.1Py 0.20Py 0.15Py

flac3d 中(cable SEL)锚杆单元的12个属性

Each cableSEL possesses the following 12 properties: (1) density mass density, ρ(optional— needed if dynamic mode or gravity is active) [M/L3] (2) emod Young’s modulus, E [F/L2] (3) gr_coh grout cohesive strength (force) per unit length, c g [F/L] (4) gr_fric grout friction angle, φg [degrees] (5) gr_k grout stiffness per unit length, k g [F/L2] (6) gr_per grout exposed perimeter, p g [L] (7) slide large-strain sliding flag (default: off) (8) slide tol large-strain sliding tolerance (9) thexp thermal-expansion coefficient, αt [1/T] (optional— used for thermal analysis) (10) xcarea cross-sectional area, A [L2] (11) ycomp compressive yield strength (force), F c [F] (12) ytens tensile yield strength (force), F t [F]

锚杆施工专项方案

百塘千渠项目xxx标 锚 杆 专 项 施 工 方 案 编制: 审核: 审批:

目录 一、工程简介 (1) 二、编制依据 (1) 三、施工布置 (1) 3.1施工材料运输设备布置 (1) 3.2 风、水、电布置 (2) 四、钢筋锚固施工 (2) 4.1 施工项目安排 (2) 4.2 钢管脚手架搭设 (3) 4.3 锚杆施工 (14) 4.4钢筋网片施工 (15) 五、锚固施工进度计划 (15) 5.1施工进度控制要点 (15) 六、安全文明施工 (16) 6.1 安全工作目标 (16) 6.2安全管理体系 (16) 6.3安全检查制度 (16) 七、锚杆施工资源配置 (17) 7.1 锚杆施工机械设备 (17) 7.2 锚固支护人力资源配置 (18)

一、工程简介 本工程位于xxx渡镇寨上村寨上屯,鹿寨县位于广西东北部,人口48万。处桂中盆地东北,地形以平地丘陵为主,自东北向西南倾斜,水源为山塘。溢流坝高度为14.2米,采用?20钢筋(HRB335)锚固,锚固深度1.5m(极限值0.7m),间距1*1m。 二、编制依据 a、设计图 b、《建筑施工扣件式钢管脚手架安全技术规范》 c、建筑施工高处作业安全技术规范 d、建筑施工安全检查标准 e、建筑结构荷载规范 三、施工布置 3.1施工材料运输设备布置 我单位进场后进行实地踏勘,施工场地平整,交通方便,使用的材料及设备可直接用货车运输至现场,如需吊装的设备也可使用吊车吊装。

3.2 风、水、电布置 3.2.1 施工供风 在坝体两岸下游各布置20m3/min空压机1台形成大坝锚杆造孔供风站,敷设φ100钢管接入喷混凝土工作面,再用高压橡胶管接到砼喷浆机或锚杆造孔处,形成坝体边坡喷锚砼及锚杆造孔供风系统。 3.2.2 施工供水 在坝肩适当位置用铁板焊制10m3的蓄水池,施工供水采用高压水泵直接从山塘里抽到坝肩蓄水池里,再用胶管接至各用水施工作业面。 3.2.3 施工供电 (1)线路架设 变压器配电柜至喷锚、钻孔渣等施工作业区采用绝缘橡胶铝线架空敷设,在作业区配置带有漏电保护器的配电箱,从配电箱接出采用绝缘橡胶电缆连接架空敷设。 (2)施工照明 施工作业点用“碘钨灯”照明,照明度满足现场施工的要求。 四、钢筋锚固施工 4.1 施工项目安排 原始混凝土凿毛处理→钢筋锚固施工→钢筋网片绑扎→防渗面板砼浇筑→伸缩缝处理。(不改变原始标高) 4.1.1 施工项目 锚固施工项目主要有: (1)操作架体搭设。 (2)混凝土凿毛处理。

锚杆施工工艺

长锚杆施工工艺 结合工程实际,考虑便于施工、低成本等,确保锚杆施作质量,充分发挥其作用,以保证施工安全,确定锚杆施作的三种方案。三种方案的锚杆眼成孔均相同,采用液压凿岩台车成孔,成孔深度6m,位置及方向按设计要求。三种方案的区别在于其杆体及锚固工艺等不同。 一、端锚注浆方案 端锚注浆是在锚杆孔成孔后,在锚杆底端部采用化学药包将锚杆进行锚固后,再放入注浆管及排气管,封堵锚杆端头,再进行有压注浆。其特点是端部化学药包内含两种密封的化学浆液,施工时利用外力将密封层破坏后两种浆液反生化学反应,迅速将锚杆预锚固,可以对锚杆体系施加一定的预应力。其锚杆示意图如图所示: 1、施工方法 A、准备:凿岩台车就位,并接好供电、供水管线。 B、测量布眼:根据锚杆设计间距及围岩层理、节理分布实际情况,用 油漆标出眼位。布眼时对层理及节理发育部位,需加密布设。 C、钻孔:用二臂液压钻孔台车钻孔,钻孔时钻杆垂于岩面或层理面。 D清孔及检查:用高压风吹净孔中石屑及细小石块,利于浆液与岩壁充分接触,并检查孔深。 E、锚杆加工:锚杆采用H级①25螺纹钢,按设计尺寸下料,将外露端头20cm范围内攻丝,其丝口深度和成型后直径与锚杆端头垫板匹配。 F、放入化学药包:用略小于孔径的PVC管将化学药包轻顶送入锚杆孔 底部,采取分节送入,然后抽出PVC管。再放入牛皮纸团作止浆塞。 G锚杆插入:将锚杆插入,用锤子轻击将锚杆插至孔底,再旋转杆体, 将化学药包内两种浆液间隔层破坏,使化学浆液迅速反应将锚杆端部锚固。浆液凝固约需时间 3 分钟,其间需人工扶稳锚杆。

