文档库 最新最全的文档下载
当前位置:文档库 › 11动量定理

11动量定理

11动量定理
11动量定理

例1关于物体的动量,下列说法中正确的是()

A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向

B.物体的动能不变,其动量一定不变

C.动量越大的物体,其速度一定越大

D.物体的动量越大,其惯性也越大

1.关于动量,下列说法正确的是()

A.速度大的物体,它的动量一定也大

B.动量大的物体,它的速度一定也大

C.只要物体运动的速度大小不变,物体的动量也保持不变

D.质量一定的物体,动量变化越大,该物体的速度变化一定越大

例2质量为0.5 kg的物体,运动速度为3 m/s,它在一个变力作用下速度变为7 m/s,方向和原来方向相反,则这段时间内动量的变化量为()

A.5 kg·m/s,方向与原运动方向相反

B.5 kg·m/s,方向与原运动方向相同

C.2 kg·m/s,方向与原运动方向相反

D.2 kg·m/s,方向与原运动方向相同

2.恒力F作用在质量为m的物体上,如图3所示,由于地面对物体的摩擦力较大,物体没有被拉动,则经时间t,下列说法正确的是()

A.拉力F对物体的冲量大小为零

B.拉力F对物体的冲量大小为Ft

C.拉力F对物体的冲量大小是Ftcos θ

D.合力对物体的冲量大小为零

3.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是()

A.引起小钢球动量变化的是地面给小钢球的弹力的冲量

B.引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量

C.若选向上为正方向,则小钢球受到的合冲量是-1 N·s

D.若选向上为正方向,则小钢球的动量变化是1 kg·m/s

例3如图2所示,在倾角α=37°的斜面上,有一

质量为5 kg的物体沿斜面滑下,物体与斜面间的

动摩擦因数μ=0.2,求物体下滑2 s的时间内,物

体所受各力的冲量.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)

例4跳远时,跳在沙坑里比跳在水泥地上安全,这是由于()

A.人跳在沙坑里的动量比跳在水泥地上的小

B.人跳在沙坑里的动量变化比跳在水泥地上的小

C.人跳在沙坑里受到的冲量比跳在水泥地上的小

D.人跳在沙坑里受到的平均作用力比跳在水泥地上的小

4.在2014年的澳大利亚网球公开赛上,中国选手李娜夺得冠军,比赛中,李娜挥拍将质量为m的网球击出,如果网球被球拍击打前、后瞬间速度的大小分别为v1、v2,v2与v1方向相反,且v2>v1.重力影响可忽略,则此过程中球拍对网球作用力的冲量大小为__________;方向与______(填“v1”或“v2”)方向相同.

例5质量m=70 kg的撑竿跳高运动员从h=5.0 m高处落到海绵垫上,经Δt1=1 s后停止,则该运动员身体受到的平均作用力约为多少?如果是落到普通沙坑中,经Δt2=0.1 s停下,则沙坑对运动员的平均作用力约为多少?(g取10 m/s2)

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Ox y内运动,其运动方程为: t b y t a x ωω2sin cos == 式中a 、b 和ω为常量。求质点对原点O的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 t b t y v t a t x v y x ωωωω2cos 2d d sin d d ==-== 质点对点O 的动量矩为 t a t b m t b t a m x mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v ? t mab ωω3 cos 2= 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C,A C = e ;轮子半径为R,对轴心A 的转动惯量为JA ;C 、A、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。 ? 轮子角速度R v A =ω? 质心C 的速度)(e R R v C B v A C += =ω? ?轮子的动量(A C mv R e R mv p += =?方向水平向右) ?对B点动量矩ω?=B B J L ? 由于? 2 22)( )( e R m me J e R m J J A C B ++-=++= 故[ ] R v e R m me J L A A B 2 2)( ++-=? (2)当轮子又滚又滑时由基点法求得C 点速度。 e v v v v A CA A C ω+=+= 轮子动量( )(e v m mv p A C ω+==?方向向右) 对B 点动量矩 ) ( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωωωω 12-13 如图所示,有一轮子,轴的直径为50 m m,无初速地沿倾角?=20θ的轨道滚下,设只滚不滑,5秒内轮心滚动的距离为s = 3 m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图(a)所示,根据刚体平面运动微分方程有 ? F mg ma C -=θsin ? (1) J Cα = Fr ? ?(2) 因轮子只滚不滑,所以有 a C =αr (3)