H、上垫板及螺母:端锚完毕,再插入? 6排气管及? 10注浆管,再上密封垫板,锚固板及M20螺母,并施加少量的预加力旋紧,以利于岩体稳 ^定。 I、注浆:采用BW25C灰浆泵注浆,注浆压力0.1?0.3Mpa。浆液材料为1: 1.5水泥砂浆,砂浆采用现场砂浆拌合机拌合,拌合时间不少于3分钟。注浆时匀速注入,直至排气管浆液均匀流出时,则注浆饱满。 2、注意事项 A、钻孔,钻孔应垂直于岩石节理面,锚杆轴线应与岩体主结构面或滑移面成较大角度相交。不得生搬硬套采用径向锚杆,并应视现场情况适当调整。 B、化学药包在放入堵塞时,要确保堵塞严实,以免化学浆液溢出端锚段而造成锚固不实。 C、化学药包在锚固时间内,必须保持锚杆稳固,不得晃动、转动,以确保锚固质量。 D、上垫板时,如孔口不平,应采用砂浆抹平处理。 E、锚杆在未锚固前,其自重大,应防止锚杆滑落伤人。 3、工艺流程框图 注浆 端锚注浆方结工艺流程 、药包锚固方案

支护冠梁锚杆等

3、冠梁 ⑴、工艺流程: 定位放线→槽位开挖平整→支设模板→钢筋笼加工安装→浇筑混凝土→养护→模板拆除 ⑵、工序安排 各单元微型桩施工一段后即可进行清槽施工冠梁,其中基坑西北侧需要在自来水管以下分段施工,分段宽度以减少自来水管的变形为宜,暂定3m一段,一段打完混凝土后进行支撑,再打下一段。 ⑶、微型桩凿桩头 上部浆体凿除,清出工字钢,以便支模浇注冠梁混凝土。 ⑷、钢筋工程、混凝土工程、模板工程为标准施工工艺,在这里不予细述。其中根据预定锚拉位置预埋Φ150PVC管,以便锚杆施工。 4、锚杆施工 ⑴、锚孔定位 锚孔竖向准确定位,再锚杆入射位置水平标识一道直线作为入射位置标准,水平方向锚孔可根据实际情况左右移动,施工前准确定位,确保施工时不破坏管线。 ⑵、钻机就位 锚杆钻机采用锚杆机,开挖工作平台到位后,锚杆机就位调整前后距离,调整角度至设计要求。 ⑶、注浆设备安装就位 设置高压注浆泵站于基坑西侧,采用搅拌机搅拌水泥浆,确保流动性,严格过滤,减少堵管现象,注浆泵做好冷水降温措施,管路顺

冠梁方向敷设固定,接头部位与设备或临近构件用铁丝固定牢固,以免鼓管伤人。 ⑷、钻孔施工 钻进前严格复核孔位及钻孔倾角,要求钻进底座严格水平,钻孔倾角符合设计要求,钻孔底部的偏斜尺寸不应大于锚索长度的3%。锚索(杆)施工严格按设计图纸进行施工,若在钻进过程中遇不明障碍物,应立即汇报,接到指令后再施工。 土层采用螺旋钻钻进,钻杆直径127mm。处于岩石地层的锚杆,成孔采用潜孔钻机,钻头直径100mm,利用空压机潜孔锤将岩石冲击成粉末吹出成孔。 ⑸、锚杆制作 钢铰线或土钉钢筋须有出厂检验证明并经复验合格后使用,若有锈蚀使用前要除锈。 锚杆下料长度:锚杆下料长度为锚杆自由段、锚固段及外露长度之和,外露长度须满足台座、腰梁及张拉作业要求,外露长度定为1.1m,误差±100mm。 锚固段设定位支架,采用成型六孔位居中隔离架,每2米一个。锚杆自由段及外露采用波纹套管逐根套入,两端扎丝绑扎固定,套管避免破损,破损部位应采用胶带修补。 ⑹、锚杆安设 钻孔完成后拔出钻杆,尽快安插杆体,以防水泥凝固时间过长。插入杆体时应将注浆管与拉杆绑在一起同时插入孔内,距孔底约200mm。

锚杆框格砼防护施工方案

预应力锚杆框架防护工程施工方案 一、工程概况 根据沪蓉西恩利段第一合同段两阶段设计图纸,路基防护工程中的坡面防护主要是生物防护,在生物防护不能满足防护要求时,则根据地质条件及边坡高度等情况采用工程防护与生物防护相结合的综合防护形式。本合同段K203+481-K203+580、K204+317-K204+380、K204+576-K204+783、K206+919-K207+000、K207+495-K207+540以及K208+470-K208+560段高边坡,均采用了预应力锚杆加固。本方案适用于X1合同段预应力锚杆框架施工。 二、施工组织 根据本分项工程的工程特点和工期要求,项目成立锚杆防护工程施工队,负责本合同段预应力锚杆框架施工。施工队行政和技术隶属于相应施工区,总体安排和质量监督服从项目部。施工队配置专职队长、施工技术员和安全员各一名。各施工队机械设备、工具、机具和专业技术工种配置自成系统,独立施工,但不排除应有的协调与配合。 三、施工技术要点 1.预应力锚杆框架施工工艺流程为:清理边坡岩面→搭设工作平台→开凿模槽→钻孔、安 装锚杆→安设格子梁钢筋→浇筑格子梁砼→张拉→注浆→挂网喷播植生; 2.施工时应注重边坡清理,锚杆孔清孔后方可放置锚杆并加压注浆; 3.在孔内砂浆充分凝固后扎网,现浇钢筋砼框格,锚杆端部弯曲与横向联合骨架间逐点绑 扎; 4.要提前下好各类钢筋材料,准备好相应模板,合适的材料及机械要提前进场。 四、施工方案 1.施工放线 在路基施工队开挖边坡后,进行人工修整边坡,测量人员用全站仪进行施工放线,每10米一个点位,按照设计图纸要求,上下、倾斜方向全部用线绳拉好,标出锚杆框架轮廓线,根据交叉点位确定锚杆孔位,然后由人工搭设钢管脚手架。 2、开凿模槽 锚杆框架基槽采用人工配合小型机械开槽,开槽深度应保证框架嵌入边坡岩层38cm,露出12cm。锚杆基槽开挖后,在基底先铺砌2cm厚砂浆调平层,再进行钢筋的制安。 3、机械钻孔与安装锚杆

锚杆规范

一般规定 1、锚杆实验适用于岩土层中锚杆试验。软土层中锚杆试验应符合现行有关标准 的规定。 2、加载装置(千斤顶、油泵)和计量仪表(压力表、传感器和位移计等)应在 试验前进行计量检定合格,且应满足测试精度要求。 3、锚固体灌浆强度设计强度的90%后,可以进行锚杆试验。 4、反力装置的承载力和刚度应满足最大试验荷载要求。 5、锚杆试验记录表格可参照表C.5.1制定 表C.5.1 锚杆试验记录表 工程名称: 基本试验 1、锚杆基本试验的地质条件、锚杆材料和施工工艺等应与工程锚杆一致。 2、基本试验时最大的试验荷载不宜超过锚杆杆体承载力标准值的0.9倍。 3、基本试验主要目的是确定锚固体与岩土层间粘结强度特征值、锚杆设计参数 和施工工艺。试验锚杆的锚固长度和锚杆根数应符合下列规定: 1.当进行确定锚固体与岩土层间粘结强度特征值、验证杆体与砂浆间粘结强 度设计值的试验时,为使锚固体与地层间首先破坏,可采取增加锚杆钢筋用量(锚固段长度取设计锚固长度)或减短锚固长度(锚固长度取设计锚固长度的0.4~0.6倍,硬质岩取小值)的措施; 2.当进行确定锚固段变形参数和应力分布的试验时,锚固段长度应取设计锚 固长度。 3.每种试验锚杆数量均不应少于3根。

4、锚杆基本试验应采用循环加、卸荷法,并应符合下列规定: 1.每级荷载施加或卸载完毕后,应立即测读变形量; 2.在每次加、卸载时间内应测读锚头位移二次,连续二次测读的变形量:岩 石锚杆均小于0.01mm,砂质土、硬粘性土中锚杆小于0.1mm时,可施加下一级荷载; 3.加、卸荷等级、测读间隔时间宜按表C.2.4确定。 表C.2.4 锚杆基本试验循环加卸荷等级与位移观测间隔时间 1.锚头位移不收敛,锚固体从岩土层中拔出或锚杆从锚固体中拔出: 2.锚头总位移量超过设计的允许值; 3.上层锚杆试验中后一级荷载产生的锚头位移增量,超过上一级荷载位移增 量的2倍。 6、试验完成后,应根据试验数据绘制荷载—位移(Q-S)曲线、荷载-弹性位移 (Q-S)曲线和荷载—塑性位移(Q-Sp)曲线。 7、锚杆弹性变形不应小于自由段长度变形计算值的80%,且不应大于自由段长 度与1/2锚固段长度之和的弹性变形计算值。 8、锚杆极限承载力基本值取破坏荷载前一级荷载值;在最大试验荷载作用下未 达到C.2.5规定破坏标准时,锚杆极限承载力取最大荷载值为基本值。 9、当锚杆试验数量为3根,各根极限承载力,各根极限承载力值的最大差值小 于30%时,取最小值作为锚杆的极限承载力标准值,;若最大差值超过30%。 应增加试验数量,,按95%的保证概率计算锚杆极限承载力标准值。、 锚固体与地层间极限粘结强度标准值除以2.2~2.7(对硬质岩取大值,对软岩、级软岩和土取小值;当试验的锚固长度与设计长度相同时取小值,反之取大值)为粘结强度特征值。 10、基本试验的钻孔,应钻取芯样进行岩石力学性能试验。 验收试验 1、锚杆验收试验的目的是检验施工质量是否达到设计要求。 2、验收试验锚杆的数量取每种类型锚杆总数的5%(自由段位于I、Ⅱ或Ⅲ类岩 石内时取总数的3%),且均不得少于5根。 3、验收试验的锚杆应随机抽样。质监、监理、业主或设计单位对质量有疑问的 锚杆也应抽样做验收试验。