理论力学@11动量矩定理

·250· 第11章 动量矩定理 11.1 主要内容 11.1.1 质点系动量矩计算 质点系对任意一点的动量矩为各质点的动量对同一点之矩的矢量和或质点系中各质点的动量对同一点的主矩,即 ∑∑==?==n i n i i i i i O O m m 1 1 )(i v r v M L 质点系对于某轴,例如对z 轴的动量矩为 ∑==n i i i z z m M L 1) (v 刚体对转动轴z 轴的动量矩为 ωz z I L = 质点系相对于质心的动量矩为质点系中各点动量对质心的主矩,即 i i n i i C m v r L ?'=∑=1 i r '为第i 个质点对质心的矢径。 质点系对任意一点的动量矩等于质点系对质心的动量矩,与将质点系的动量集中于质心对于O 点动量矩的矢量和。 C v r L L m C C O ?+= 当刚体作平面运动时,又可表示为 d mv L L C ±=C O 其中d 为点至v C 的垂直距离,当C L 与矩d mv C 的符号相同时取正值,反之取负值, 11.1.2 质点系的动量矩定理 (1)对固定点的动量矩定理 质点系对固定点O 的动量矩对于时间的一阶导数等于外力系对同一点的主矩,即 ) (e O O dt d M L = 在直角坐标系上的投影式为

·251· ?? ?? ? ? ??? ∑=∑=∑=)()()()()()(e z z e y y e x x M dt dL M dt dL M dt dL F F F (2)质点系相对于质心的动量矩定理 质点系相对于质心的动量矩对时间的一阶导数等于外力系对质心的主矩。即 (e )C C M L =dt d 或 (e ) C Cr M L =dt d 式中Cr L 为质点系相对于质心平移坐标系的运动对质心的动量矩。 (3) 动量矩守恒定律 在特殊情况下外力系对O 点的主矩为零,则质点系对O 点的动量矩为一常矢量,即 () 0=e O M ,常矢量=O L 或外力系对某轴力矩的代数和为零,则质点系对该轴的动量矩为一常数,例如 0 )()(=∑e x M F ,L x =常数 11.1.3 刚体绕定轴转动微分方程 若刚体绕固定轴z 的转动惯量为I z ,则刚体绕固定轴z 的微分方程为 z z M t I =22d d ? 或 z z M I =ε 在工程中,常将转动惯量表示为 2z z m I ρ= z ρ称为回转半径。 11.1.4 刚体平面运动微分方程 当刚体作平面运动时,联合应用质心运动定理和相对于质心的动量矩定理,可得到刚体平面运动微分方程 ??? ? ???===∑∑C c y c x c M I F y m F x m ?

理论力学(机械工业出版社)第十一章动量矩定理习题解答

习 题 11-1 质量为m 的质点在平面Oxy 内运动,其运动方程为:t b y t a x ωω2sin ,cos ==。其中a 、b 和w 均为常量。试求质点对坐标原点O 的动量矩。 t a x v x ωωsin -== t b y v y ωω2cos 2== x mv y mv L y x O +-= )cos 2cos 22sin sin (t a t b t b t a m ωωωωωω?+?= )cos 2cos 22sin (sin t t t t mab ωωωωω?+?= )cos 2cos 2cos sin 2(sin t t t t t mab ωωωωωω?+?= )2cos (sin cos 22t t t mab ωωωω+= t mab ωω3cos 2= 11-2 C 、D 两球质量均为m ,用长为2 l 的杆连接,并将其中点固定在轴AB 上,杆CD 与轴AB 的交角为θ,如图11-25所示。如轴AB 以角速度w 转动,试求下列两种情况下,系统对AB 轴的动量矩。(1)杆重忽略不计;(2)杆为均质杆,质量为2m 。 图11-25 (1) θθ222sin 2)sin (2ml l m J z =?= θω22sin 2l m L z = (2) θθ220 2sin 3 2d )sin (2ml x x l m J l z ==?杆 θ22sin 3 8 ml J z = θ ω22sin 3 8 l m L z = 11-3 试求图11-26所示各均质物体对其转轴的动量矩。各物体质量均为m 。 图11-26 (a) ω23 1ml L O = (b) 22291)6(121ml l m ml J O =+= ω29 1ml L O -=

012 第十二章 动量矩定理

第12章 动量矩定理 通过上一章的学习我们知道动量是表征物体机械运动的物理量。但是在某些情况下,一个物体的动量不足以反映它的运动特征。例如,开普勒在研究行星运动时发现,行星在轨道上各点的速度不同,因而动量也不同,但它的动量的大小与它到太阳中心的距离之乘积—称为行星对太阳中心的动量矩,总是保持为常量,可见,在这里,行星对太阳中心的动量矩比行星的动量更能反映行星运动的特征。 在另一些情况下,物体的动量则完全不能表征它的运动。例如,设刚体绕着通过质心C 的z 轴转动。因为不论刚体转动快慢如何,质 心速度C v 总是等于零,所以刚体的动量也总是零。但是,刚体上各质点的动量大小与其到z 轴的距离的乘积之和—即刚体对z 轴的动量矩却不等于零。可见,在这里,不能用动量而必须用动量矩来表征刚体的运动。 §12-1 质点动量矩定理 例2.人造地球卫星本来在位于离地面600km h =的圆形轨道上,如图所示,为使其进入410km r =的另一圆形轨道,须开动火箭,使卫星在A 点的速度于很短时间内增加0.646km/s ,然后令其沿椭圆轨道自由飞行到达远地点B ,再进入新的圆形轨道。问:(1)卫星在椭圆轨道的远地点B 处时的速度是多少?(2)为使卫星沿新的圆形轨道运行,当它到达远地点B 时,应如何调整其速度?大气阻力及其它星球的影响不计。地球半径6370km R =。 图12-5 解:首先求出卫星在第一个圆形轨道上的速度,可由质点动力学方程求出。卫星运行时只受地球引力的作用,即 2 2 () R F mg R x =+ 式中x 是卫星与地面的距离。当卫星沿第一圆形轨道运动时,有