锚杆种类

锚杆分类 目前用作支护的锚杆种类很多,按其与被支护体的锚固长度划分,可分为集中锚固类锚杆和全长锚固类锚杆。集中锚固类锚杆是指锚杆装置和杆体只有一部分和锚杆孔壁相接触的锚杆。包括端头锚固、点锚固和局部锚固等;全长锚固类锚杆是指锚固装置或锚杆杆体在全长范围内全部和锚杆孔壁接触的锚杆,包括各种摩擦式锚杆、全长砂浆锚杆、树脂锚杆和水泥锚杆等。 根据锚杆的锚固方式可分为机械式锚固型和黏结锚固型两类。锚固装置或锚杆杆体和孔壁接触,靠摩擦力起锚固作用的锚杆,属于机械锚固型锚杆;锚杆杆体部分或全长利用树脂、砂浆、快硬水泥等胶结材料将锚杆杆体和锚杆孔壁黏结固定在一起,靠粘结力起锚固作用的锚杆属于黏结型锚杆。 用于制作锚杆的材料种类较多,根据锚杆的材质不同,又可将锚杆分为钢丝绳锚杆、普通钢筋锚杆、螺纹钢锚杆、玻璃钢锚杆、木锚杆和竹锚杆等类型。 第一节金属锚杆 金属锚杆根据其锚固形式可分为机械式、管缝式和黏结式三大类。 一、机械式锚杆 机械式锚杆使用最早、结构多样、数量较大的锚杆。机械式锚杆的锚固机构本身是一个统一体,在安装锚杆时,锚固机构主要通过一个楔子系统在钻孔中进行轴向或径向相互错动而紧张在钻孔壁上。锚

固机构通过摩擦连接将锚固力多数传递给岩层。机械式锚杆在安装时,多数产生预紧力。有时,甚至锚固机构必须直接依靠预紧力来固定。 机械式锚杆的优点有:安装迅速,可即时达到承载力,可二次张紧,某些结构的锚杆还可以回收。其缺点是:钻孔中的锚固段较短,在高应力区容易导致岩层破坏和锚固剂松动,锚固力一般偏低,只能适用于中等稳定以上的岩层条件。机械式锚杆又可分为楔缝式锚杆、倒楔式锚杆和账壳式锚杆。 1.楔缝式锚杆 楔缝式锚杆主要由杆体、楔子、垫板和螺母等组成,如1-1所示。杆体直径包括18mm、20mm、22mm、25mm等规格,长度1200—1800mm;楔缝长150—250mm,宽2—3mm;楔子长130—150mm,宽18—25mm,上厚22—25mm,下厚3mm。 1—杆体;2—楔缝;3—丝扣;4—楔子;5—垫板;6—螺母 楔缝式锚杆的特点是:结构简单,设计锚固力为40KN,在中硬岩层中使用时,锚固力在40KN以上,加大锚头时锚固力为60—80KN。

长锚杆施工工法

长锚杆施工工法 一、前言 6m长锚杆在国内各种地下工程中较为少见,只在近年来随各种大跨、超大跨地下工程以及高边坡加固工程的增多才应用逐渐广泛。中铁二局在某超大跨地下工程的6m长锚杆施工中,采用液压凿岩台车钻设锚杆孔,并引进双管注浆工艺,加以改进和提高,开发出一套长锚杆的施工工法。采用此工法,能加快长锚杆施工进度,确保工程质量,提高施工效率,对长锚杆工程数量大、要求及时发挥长锚杆支护作用的工程施工极为有效。 二、工法特点 1、锚杆钻孔施工进度较快,锚杆锚安工效高,成本低。 2、采用双管工艺并先固定杆体,实现了有压注浆,有利于保证砂浆的保满度和密实度,确保锚固质量。 3、操作方便,所需施工人员少,工人劳动强度低,且人员技术熟练快,能进行高效率的锚安作业。 三、适用范围 本工法适用于全长粘结型砂浆锚杆,长度4~6m,对于长度小于该范围的锚杆,采用本成果不经济,长于该范围则钻孔难度增加,进度缓慢,也不经济。适用的地质条件为有一定自稳性的Ⅰ~Ⅳ级花岗岩地层及类似硬岩地层,节理裂隙较发育至不发育,受地质构造影响较重至轻微,地下水较发育至不发育。 四、工艺原理 对下倾锚杆采用传统的单管注浆工艺,插入注浆管至孔底,不设排气管,边注浆边抽出注浆管至孔内注浆完成,再插入锚杆固定即可。对上倾或竖直锚杆的锚固,采用双管注浆工艺,实现有压注浆,砂浆在压力作用下,由下而上填满锚杆与锚杆孔壁之间的空隙,同时渗透进围岩的节理裂隙中,加强了锚杆与围岩的摩擦力,同时,锚孔内的空气由排气管内排出,至排气管溢浆时表明孔内已注浆饱满。 五、施工工艺 ㈠工艺流程(见图1) ㈡关键技术 1、锚杆眼成孔技术 采用两臂液压凿岩台车、国产优质φ48mm钻头、国外产φ35mm、长6.1m 优质钻杆进行钻孔。由于钻杆长度比导轨滑架长度长约1.7m,开孔时需小心谨慎,待钻进1.7m后,将导轨滑架向上收缩抵住岩石,再正常钻进。软弱围岩钻孔中存在的主要问题是围岩破碎、钻孔时排碴不畅,导致坍孔、卡钻。针对性的处理措施是:保证钻孔水压及水量,以使其能将钻碎的岩碴排走;出现卡钻后及时退钻,待处理后再钻进;软弱围岩段钻孔后及时清孔、安装和锚固锚杆,以防止锚杆推不进去或推不到底。 2、锚杆锚安技术 对下倾锚杆采用φ16mm钢管作注浆管插入至孔底5~10cm,不设排气管,边注浆边缓慢匀速拔出注浆管至孔内注浆完成,再插入锚杆固定即可。对上倾或竖