22 2 ()()v R m mg R h R h =++ 即 2 2 () gR v R h =+ (b ) 将6370km R =,600km h =,9.8m/s g =代入上式,得卫星在第一个圆形轨道上运动的速度 17.553km/s v = 所以卫星在椭圆轨道上的A 点的速度为 7.5530.6468.199km/s A v =+= 卫星在椭圆轨道上运动时,仍然只受地球引力作用,而该引力始终指向地心O ,对地以O 的矩等于零,所以卫星对地心O 的动量矩应保持为常量。设卫星在远地点B 的速度为B v ,则有 A A B B r v r v = 所以 4 63706008.199 5.715km/s 10A B A B r v v r += ?=?= 设卫星沿新的圆形轨道运行时所需的速度为2v ,则 22 2 2 4 9.86370 6.306km/s 10gR v r ?=== 由此可见,为使卫星沿着第二个圆形轨道运行,当它沿椭圆轨道到达B 点时,应再开动火箭,使其速度增加一个值 20.591km/s B B v v v ?=-= 顺便指出,在(b )式中令0h →,就得到7.9km/s v =,这就是为使卫星在离地面不远处作圆周运动所需的速度,称为第一宇宙速度。 §12-2 质点系动量矩定理 例1.质量为1m 、半径为R 的均质圆轮绕定轴O 转动,如图所示。轮上缠绕细绳,绳端悬挂质量为2m 的物块,试求物块的加速度。均质圆 轮对于O 轴的转动惯量为211 2 O J m R =。

理论力学(盛冬发)课后习题答案ch11

·125· 第11章 动量矩定理 一、是非题(正确的在括号内打“√”、错误的打“×”) 1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。 (×) 2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。(√) 3. 质点系动量矩的变化与外力有关,与内力无关。 (√) 4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。 (√) 5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。 (×) 6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。 (×) 7. 质点系对某点的动量矩定理e 1d ()d n O O i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。 (√) 8. 如图11.23所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+ 221 3 ml mr =+,式中m 为AB 杆的质量。 (×) 9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d ()d n P P i i t ==∑L M F 的形式,而 不需附加任何条件。 (×) 10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。 (×) A B l O ω r 图11.23 二、填空题 1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。 2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。 3. 质点系的质量与质心速度的乘积称为质点系的动量。 4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。 5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数

《理论力学》第十一章动量矩定理习题解

y x 第十一章 动量矩定理 习题解 [习题11-1] 刚体作平面运动。已知运动方程为:2 3t x C =,24t y C =,3 2 1t = ?,其中长度以m 计,角度以rad 计,时间以s 计。设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。 解: )(1223|2 2m x t C =?== )(1624|22m y t C =?== t t dt d dt dx v C Cx 6)3(2=== )/(1226|2s m v t Cx =?== t t dt d dt dy v C Cy 8)4(2=== )/(1628|2s m v t Cy =?== 2323)21(t t dt d dt d === ?ω )/(622 3 |22s rad t =?==ω → →→+=k v m M J L C Z Cz O )]([ω → → -+=k y mv x mv m L C Cx C Cy O ][2 ωρ → =→ ?-?+??=k L t O ]1612121665.0[10|2 2 → =→ =k L t O 15|2 )/(2 s m kg ?,→ k 是z 轴正向的单位向量。 [习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。 解: g Pl l g P J AB z 3312 2,=??=

平动 )(a O 转动 绕定轴C )( b 转动 绕定轴1 )(O c 1 O 在圆弧上作纯滚动 )(d g l R W l g W g J l z 4)4(R W 412222,+=?+??=圆盘 ωω?+?=圆盘,,z AB z z J J L ω4) 4(3[222g l R W g Pl L z ++= ω)4443( 2 2 2 g WR g Wl g Pl L z ++= ω)4333(2 22g WR g Wl g Pl L z ++= ω)433( 2 2R g W l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大?图中l C O =1。 解:)(a 因为圆盘作平动,所以 ωω211ml J L z O O == 解:)(b → →→→?+=p r L L C C O 1 其中,质心C 的动量为0 ωω22 1 1mR J L Cz O = = 解:)(c ωω)2 1 (2211ml mR J L z O O +== 解:)(d 因为圆盘作平面运动,所以: ) (11→ +=C Z O Cz O v m M J L ω

第11章动矩定理

第11章 动量矩定理 上一章我们学习了动量定理,它只是从一个侧面反映物体间机械运动传递时,动量的变化与作用在物体上力之间的关系。但当物体作定轴转动时,若质心在转轴上,则物体动量等于零,可见对于转动刚体而言,动量不再用来描述转动物体的物理量。在这一章里我们学习描述转动物体的物理量——动量矩,以及作用在物体上力之间的关系。 11.1 动量矩定理 11.1.1质点和质点系动量矩 1.质点的动量矩 如图11-1所示,设质点在图示瞬时A 点的动量为m v ,矢径为r ,与力F 对点O 之矩的矢量表示类似,定义质点对固定点O 的动量矩为 v r v M m ×=)(m o (11-1) 图11-1 图11-2 质点对固定点O 的动量矩是矢量,方向满足右手螺旋法则,如图11-1所示,大小为固 定点O 与动量AB 所围成的三角形面积的二倍,即 mvh =OAB =)(m M 0的面积Δ2v 其中,h 为固定点O 到AB 线段的垂直距离,称为动量臂。 单位为kg.m 2/s 。

质点的动量对固定轴z 的矩与力F 对固定轴z 的矩类似,如图11-2所示,质点的动量v m 在oxy 平面上的投影xy )m (v 对固定点O 的矩,定义质点对固定轴z 的矩,同时也等于质点对固定点O 的动量矩在固定轴z 上的投影。质点对z 轴的动量矩是代数量,即 z o xy o m =m M =m M Z )]([])[()(v M v v (11-2) 2.质点系的动量矩 质点系对固定点O 的动量矩等于质点系内各质点对固定点O 的动量矩的矢量和,即 ∑==n i i i o )(m 1v M L o (11-3) 质点系对固定轴z 的矩等于质点系内各质点对同一轴z 动量矩的代数和,即 Z o n i i i z z )(m =L ][L v M =∑=1 (11-4) 刚体作平移时动量矩的计算:将刚体的质量集中在刚体的质心上,按质点的动量矩计 算。 刚体作定轴转动时动量矩的计算: 设定轴转动刚体如图11-3所示,其上任一质点i 的质量为m i ,到转轴的垂直距离为i r ,某瞬时的角速度为ω,刚体对转轴z 的动量矩由式(11-4)得 图11-3 ω J =ω)r m (=) r ωr (m =)r v (m =)(m M =L z n i i i n i i i i n i i i i n i i i z ∑∑∑∑====1 21 1 1v z 即 ωJ =L z z (11-5)

《理论力学》第十一章动量矩定理习题解

y 第十一章 动量矩定理 习题解 [习题11-1] 刚体作平面运动。已知运动方程为:2 3t x C =,24t y C =,3 2 1t = ?,其中长度以m 计,角度以rad 计,时间以s 计。设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。 解: )(1223|22m x t C =?== )(1624|2 2m y t C =?== t t dt d dt dx v C Cx 6)3(2=== )/(1226|2s m v t Cx =?== t t dt d dt dy v C Cy 8)4(2=== )/(1628|2s m v t Cy =?== 2323)21(t t dt d dt d === ?ω )/(622 3 |22s rad t =?==ω → →→+=k v m M J L C Z Cz O )]([ω → → -+=k y mv x mv m L C Cx C Cy O ][2 ωρ → =→ ?-?+??=k L t O ]1612121665.0[10|2 2 → =→ =k L t O 15|2 )/(2 s m kg ?,→ k 是z 轴正向的单位向量。 [习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。 解: g Pl l g P J AB z 3312 2,=??=

平动 )(a O 转动 绕定轴C )( b 转动 绕定轴1 )(O c O 在圆弧上作纯滚动 )(d g l R W l g W g J l z 4)4(R W 412222,+=?+??=圆盘 ωω?+?=圆盘,,z AB z z J J L ω4) 4(3[222g l R W g Pl L z ++= ω)4443(2 22g WR g Wl g Pl L z ++= ω)4333(2 22g WR g Wl g Pl L z ++= ω)433( 2 2R g W l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大?图中l C O =1。 解:)(a 因为圆盘作平动,所以 ωω2 11ml J L z O O == 解:)(b → →→→?+=p r L L C C O 1 其中,质心C 的动量为0 ωω22 1 1mR J L Cz O = = 解:)(c ωω)2 1 (2211ml mR J L z O O +== 解:)(d 因为圆盘作平面运动,所以: )(11→ +=C Z O Cz O v m M J L ω

12第十二章 动量矩定理

1 质点系对某轴的动量矩等于质点系中各质点的动量对同一轴之矩的代数和。 ( ) 2 刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体绕该轴转动时惯性大小的度量。 ( ) 3 刚体对某轴的回转半径等于其质心到该轴的距离。( ) 4 如果作用于质点系上的所有外力对固定点O 的主矩不为零,那么,质点系的动量矩一定不守恒。( ) 5 如果质点系所受的力对某点(或轴)的矩恒为零,则质点系对该点(或轴)的动量矩不变。( ) 6 图中所示已知两个均质圆柱,半径均为R ,质量分别为2m 和3m ,重物的质量为1m 。重物向下运动的速度为V ,圆柱C 在斜面上只滚不滑,圆柱O 与绳子之间无引对滑动,则系统 对O 轴的动量矩为vR m R m vR m H o 12 232 ++=ω。( ) 7 图中已知均质圆轮的半径为R ,质量为m ,在水平面上作纯滚动,质心速度为C v ,则轮子对速度瞬心I 的动量矩为R mv H c I =。( ) 1 已知刚体质心C 到相互平行的z z 、'轴的距离分别为b a 、,刚体的质量为m ,对z 轴的转动惯量为z J ,则' z J 的计算公式为__________________。