锚杆基本试验

表号:TSJL/JS-180-A 委托编号:模拟2016-115 检测报告 (锚杆基本试验) 工程名称: 唐山金立建筑工程质量检测有限公司 2016年5 月

注意事项 1、报告无“检验鉴定章”或检验单位公章无效; 2、复制报告未重新加盖“检验鉴定章”或检测单位公章无效; 3、报告无报告人、审核、批准签字无效; 4、报告涂改和无骑缝章无效; 5、对检测签订报告若有异议,应于收到报告之日起十五日内向检测单 位提出; 6、一般情况,委托检测鉴定,仅对委托项目负责。 锚杆基本试验 检测报告 工程名称 工程地点 建设单位 委托单位唐山金立建筑工程质量检测有限公司 设计单位 监理单位 设计参数锚杆极限抗拔承载力预估值≥50kN 检测方法锚杆基本试验 检测时间2016.5.10 检测类别委托检测 检测项目锚杆极限抗拔承载力标准值 检测依据1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑地基基础工程施工质量验收规范》GB50007-2011; 3、《岩土锚杆(索)技术规程》CECS 22-2005 4、《建筑边坡工程技术规程》GB50330-2013 5、设计图纸及相关技术资料

检测结论 经检测分析,通过锚杆抗拔承载力检测试验,受测的1#锚杆极限承载力满足50kN的设计要求。 唐山金立建筑工程质量检测有限公司 2016年 5月 12日 批准人:审核人:主检人:绘图人: 目录 一、工程概况 二、检测目的 三、检测依据 四、检测数量表 五、工程地质概况 六、检测方法简介 七、检测结果分析 八、检测结论 附表: 锚杆基本试验结果统计表 附图:

锚杆荷载-位移(F-s)曲线 锚杆荷载-弹性位移(F-s e)曲线 锚杆荷载-塑性位移(F-s p)曲线 一、工程概况 本工程建筑场地位于x市xx地点。受委托单位委托,我公司对本工程锚杆进行锚杆基本试验检测。试验时场地无振动干扰。基坑主要采用桩锚支护体系+放坡编钢筋网喷砼支护体系。检测时间于2016年05月10日进行。 锚杆主要设计参数 护坡部位锚杆桩长 (m) 锚杆直径 (mm) 自由段 长度(m) 锚固段长 度 孔径 (mm) 极限抗拔承载力 预估值(kN) 1-1剖面20.0 16 5.0 15.0 50 50 二、检测目的 通过锚杆基本试验,确定锚杆极限抗拔承载力能否满足设计要求。 三、检测依据 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑地基基础工程施工质量验收规范》GB50007-2011; 3、《岩土锚杆(索)技术规程》CECS 22-2005 4、《建筑边坡工程技术规程》GB50330-2013 5、设计图纸及相关技术资料 四、检测数量表 检测项目抽检数量依据 锚杆极限抗拔承载力 1 《建筑基坑支护技术规程》 JGJ120-2012 五、工程地质概况 详见勘察报告 六、锚杆基本实验方法简介(一)试验方法及仪器设备

锚杆基本试验解析

委托编号:模拟2016-115 检测报告 (锚杆基本试验) 工程名称: 唐山金立建筑工程质量检测有限公司 2016年5 月

注意事项 1、报告无“检验鉴定章”或检验单位公章无效; 2、复制报告未重新加盖“检验鉴定章”或检测单位公章无效; 3、报告无报告人、审核、批准签字无效; 4、报告涂改和无骑缝章无效; 5、对检测签订报告若有异议,应于收到报告之日起十五日内向检测单 位提出; 6、一般情况,委托检测鉴定,仅对委托项目负责。

锚杆基本试验 检测报告 工程名称 工程地点 建设单位 委托单位唐山金立建筑工程质量检测有限公司 设计单位 监理单位 设计参数锚杆极限抗拔承载力预估值≥50kN 检测方法锚杆基本试验 检测时间2016.5.10 检测类别委托检测检测项目锚杆极限抗拔承载力标准值 检测依据1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑地基基础工程施工质量验收规范》GB50007-2011; 3、《岩土锚杆(索)技术规程》CECS 22-2005 4、《建筑边坡工程技术规程》GB50330-2013 5、设计图纸及相关技术资料 检测结论 经检测分析,通过锚杆抗拔承载力检测试验,受测的1#锚杆极限承载力满足50kN的设计要求。 唐山金立建筑工程质量检测有限公司 2016年 5月 12日 批准人:审核人:主检人:绘图人:

目录 一、工程概况 二、检测目的 三、检测依据 四、检测数量表 五、工程地质概况 六、检测方法简介 七、检测结果分析 八、检测结论 附表: 锚杆基本试验结果统计表 附图: 锚杆荷载-位移(F-s)曲线 锚杆荷载-弹性位移(F-s e)曲线锚杆荷载-塑性位移(F-s p)曲线

锚杆无损检测方法简介

锚杆无损检测 第一章绪论 岩土工程锚固技术,是以喷锚支护为主要技术措施,在岩土体的利用、整治和改造中,有效控制岩土体的稳定性,使之具有服务功能的加固技术的总称,在世界各地的岩土工程中得到了广泛的应用。 1.1岩土锚固技术的发展状况 在岩土工程中采用锚固技术,能够充分挖掘岩土能量,调用岩土的自身强度和自承能力,大大减轻结构的自重,节约工程材料,取得显著的经济效果并确保施工安全与工程稳定,因而迅速地得到大范围的推广应用。 1872,首批锚杆在英国北威尔士的一家板岩采石场中投入使用,美国于1911年开始用岩石锚杆支护矿山巷道,1918年西利西安矿山开始使用锚索支护,1934年阿尔及利亚的舍尔法坝加高工程使用预应力锚杆,1957年西德Buac;公司在深基坑中使用土层锚杆。目前,国外各类岩石锚杆己达600余种,每年的使用量达.25亿根。日本土锚的用量已比三年前增加了5倍。西德、奥地利的地下开挖工程,已把锚杆作为施工中的重要手段,无论硬土层或软土层,几乎没有不使用锚杆的。 我国岩石锚杆起始于50年代后期,当时有京西矿务局安滩煤矿、河北龙烟铁矿、湖南湘潭锰矿等单位使用楔缝式锚杆支护矿山巷道。进入60年代,我国开始在矿山巷道、铁路隧道及边坡整治工程中大量应用普通砂浆锚杆与喷射混凝土支护。1964年,梅山水库的坝基加固采用了预应力锚索。70年代,北京国际信托大厦等基坑工程采用土层锚杆维护。在全国煤矿中,1996年锚杆支护率己达29.1%。近10年来,北京王府饭店、京城大厦、上海太平洋饭店等一大批深基坑工程以及云南温湾电站边坡整治、吉林丰满电站大坝加固和上海龙华污水处理厂沉淀池抗浮工程等相继大规模地采用预应力锚杆。举世瞩目的三峡工程双线五级永久船闸的高边坡及薄衬砌墙稳定加固中,预应力锚索和全长粘结锚杆起了主要作用。 1.2锚杆检测技术的发展 锚杆锚固工程不但具有复杂性,还具有高度的隐蔽性,发现质量问题难,事故处理更难。因此锚杆检测工作是整个锚固工程中不可缺少的环节,只有提高锚杆监测工作的质量和监测评定结果的可靠性,才能真正地确保锚固工程的质量与安全。 1978年,瑞典的H.EThume;提出用超声波检测砂浆锚杆锚固质量的方法,并试制了Bultmer检测仪。该方法主要有两个问题:一是采用超声波衰减严重,只能对短锚杆,而且锚固介质单一的锚杆适用;二是对锚杆端头要求苛刻,即在现场要对锚杆端头重新机械加工打磨平整,压电晶体才能将超声波发射祸合进入杆体。 上世纪80年代末,美国矿业局研制了一种顶板锚杆粘结力测定仪。它也是根据发射和接收超声波的原理来设计的。 同时,我国铁道科学院曾在仿效瑞典所用方法的基础上做了一定的改进,研制了M一7锚杆检测仪,改用能量相对一致的机械式撞击方式激振,增大了有效检测长度。 武汉创新高科技公司生产的LX一10E型锚杆检测仪,主要用于边坡工程中的锚杆锚固质量检测,并且需要和拉拔力测试的结果结合起来,进行综合分析。 汪明武等人通过模型试验,分析了声频应力波在锚固体系中的反射相位特征和能量衰减变化规律,探讨了测定锚固力的无损拉拔试验,并将成果应用到实际工程中。 焦作工学院的吕绍林教授等人提出将声波在锚固系统中的能量特征与相位特征相结合的方法来综合评价锚杆锚固质量,其依据是锚固系统中锚固缺陷存在时,声波在缺陷处不仅有能量变化,而且有相位突变。 近年来,山西太原理工大学的李义教授等人利用应力波反射法,通过分段截取找出了锚