A .2)(b a m z z ++='J J ; B .)(2 2b a m z z -+=' J J ; C.)(2 2b a m z z --=' J J 。 2 两匀质圆盘A 、B ,质量相等,半径相同,放在光滑水平面上,分别受到F 和' F 的作用,由静止开始运动,若' F F =,则任一瞬间两圆盘的动量相比较是_____________________。 A.B A p p >; B.B A p p <; C.B A p p =。 3 在一重W 的车轮的轮轴上绕有软绳,绳的一端作用一水平力P ,已知车轮的半径为R ,轮轴的半径为r ,车轮及轮轴对中心O 的回转半径为ρ,以及车轮与地面间的滑动摩擦系数为f ,绳重和滚阻皆不计。当车轮沿地面作平动时,力P 的值为_________________。 A.ρ/fWR P =; B.r fWR P /=; C.r fW P /ρ=;④ fW P =。

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: x a cos t y bsin2 t 式中a 、b 和 为常量。求质点对原点 O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 V x dx sin t dt a V y dy 2b cos2 t 质点对点 O 的动量矩为 L O M o (mV x ) M 0( mV y ) mv x y mv y x m ( a sin t) bsin2 t m 2b cos2 t acos t 2mab cos 3 t 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。 轮子轴心为A,质心为C, AC = e ;轮子半径为 R,对轴心A 的转动惯量为J A ; C 、A 、B 三点在同一铅直线上。(1 )当轮子只 滚不滑时,若 V A 已知,求轮子的动量和对地面上 B 点的动量矩。(2)当轮子又滚又滑时, 若V A 、 已知,求轮子的动量和对地面上 B 点的动量矩。 解:(1)当轮子只滚不滑时 B 点为速度瞬心。 轮子角速度 V A R 质心C 的速度V C BC R e 轮子的动量 p mv C mv A (方向水平向右) R 对B 点动量矩L B J B 2 2 2 由于 J B J C m (R e) J A me m (R e) 故 L B J A me 2 m (R e )2 食 (2)当轮子又滚又滑时由基点法求得 C 点速 度。 V C V A V CA V A e 轮子动量 p mv C m(v A e) (方向向右) 对B 点动量矩 L B mv C BC J C m(v A 2 e) (R e) (J A me) mv A (R e) (J A mRe) 12-13 如图所示,有一轮子,轴的直径为 50 mm 无初速地沿倾角 20的轨道滚下,设 只滚不滑,5秒内轮心滚动的距离为 s =3m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图( a )所示,根据刚体平面运动微分方程有 ma C mgsi n F ( 1) J C = Fr ( 2) 因轮子只滚不滑,所以有 a c = r ( 3) ? 12

第12章 动量矩定理(田)

第十二章 动量矩定理 一、填空题 1.如下(1)图所示,在提升重为G的物体A时,可在半径为r的鼓轮上作用一力偶M。已知鼓轮对轴O的转动惯量为I,某瞬时鼓轮的角加速度为α,则该瞬时,系统对轴O的动量矩定理可写成______________。 2.如下(2)图所示,轮B由系杆AB带动在固定轮A上无滑动滚动,两圆的半径分别为R,r。若轮B的质量为m,系杆的角速度为ω,则轮B对固定轴A的动量矩大小是_______________。 3.图(3)中匀质圆盘在光滑水平面上作直线平动,图(4)中匀质圆盘沿水平直线作无滑动滚动。设两圆盘的质量皆为m,半径皆为r,轮心O速度皆为v,则图示瞬时,它们各自对轮心O和对与地面接触点D的动量矩分别为:(3)LO =___________ ;LD =_____________________; (4)LO =_____________;LD =_____________________。 二、选择题 1.如下图(1)所示,已知两个匀质圆轮对转轴转动惯量分别为I A,I B,半径分别为RA,RB,作用在A轮上的转矩为M,则系统中A轮角加速度的大小为( )。 2 2A 2 2B 2 A A B A A 222A D C I I M B A B A B A B A A B B R I R I MR I M R I R I MR +==+=+=αααα、;、;、;、 2.如下图(2)所示,两匀质细杆OA和BC的质量均为m = 8kg,长度均为l = 0.5m, 固连成图所示的T字型构件,可绕通过点O的水平轴转动。当杆OA处于图示水平位置时,该构件的角速度ω = 4rad/s。则该瞬时轴O处反力的铅垂分力NOy的大小为( )。 A.NO=24.5N;B.NO=32.3N;C.NO=73.8N;D.NO=156.8N 3.如果把下图(3)中重为G A 的物体换为图(4)所示的力G A ,在这两种情况下,若把匀质滑轮的角加速度ε1和ε2的大小比较,则有( )。 A . ε1 < ε; B . ε1 > ε; C . ε1 = ε2 (1) (2) (3) (4) (1) (2) (3) (4)