锚杆锚索检测规范依据

应提供基坑支护锚杆、锚索检测报告的依据如下: 1、根据《建筑基坑支护技术规程》JGJ120-2012中4.7锚杆设计和4.8 锚杆施工与检测的规定。 2、根据《预应力筋用锚具、夹具和连接器应用技术规程》(JGJ85-2010) 5进场验收的5.0.3和5.0.14条的预应力筋锚具、夹具与连接器取样规定 一、《建筑基坑支护技术规程》JGJ120-2012。 2.1 术语 2.1.14 锚杆anchor 由杆体(钢绞线、普通钢筋、热处理钢筋或钢管)、注浆形成的固结体、锚具、套管、连接器所组成的一端与支护结构构件连接,另一端锚固在稳定岩土体内的受拉杆件。杆体采用钢绞线时,亦可称为锚索。 4.7 锚杆设计 4.7.1锚杆的应用应符合下列规定: 1锚拉结构宜采用钢绞线锚杆;当设计的锚杆抗拔承载力较低时,也可采用普通钢筋锚杆;当环境保护不允许在支护结构使用功能完成后锚杆杆体滞留于基坑周边地层内时,应采用可拆芯钢绞线锚杆; 2在易塌孔的松散或稍密的砂土、碎石土、粉土层,高液性指数的饱和粘性土层,高水压力的各类土层中,钢绞线锚杆、普通钢筋锚杆宜采用套管护壁成孔工艺; 3锚杆注浆宜采用二次压力注浆工艺; 4锚杆锚固段不宜设置在淤泥、淤泥质土、泥炭、泥炭质土及松散填土层内; 5在复杂地质条件下,应通过现场试验确定锚杆的适用性。 4.7.9钢绞线锚杆、普通钢筋锚杆的构造应符合下列规定: 5锚杆杆体用钢绞线应符合现行国家标准《预应力混凝土用钢绞线》GB/T5224的有关规定; 6 普通钢筋锚杆的杆体宜选用HRB335、HRB400级螺纹钢筋; 7应沿锚杆杆体全长设置定位支架;定位支架应能使相邻定位支架中点处锚杆杆体的注浆固结体保护层厚度不小于10mm,定位支架的间距宜根据锚杆杆体的组装刚度确定,对自由段宜取1.5m~2.0m;对锚固段宜取1.0m~1.5m;定位支架应能使各根钢绞线相互分离; 8钢绞线用锚具应符合现行国家标准gb t14370 2007《预应力筋用锚具、夹具和连接器》GB/T14370的规定; 4.8 锚杆施工与检测 4.8.7预应力锚杆张拉锁定时应符合下列要求: 1当锚杆固结体的强度达到设计强度的75%且不小于15MPa后,方可进行锚杆的张拉锁定; 2拉力型钢绞线锚杆宜采用钢绞线束整体张拉锁定的方法; 3锚杆锁定前,应按表4.8.8的张拉值进行锚杆预张拉;锚杆张拉应平缓加载,加载速率不宜大于0.1N k/min,此处,N k为锚杆轴向拉力标准值;在张拉值下的锚杆位移和压力表压力应保持稳定当锚头位移不稳定时,应判定此根锚杆不合格; 4锁定时的锚杆拉力应考虑锁定过程的预应力损失量;预应力损失量宜通过对锁定前、后

锚杆、土钉的区别(完整版)

锚杆与土钉 (1) 第一章锚杆与土钉的概念 (1) 第一节锚杆 (1) 第二节土钉 (2) 第二章锚杆与土钉的区别 (3) 第一节土钉与锚杆不同之处 (3) 第三章知识延伸 (5) 第一节喷锚支护 (5) 第二节锚杆和锚索的区别 (6) 第四章重要认知 (7) 第五章总结 (8)

锚杆与土钉 按李广信教授的话,土钉是树上的鸟巢,锚杆是树上一根线挂着一个鸟巢。以下我们来具体讨论下两者具体的区别,首先先认清楚以下几个概念。 第一章锚杆与土钉的概念 第一节锚杆 将拉力传至稳定岩土层的构件。当采用钢绞线或高强钢丝束作杆体材料时,也可称为锚索。 是一种设置于钻孔内,端部伸入稳定土层中的钢筋或钢绞线与孔内注浆体组成的受拉杆体,它一端与工程构筑物相连,另一端锚入土层中,通常对其施加预应力,以承受由土压力、水压力、或风荷载等所产生的拉力,用以维护构筑物的稳定。一般由锚头段和锚固段三部分组成,其中锚固段用水泥浆或水泥砂浆将杆体与土体粘结在一起形成锚杆的锚固体.根据土体类型、工程特性与使用要求,土层锚杆锚固体结构可设计为圆形、端部扩大头型或连续球体型3类。

第二节土钉 用来加固或同时锚固现场原位土体的细长杆件。通常采取土中钻孔、置入变形钢筋即带肋钢筋并沿孔全长注浆的方法做成。土钉依靠与土体之间的界面粘结力或摩擦力,在土体发生变形条件下被动受力,并主要承受拉力作用。土钉也可用钢管、角钢等作为钉体,采用直接击入的方法置入土中。土钉墙支护适用于下列土体:可塑、硬塑或坚硬的黏性土,胶结或弱胶结(包括毛细水黏结)的粉土、砂土或角砾,填土、风化岩层等。