第十一章动量矩定理习题解答

习题 11-1质量为m的质点在平面Oxy内运动,其运动方程为: 。其中a、b和w均为常量。试求质点对坐标原点 O的动量矩。 11-2 C、D两球质量均为m,用长为2 l的杆连接,并将其中点固定在轴AB上,杆CD与轴AB的交角为,如图11-25所示。如轴AB以角速度w转动,试求下列两种情况下,系统对AB轴的动量矩。<1)杆重忽略不计;<2)杆为均质杆,质量为2m。b5E2RGbCAP 图11-25 (1> (2> 11-3 试求图11-26所示各均质物体对其转轴的动量矩。各物体质量均为m。 图11-26 (a>

(b> (c> (d> 11-4如图11-27所示,均质三角形薄板的质量为m,高为h,试求对底边的转动惯量Jx。 图11-27 面密度为 在y处 微小区域对于z轴的转动惯量 11-5 三根相同的均质杆,用光滑铰链联接,如图11-28所示。试求其对与ABC所在平面垂直的质心轴的转动惯量。p1EanqFDPw 图11-28 11-6 如图11-29所示,物体以角速度w绕O轴转动,试求物体对于O轴的动量矩。(1> 半径为R,质量为m的均质圆盘,在中央挖去一边长为R的正方形,如图11-32a所示。(2> 边长为4a,质量为

m的正方形钢板,在中央挖去一半径为a的圆,如图11-32b所示。DXDiTa9E3d 图11-29 (1> (2> 11-7如图11-30所示,质量为m的偏心轮在水平面上作平面运动。轮子轴心为A,质心为C,AC=e;轮子半径为R,对轴心A的转动惯量为JA;C、A、B三点在同一直线上。试求下列两种情况下轮子的动量和对地面上B点的动量矩:(1>当轮子只滚不滑时,已知vA;(2>当轮子又滚又滑时,已知vA、w。RTCrpUDGiT 图11-30 (1>

理论力学(11.9)--动量矩定理-思考题

第十一章 动量矩定理 11-1 某质点对于某定点O的动量矩矢量表达式为 式中t为时间,为沿固定直角坐标轴的单位矢量。求此质点上作用力对O点的力矩。 11-2 某质点系对空间任一固定点的动量矩都完全相同,且不等于零。这种运动情况可能吗? 11-3 试计算如图所示物体对其转轴的动量矩。 11.4 如图所示传动系统中为轮Ⅰ、轮Ⅱ的转动惯量,轮Ⅰ的角加速度为 对吗?

11-5 如图所示,在铅垂面内,杆OA 可绕O 轴自由转动,均质圆盘可绕其质心轴A 自由转动。如OA 水平时系统为静止,问自由释放后圆盘作什么运动? 11-6 质量为m 的均质圆盘,平放在光滑的水平面上,其受力情况如图所示。设开始时,圆盘静止,图中 2R r 。试说明各圆盘将如何运动。 11-7 一半径为R 的均质圆轮在水平面上只滚动而不滑动。如不计滚动摩阻,试问在下列两种情况下,轮心的加速度是否相等?接触面的摩擦力是否相同? (1)在轮上作用一顺时针转向的力偶,力偶矩为M ;

(2)在轮心作用一水平向右的力,R M F 。11-8 细绳跨过不计轴承摩擦的不计质量的滑轮,两猴质量相同,初始静止在无重绳上,离地面高度相同。(1)若两猴同时开始向上爬,且相对绳的速度大小可以相同也可以不相同,问站在地面看,两猴的速度如何?在任一瞬时,两猴离地面的高度如何?(2)若两猴同时开始一个向上爬,另一个向下爬,且相对绳的速度大小可以相同也可以不相同,问站在地面看,两猴的速度如何?在任一瞬时,两猴离地面的高度如何? 11-9 如图所示,均质杆、均质圆盘质量均为m ,杆长为2R ,圆盘半径为R ,两者铰接于点A ,系统放在光滑水平面上,初始静止。现受一矩为M 的力偶作用,则下列哪些说法正确: A.如M 作用于圆盘上,则盘绕A 转动,杆不动; B.如M 作用于杆上,则杆绕A 转动,盘不动; C.如M 作用于杆上,则盘为平移; D.不论M 作用于哪个物体上,系统运动都一样。

第12章 动量矩定理

第十二章 动量矩定理 §12—1 质点和质点系的动量矩 一、质点的动量矩 质点Q 的动量对于点O 的矩,定义为质点对于点O 的动量矩 动量矩的单位:kgm 2/s 二、 质点系的动量矩 ()mv r mv M O ?=()OQA r mv mv M O ?=?=2sin ?() i i n i O O v m M L ∑==1 () i i n i z z v m M L ∑==1 ()A Q O mv M z ' '?±=2()[]() mv M mv M z z O =

绕定轴转动刚体对其转轴的动量矩等于刚体对转轴的转动惯量与转动角速度的乘积。 §12—2 动量矩定理 一、质点的动量矩定理 质点的动量矩定理: 质点对某定点的动量矩对时间的一阶导数,等于作用力对同一点的矩。 直角坐标投影式为 []z z O L L =()2 1 1 1 i n i i i n i i i i i n i z z r m r v m v m M L ∑∑∑====?==ω2 1 i n i i z r m J ∑==ω z z J L =()mv dt d r mv dt dr mv r dt d mv M dt d O ?+?=?=)()(()F r mv v mv M dt d O ?+?=()()F M mv M dt d O O =()()()()()()F M m v M dt d F M m v M dt d F M m v M dt d z z y y x x == =

特殊情形: 当质点受有心力F 的作用时,如图11-4所示,力矩0=)(o F M ,则质点对固定点O 的动量矩)(m o v M =恒矢量,质点的动量矩守恒。例如行星绕着恒星转,受恒星的引力作用,引力对恒星的矩0=)(o F M ,行星的动量矩 )(m o v M =恒矢量,此恒矢量的方向是不变的,因此行星作平面曲线运动;此 恒矢量的大小是不变的,即mvh =恒量,行星的速度v 与恒星到速度矢量的距离h 成反比。

理论力学课后习题答案第9章动量矩定理及其应用)

第9章动量矩定理及其应用 9— 1计算下列情形下系统的动量矩。 1. 圆盘以 3的角速度绕 0轴转动,质量为 m 的小球M 可沿圆盘的径向凹槽运动,图示瞬时 小球以相对于圆盘的速度 v r 运动到0M = s 处(图a );求小球对 0点的动量矩。 2. 图示质量为 m 的偏心轮在水平面上作平面运动。轮心为 A ,质心为 C ,且AC = e ;轮子半 b )o ( 1)当轮子只滚不滑 (2)当轮子又滚又滑时,若 V A 、3已知,求轮 V A 、 R R 径为R ,对轮心A 的转动惯量为 时,若V A 已知,求轮子的动量和对 J A ; C 、A 、B 三点在同一铅垂线上(图 B 点的动量矩; 习题9 — 1图 (2) p 二 mv C =m (v A 亠: 2) 2 L B =mv c (R 亠e )亠J c . =m (V A 亠?:、e )( R 亠 e )亠(J A —me ) . = m ( R 亠e )v A 亠(J A 亠 meR )■. 9 — 2图示系统中,已知鼓轮以 3的角速度绕0轴转动, 其大、小半径分别为 R 、r ,对0轴的转动惯量为 J O ;物块 A 、B 的质量分别为 m A 和m s ;试求系统对 0轴的动量矩。 解: 2 2 L 0 = (J 0 ■ m A R - m s r )■ ■ 习题9— 2图 9 — 3图示匀质细杆0A 和EC 的质量分别为50kg 和100kg ,并在点A 焊成一体。若此结构在图示位 置由静止状态释放,计算刚释放时,杆的角加速度及铰链 O 处的约束力。不计铰链摩擦。 解:令 m = m °A = 50 kg ,贝V m Ec = 2m 质心D 位置:(设I = 1 m ) 5 5 d = OD = —l = — m 6 6 刚体作定轴转动,初瞬时 3 =0 1 ■— ■ 2 mg l 2 J O =mg 2 1 2 2 2m (2l )亠2 ml 3 ml 12 习题20-3图 即 3ml 2 ?. -5 mgl 2 5 g 6l = 8.17 rad/? t 5 a ° 二—l 6 由质心运动定理: t 3m a D 25 g 36 =3mg -F °y F °y 二 3mg 25 11 -3m ——g = — mg =449 36 12 (f ) n ? =o , a D T , F ox =o

11章作业题解-动量矩定理

理论力学11章作业题解 11-3 已知均质圆盘的质量为m ,半径为R ,在图示位置时对O 1点的动量矩分别为多大?图中O 1C=l 。 解 (a) 2 1l m l mv L c O w == ,逆时针转动。 (b) w w 2 210||1mR J L v m r L c c c O =+=+′=r r ,逆时针转动。 (c ) )2(2 2 12 2 12 1l R m ml mR ml J J c O +=+=+= w w )2(2 2111l R m J L O O +==,逆时针转动。 (d) w w mR R l mv R l R v mR l mv J l mv L v m r L c c c c c c c O )5.0()5.0(/||2 2 11-=-=-=-=+′= r r ,顺时针转动 v c v c v c