第二章锚杆与土钉的区别 第一节土钉与锚杆不同之处 一、受力机理 1)土钉是被动受力,即土体发生一定变形后,土钉才受力,从而阻止土体的继续变形; 2)锚杆是主动受力,即通过对锚杆时间预应力,在基坑未开挖前就限制土体发生过大变形。 二、受力范围 1)土钉是全长受力,不过受力方向分为两部分,潜在滑裂面把土钉分为两部分,前半部分受力方向指向潜在滑裂面方向,后半部分受力方向背向潜在滑裂面方向; 2)锚杆则是前半部分为自由端,后半部分为受力段,所以有时候在锚杆的前半部分不充填砂浆。 三、二者的本质区别在于工作机理的不同: 土钉是一种土体加筋技术,以密集排列的加筋体作为土体补强手段,提高被加固土体的强度与自稳能力; 锚杆是一种锚固技术,通过拉力杆将表层不稳定岩土体的荷载传递至岩土体深部稳定位置,从而实现被加固岩土体的稳定。 当土体发生一定变形后,土钉随着这个变形而提供抗力,这时受力特性和锚杆一样。只是它是全长受力。滑烈面所分成的两断受力方向是一样的,均为指向坡内。而锚杆在预应力的作用下,主动受力,始终是对坡体提供指向坡内的抗力,随着预应力的损失和坡体变形的停止,退化为土钉。 四、其他的一些区别 1、是否加预应力?yes-->锚杆;no-->土钉。 2、是否有专门的锚固机构?yes-->锚杆;no-->土钉。 3、是否通长注浆?yes-->土钉;no-->锚杆。

锚杆说明

设计 一、设计规范与技术标准 (一)设计规范 1.《公路挡土墙设计与施工技术规范》(送审稿) 2.《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ023-85) 3.《混凝土结构工程施工及验收规范》(GB50204-92) 4.《公路桥涵地基与基础设计规范》(JTJ024-85) 5.《公路工程抗震设计规范》(JTJ004-89) 6.《公路路基施工技术规范》(JTJ033-95) 7.《公路桥涵施工技术规范》(JTJ041-2000) (二)技术标准 1.地震烈度:地震基本烈度Ⅷ度。 二、主要材料 (一)混凝土 竖向肋柱、横向Ⅰ型、Ⅱ型肋柱柱身均采用25号混凝土。混凝土必须是《混凝土结构工程施工及验收规范》(GB50204-92)所规定的混凝土。 (二)普通钢筋 设计采用钢筋为HBR235和HBR335两种,HBR235钢质量要求符合《钢筋混凝土用热轧光圆钢筋》(GB13013-91)标准;HBR335钢质量要求符合《钢筋混凝土用热轧带肋钢筋》(GB1499-98)标准。 (三)锚杆材料 锚杆采用符合《钢筋混凝土用热轧带肋钢筋》(GB1499-98)国家标准生产的Ⅱ级钢筋,计算直径32毫米,外径34.5mm,钢筋抗拉抗压设计强度为340MPa。 (四)水泥砂浆 水泥砂浆的配比依据《混凝土结构工程施工及验收规范》(GB50204-92)的规定。灌浆材料采用25号水泥砂浆(灰砂比1:1,水灰比1:0.42,砂子粒径不得大于2mm),灌浆水泥采用新鲜无结块的425号普通硅酸盐水泥,其氯化物和硫酸盐的含量应严格控制,以防对锚杆钢筋腐蚀。可适当掺入对锚杆无腐蚀作用的膨胀剂。说明 三、设计要点 (一)布置原则及尺寸关系 肋柱边坡均平行于路线布设,肋柱平均间距3.4米,对应位置关系参照框架形护坡典型横断面图(图五)。 (二)全墙结构 1.框架形护坡墙背土压力按库仑土压力公式计算,结构计算根据肋柱的不同形式按一端铰支的超静定连续梁计算,根据确定的内力按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ023-85)对纵横向肋柱进行配筋,参照《公路挡土墙设计与施工技术规范》(送审稿) 10.3节的规定计算锚杆锚固段长度,并采用计算破裂面确定锚杆总长。 2.锚杆形式:锚杆按框架式护坡标准断面形式图(图五)设置,根据计算结果由三排锚杆组成。锚杆的长度分有效锚固段长度(Le)和自由段长度(Lo)。自由段长度指锚固端头到与肋柱连接端头的长度。锚固段的长度应根据锚固段地层抗拔力的需要而定。不同岩性边坡设计锚杆长度详见附表一。每排锚杆均按坡面法线方向锚入山体,设计钻孔直径0.11m。 3.锚杆的连接:是指把锚杆与肋柱连接为一体。主要是指自由段锚杆与肋柱和锚固段的锚杆连接。如图四所示,以焊接定位钢筋的形式连接,定位钢筋要点焊在肋柱主筋上。 (三)锚固结构 锚固端:锚固端锚杆弯折成90度,并做好防锈处理。 四、施工要点 施工时除应严格遵守中华人民共和国交通部部颁标准《公路路基施工技术规范》、《公路工程质量检验评定标准》有关要求外,尚应注意: (一)材料 1.混凝土:肋柱柱身使用25号混凝土,必须仔细研究确定施工工艺和选用的材料,进行混凝土最佳配合比试验,控制质量,控制标准和检测方法,并严格执行。建议采用同一厂家同一品牌的水泥用料。 2.钢材:普通钢筋、锚杆应按设计技术指标进行购货,并按照中华人民共和国交通部颁标准《公路路基施工技术规范》的有关要求,进行严格验收和检验。钢筋运抵后应放置在室内并防止锈蚀。 (二)土方开挖

相关文档