11-5 均质杆AB 长l 、重为G 1,B 端刚连一重G 2的小球,弹簧系数为k ,使杆在水平位置保持平衡。设给小球B 一微小初位移0d 后无初速度释放,试求AB 杆的运动规律。 解 以平衡位置(水平)为0=j ,顺时针转为正。平衡时弹簧受力为: )5.0(312G G F s += 弹簧初始变形量: k G G k F s st /)5.0(3/12+==d 在j 角时弹簧的拉力为(小位移): 3/)5.0(3)3/(12l k G G l k F st s j j d ++=+=¢ 系统对A 点的动量矩: j j j &&&2 21233l g G G l l g G J L A A +=×+= 对点的动量矩定理)(/?=E i A A F M dt dL r : j j 9 3/5.0332 21221kl l F lG lG l g G G s -=¢-+=+&& 0)3(321=++j j G G gk &&,令) 3(3212G G gk p +=则有02=+j j p &&,其解为: )cos()sin(pt B pt A +=j 由初始条件0| ,/|000====t t l j d j &得l B A / ,00d ==。故运动方程为: )cos(0 pt l d j = G 1 G 2 F Ax F Ay F s

第12章 动量矩定理习题答案

第12章 动量矩定理 12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: t b y t a x ωω2sin cos == 式中a 、b 和ω为常量。求质点对原点O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 t b t y v t a t x v y x ωωωω2cos 2d d sin d d ==-== 质点对点O 的动量矩为 t a t b m t b t a m x mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v t mab ωω3cos 2= 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为J A ;C 、A 、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B 点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。 轮子角速度 R v A =ω 质心C 的速度 )(e R R v C B v A C += =ω 轮子的动量 A C mv R e R mv p += =(方向水平向右) 对B 点动量矩 ω?=B B J L 由于 222)( )( e R m me J e R m J J A C B ++-=++= 故 [] R v e R m me J L A A B 22)( ++-= (2)当轮子又滚又滑时由基点法求得C 点速度。 e v v v v A CA A C ω+=+= 轮子动量 )(e v m mv p A C ω+== (方向向右) 对B 点动量矩 ) ( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωωωω 12-5 图示水平圆板可绕z 轴转动。在圆板上有一质点M 作圆周运动,已知其速度的大小为常量,等于v 0,质点M 的质量为m ,圆的半径为r ,圆心到z 轴的距离为l ,M 点在圆板的位置由?角确定,如图所示。如圆板的转动惯量为J ,并且当点M 离z 轴最远在点M 0时,圆板的角速度为零。轴的摩擦和空气阻力略去不计,求圆板的角速度与?角的关系。 解:以圆板和质点M 为系统,因为系统所受外力(包括重力和约束反力),对z 轴的矩均为零,故系统对z 轴动量矩守恒。在任意时刻M 点的速度包含相对速度v 0和牵连速度v e 。其中ω?=OM v e 。设质点M 在M 0 位置为起始位置,该瞬时系统对z 轴的动量矩为

第12章动量矩定理(田)

第十二章动量矩定理 一、填空题 1如下(1)图所示,在提升重为G 的物体A 时,可在半径为 r 的鼓轮上作用一力偶M 。已知鼓轮对轴O 的转动惯量为I,某瞬时鼓轮的角加速度为 G,则该瞬时,系统对轴O 的动量矩定理可写成 _____________________ 2.如下(2)图所示,轮E 由系杆AE 带动在固定轮A 上无滑动滚动,两圆的半径分别为R,r 。若轮E 的质量为m,系杆的角速度为 3,则轮E 对固定轴A 的动量矩大小是 ____________________ 3 .图(3)中匀质圆盘在光滑水平面上作直线平动,图( 4)中匀质圆盘沿水平直线作无滑动滚动。设两 圆盘的质量皆为m,半径皆为r,轮心O 速度皆为v,则图示瞬时,它们各自对轮心O 和对与地面接触点 D 的动量矩分另U 为: (3)L O = ___________ ; L D = _________________________ ; ( 4)L O = ________________ ; L D = _________________________ 。 2 .如下图(2)所示,两匀质细杆OA 和EC 的质量均为m = 8kg ,长度均为1 = 0.5m, 固连成图所示的T 字型构件,可绕通过点O 的水平轴转动。当杆OA 处于图示水平位置时,该构件的角速 度3 = 4rad/s 。则该瞬时轴O 处反力的铅垂分力NOy 的大小为( )。 A.N O =24.5N; B.N O =32.3N; C.N O = 73.8N; D.N O = 156.8N 3 .如果把下图(3)中重为G A 的物体换为图(4)所示的力 G A ,在这两种情况下,若把匀质滑轮的 A . &1 V $ B . e 1 > e ; C . e 1 = e 2 二、选择题 1.如下图(1)所示,已知两个匀质圆轮对转轴转动惯量分别为 在A 轮上的转矩为M,则系统中A 轮角加速度的大小为( I A , I B ,半径分别为R A ,R B ,作用 MR B A 、‘ A = I B R A I A R B ; B MR B I A D 、、心 A — 2 2 2 2 B A A B 角加速度 1和2的大小比较,则有( (1) (2) (1

相关文档
相关文档 最新文档