文档库 最新最全的文档下载
当前位置:文档库 › 玉柴高压共轨系统维修柴油机培训材料

玉柴高压共轨系统维修柴油机培训材料

玉柴高压共轨系统维修柴油机培训材料
玉柴高压共轨系统维修柴油机培训材料

共轨系统概述BOSCH高压共轨技术

柴油共轨系统特性

传统柴油喷射系统其压力的产生与喷油量跟凸轮与柱塞联系在一起,喷油的压力随着发动机转速与喷油量的增加而增加。这种柴油系统已经无法满足日益严格的排放法规和降低油耗的愿望。

共轨系统(Common Rail Systems,简称CRS)将燃油在高压下贮存在蓄压器(高压油轨)中,从本质上克服了传统柴油机喷射系统的缺陷,其特性有:

喷油压力的产生不依赖于发动机转速与系统喷油量,可根据发动机不同的工况灵活控制喷射压力和油量,从而实现低转速高喷射压力,达到低速高扭矩,低排放及优化燃油经济性的目的。

通过电子控制单元算出理想的喷油量和喷油时间,再由喷油器精确地喷射,甚至多次喷射。更高的系统压力,更好的排放能力,更低的燃油消耗

柴油共轨系统组成

柴油共轨喷射系统由液力系统和电子控制系统构成。其中液力系统又分低压液力系统和高压液力系统。

液力系统

低压液力系统

—油箱

—输油泵

—燃油滤清器

—低压油管

高压液力系统

—高压泵

—高压油轨

—喷油器

—高压油管

电子控制系统(Electronic Diesel Control,简称EDC)

—传感器

—电控单元(Electronic Control Unit,简称ECU)

—执行器,包括带电磁阀的喷油器、压力控制阀、预热塞控制单元、

增压压力调节器、废气循环调节器、节流阀等

—线束

其中,喷油器、高压泵、高压油轨、电控单元为柴油共轨系统四大核心的部件。

轨系统示意图

喷油器

喷油器是将燃油雾化并分布在发动机燃烧室的部件。共轨喷油器的喷油时刻和持续时间均经电控单元精确计算后给出信号,再由电磁阀控制。

高压泵

高压泵的作用是将燃油由低压状态通过柱塞将其压缩成高压状态,以满足系统和发动机对燃油喷射压力和喷油量的要求。

高压油轨

高压油轨的作用是存贮燃油,同时抑制由于高压泵供油和喷油器喷油产生的压力波动,确保系统压力稳定。高压油轨为各缸共同所有,其为共轨系统的标志。

电控单元

电控单元就像发动机的大脑,它收集发动机的运行工况参数,结合已存储的特性图谱进行计算处理,并把信号传递给执行器,实现发动机的运行控制、故障诊断等功能。

玉柴博世BOSCH高压共轨系统维修柴油

机培训材料

对电控发动机的几点说明

1、国III发动机的一些零部件在外观上与欧II发动机相同或相似,如喷油器、高压油管、柴油滤清器等,严禁用其它型号的零部件替换。

2、保持国III发动机燃油系统的清洁非常重要,否则会导致燃油喷射泵柱塞及喷油器磨损。

3、对于维修来说,电控系统零件我们没办法进行拆修,只能更换。

4、丰富的国II柴油机维修知识和经验对国III柴油机的维修非常重要,国III柴油机的工作原理和国II柴油机差不多,只是国III柴油机用电控技术来控制供油,并非想象中的那么神秘。经过适当培训后也可以来维修国III柴油机。

5、不是所有的故障都出在电控系统上。

6、故障诊断仪只能检测到电控元件出的故障,并不能直接检测到机械故障,可通过相关参数变化来推断大致故障部位。

7、并非所有故障都要通过故障诊断仪进行判断。

一、BOSCH共轨电控发动机原理介绍:

说明

l 电控喷油器根据ECU发出的喷油指令脉冲进行喷油

?喷油始点由指令脉冲起点控制

?喷油量由指令脉冲的宽度控制

?可以实现多次喷射

l 喷油压力为共轨压力

?共轨压力可以由ECU发出的共轨压力指令由高压供油泵控制?共轨压力是闭环控制

2、高压共轨控制常用策略:

1. 起动控制策略

2. 怠速控制策略

3. 油门油量标定及其实现

4. 热保护控制策略

5. 冒烟极限

6. 燃油预喷

3、油路走向原理图:

l CP3.3油泵:适用于玉柴4E、4G、6J、6A、6G等中型系列博世共轨发动机

燃油主要走向:油箱→粗滤(手油泵)→燃油分配器→输油泵(在高压油泵后端)→细滤→高压油泵→共轨管→喷油器。

低压管路典型技术参数

二、电控发动机电控元件及油路部分部件功能介绍:

2.1齿轮传动系统

齿轮间隙及记号对正:

1.齿轮驱动系统相对于原国2机型:增加了喷油泵惰齿轮组件及凸轮轴信号盘2.安装时应保证各齿轮间的齿侧间隙0.07 ~0.25mm;

3.应保证各齿轮的轴向间隙为0.08~0.2mm;

4.曲轴正时齿轮,正时惰齿轮,凸轮轴正时齿轮有严格的正时对准记号,请注意对正;

5.燃油喷射泵齿轮无正时记号,无正时要求。

2.2高压油泵

2.2.1 CP

3.3油泵的介绍(CP3.3泵适用于4E、4G、6J、6A、6G)

l 3-缸径向柱塞高压油泵;

l 集成燃油计量单元MeUN,并由

l 集成ZP18齿轮输油泵;

l 燃油滤清器位于齿轮泵压力端;

l 采用燃油润滑;

l 不允许承受轴向力;

l 驱动速比(增速):4E/4G/6G:4/3;6J/6A:7/6;

l 高压油泵理论供油速率:1.087cm3/rev;

l 最大允许轨压:1600bar;

l 泵额定转速:3800r/min;

l 逆时针旋转(从驱动端看)。

2.2.2 CP

3.3油泵的安装

1.应小心移出包装箱,不能握住高低压连接口MPROP等低强度部件,而只能握住泵的壳体;

2.非必要时,安装中不能去除泵上的各种防护套;

3.用3颗螺栓安装在油泵联结板上;

4.油泵联结板安装在齿轮室盖板上;

5. 高压泵齿轮安装力矩(100~110)N.m ,无正时要求;

6.仅在泵已装在发动机上、且要连接低压油管时才允许去掉其防护套;

7.安装连接高压油管前才能去除其防护套且应立即安装好高压油管。其拧紧扭矩见图纸。

8. 特别强调:不允许使用起动机拖动来进行排除油路空气!

9.泵不允许“干转”,转动前必须加入60ml燃油且排除内部空气;

10.完成机械安装后才进行电气接口的安装

2.2.5 CP2.2油泵的介绍(适用于6L、6M、6K )

l 直列双柱塞高压油泵;

l 集成燃油计量单元MeUN,并由之控制轨压;

l 集成ZP5齿轮输油泵;

l 燃油滤清器位于齿轮泵压力端;

l 采用机油润滑;

l 驱动速比(减速):

6L/6M/6K: 1:2

l 高压油泵理论供油速率:

4.524cm3/rev;

l 最大允许轨压:1600bar;

l 泵额定转速:1400r/min;

l 逆时针旋转(从驱动端

2.2.9燃油计量单元 MeUN

l 控制进入柱塞的燃油量,从而控制共轨管压力

l 比例电磁阀

l PWM控制(165~195Hz)

l 线圈电阻:2.6~3.15欧姆

l 最大电流:1.8A

l 缺省状态:全开(limp home)

失效策略

l 进入条件:ECU判断MeUN驱动失效

u MeUN损坏

u 驱动线路的开路/短路引起

l ECU处理措施

u 点亮故障灯

u 产生故障码P0251 P0252 P0253 P0254 P025C P025D

u 控制器将加大高压泵的供油量

u 燃油压力超高、泄压阀被冲开

u 诊断仪显示轨压位于700---760bar范围,随转速升高而增大

u 限制发动机转速(小于1700rpm,通过控制喷油量实现)

u 在限制范围内,油门仍然起作用

l 其它

u 关闭点火开关后,燃油压力泄放阀关闭,回复正常

u 如发动机启动过程已进入此策略,仍能起动且没有明显感觉

燃油计量阀失效情况及判断

l 一旦燃油计量阀失效,油轨上的泄压阀将被强行冲开,此时可以明显感觉回油管温度很高

l 一旦出现燃油计量阀失效,则必须进行整个高压油泵的更换,不允许自行更换燃油计量阀

2.2.10高压泵系统初始充油与排空

l 在对高压泵初次充油时,由于其齿轮输油泵内有空气而导致供油不足,应该采用附加的输油泵对其供油

l 该附加的输油泵可以是:

?加装在整车上的一个起动辅助输油泵

?加装在整车上的一个手油泵

?或在生产线上的一个辅助输油泵

l 在所有运行的环境压力下,高压泵总成CP3/ZP的最小供油压力为2bar。最大压力为6bar(对CP3/ZP18.1或ZP18.3)或4bar (对CP3/ZP18.4或ZP18.5或ZP20)。注意依此选择滤清器上的手油泵。

l 车上排空建议:松开柴滤出口油管,压动手泵直到柴滤出口有燃油流出至无明显气泡状态

2.3喷油器

2.3.1喷油器介绍:

l 最大喷油压力:1600 bar

l 喷嘴:mini-sac-hole

l 多孔喷油嘴

喷油器工作过程

2.3.2喷油器的安装与拆卸:

一.洁净度

u 喷油器对杂质敏感,必须保持洁净!

u 所用防护套仅在装配前才能去掉

二.喷油器的安装五步法

1. 将喷油器导入气缸盖孔

?要求对准、无特别阻力

?推荐的力:1~2kN

2. 将喷油器压板完全松开,使之不受力

3. 将高压连接管装入,预紧至3.5~8kN

4. 拧紧喷油器:

u 上紧至规定的压紧力

u 任何情况下不能超过15kN(压板螺帽拧紧力矩47~55 N.m) u 过高的压紧力会造成喷油量变化

5. 拧紧高压连接管拧紧力12~22kN

6. 安装时O型圈只能使用一次

7. 任何损伤均不允许

喷油器特性参数:

l 高速强力电磁阀

l 工作电压:24V

l 提升电压: UBoost =48 V

l 工作电流:提升电流:IBoost =25±1 A

保持电流:IHold =12±1 A

l 线圈静态电阻:230 mΩ

l 电磁阀开启时间:110±10 μs

l 电磁阀关闭时间:30±5 μs

l 集成在喷油器体内

2.4共轨管

2.4.1共轨管的作用

l 积累和分配高压燃油

l 降低压力波动

?由于柱塞的间歇性供油

?由于喷油器的短暂喷射2.4.2共轨管结构

2.4.3共轨管的安装与拆卸

l 安装

u 小心轻放,安装前任何损伤均不许再用

u 所用防护套仅在装配前才能去掉

u 安装引起的最大允许轴向力:25kN

u 跛脚回家期间燃油温度将升高50℃(与共轨管内温度相比),附近零部件设计应能承受此温度。

u 回油管管长应小于200mm

l 拆卸

u 发动机运行时不允许装拆

u 拆卸前确认共轨管内压力回落至环境压力

u 拆卸后必须换装新密封垫片或密封件

u 共轨管安装法兰在装拆过程中最大受载为120Nm

l 共轨管安装顺序:

u 将各缸喷油器安装至指定扭矩

u 用手拧紧共轨管安装法兰至2~3Nm

u 用手将各缸高压管拧紧至3±1Nm

u 将共轨管拧紧至指定扭矩

u 将各缸高压油管喷油器端螺帽拧紧至指定扭矩

u 将各缸高压油管共轨管端螺帽拧紧至指定扭矩

u 安装高压泵至共轨管的高压油管并分2次拧紧至指定扭矩2.4.4轨压传感器:

l 集成在共轨管上

l 最高压力为1800bar

l 良好的线性度、重复性和精度

l 接插件:三个输出端子,信号,地, 5Vref

轨压传感器失效模式及策略:

2.5带水分离器的滤清器(预滤器)

共轨系统需要的滤清器质量要求:

2.6控制器ECU

2.6.1外观图:适用于玉柴4E、4G、6J、6A、6G、6L、6M、6K等中重型系列博世共轨发动机,只是硬件通用

2.6.2接插件的引脚定义:

接插件1的引脚定义

接插件1的引脚定义

接插件2的引脚定义

接插件2的引脚定义表

接插件3的引脚定义

接插件2的引脚定义表

2.6.3 ECU特性参数

l 型号: EDC7UC31

l 特性参数:

u 工作环境: -30~105 oC (安装在发动机上时要求燃油冷却)

u 工作电压:24V(9~32V )

u 接插件:141Pins(16+36+89)

u 尺寸:248×206×54mm3

u ECU壳体要求与车身绝缘良好

u ECU的8个固定螺栓扭矩:10±2Nm

l 优点

u 结构紧凑、兼容性好

u 低功耗,稳定的I/O

u 功能强大的微处理器,容量大

u 安装在发动机上振动小

u 经过热冲击、低温、防水、化学、盐腐蚀、振动、机械冲击、EMC试验

2.6.4 ECU功能

l 喷油方式控制

u 高达5次喷射(现只用2次)

l 喷油量控制

u 预喷油量自学习控制

u 减速断油控制

l 喷油正时控制

u 主喷正时

u 预喷正时

u 正时补偿

l 轨压控制

u 正常和快速轨压控制

u 轨压建立和超压保护

u 喷油器泄压控制

u 轨压Limp home控制

l 扭矩控制

u 瞬态扭矩

u 加速扭矩

u 低速扭矩补偿

u 最大扭矩控制

u 瞬态冒烟控制

u 增压器保护控制

l 过热保护

l 各缸平衡控制

l EGR 控制

l VGT 控制

l 辅助起动控制(电机和预热塞)

l 系统状态管理

l 电源管理

l 故障诊断

2.7 传感器

BOSCH共轨系统传感器列表:

序号名称功能描述

1 曲轴传感器精确计算曲轴位置,用于喷油时刻、喷油量和转速计算

2 凸轮轴传感器判缸和曲轴传感器失效时用于跛脚回家

3 进气温度传感器测量进气温度,修正喷油量和喷油正时,过热保护

增压压力传感器监测进气压力,和进气温度一起计算进气量,与进气温度集成在一起。

4 冷却水温传感器测量冷却水温度,用于冷起动、目标怠速计算等,同时还用于修正喷油提前角、过热保护等

5 共轨压力传感器测量共轨管中的燃油压力,保证油压控制稳定

6 油门位置传感器将驾驶员的意图送给控制器ECU

7 车速传感器提供车速信号给ECU,用于整车驱动控制,由整车提供

8 大气压力传感器用于不同海拔高度校正喷油控制参数,集成在ECU中

2.7.1曲轴/凸轮轴传感器

一、特性参数

l 二者同型号,以后只叙述其中之一。

l 可变磁阻式(VR)。

l 两个输出端子

l 空气间隙:0.5~1.5mm

l 输出电压:≥1650 mV@1.8mm,416 rpm ± 1%

l 静态电阻值:Rw = 860Ω± 10% @ 20℃

l 线圈阻抗随温度变化关系:

k = 1 + 0.004 (tw - 20°C)

Rw = f (tw) = Rw (20°C) × k

l 感应系数:370 ± 60 mH @ 1 kHz

l 工作环境:-40~120 oC

l 安装螺栓:M6×12 (DIN912-8.8) 扭矩:8±2Nm l 传感器长度(tip to bracket):

总长度:67.9 ± 1mm

传感器直径:17.6~17.95 mm

曲轴/凸轮轴传感器插接件

二、主要功能:

l 相关控制策略:

u 判缸;

u 瞬态转速计算;

u 喷油时刻计算;

u 喷油脉宽(喷油量)计算;

三、常见故障及处理:

四、相位关系图示

相位关系:

适用于玉柴4缸机

l 发动机处在一缸压缩上止点时:

?凸轮轴相位传感器应该指示到凸轮轴信号盘多齿后27°(凸轮转角)的位置;

?曲轴传感器应该指示到曲轴信号盘缺齿后的第19个齿(参见图中齿的编号),或缺齿后108°(曲轴转角)的位置

l 不方便确认一缸压缩上止点时可先按以下办法初步判断:

?凸轮轴传感器对准凸轮信号盘的多齿时,曲轴信号传感器应对准曲轴信号盘缺齿后的第10齿,反过来则不一定有这种关系

?注意:该办法只能识别凸轮轴和曲轴信号盘间的相位关系,不能识别凸轮轴和曲轴信号盘与实际发动机上止点的关系

柴油机共轨系统

柴油机共轨系统 [来源:本网讯 2006/12/26] (日)伊藤泶次古田克则 【摘要】虽然柴油机热效率高,但排放法规的强度也在逐年增加。为此,近年来,具有高度柔性控制的、能进行超高压喷射的共轨系统已逐渐成为主流。介绍了共轨系统的结构、运行、特性及其主要部件??供油泵和喷油器的技术和未来发展趋势。 1 前言 与汽油机相比,柴油机热效率高,也就是说在燃油耗方面占有优势,因此在热衷环保的欧洲,柴油车占据汽车总产量的40%。另一方面,从防止大气污染的观点出发,颗粒(PM)和NOx的排放法规日趋严格,为了应对严格的排放法规,就必须实现燃油的高压喷射化和高度的喷油控制。 本文介绍在近年来可实现超高压喷射且控制自由度高的共轨喷油系统中供油泵和喷油器的 相关技术及其今后的发展动向。 2 共轨系统的构成、运行及特征 图1以日本DENSO公司第二代共轨系统为例示出了系统构成图,图2为系统构成部件的照片。其主要部件为:供油泵(生成高压燃油)、共轨(蓄积高压燃料)、喷油器(喷射燃油)以及控制这些部件的ECU和检测发动机运行状态的各种传感器。共轨系统是把在供油泵中生成的高压燃油蓄积在共轨中,然后通过喷油器中的执行器决定喷油开始和结束的电控燃油喷射系统。 图1 共轨系统构成 图2 系统构成部件 共轨系统的第一个特征是可以实现高压喷射而与发动机的转速无关,燃油喷雾可实现微粒化,从而促进燃油和空气的混合。因此可以实现更完全的燃烧,降低排气中的PM。为了实现这样的超高压喷射,产生高压的供油泵和蓄压的共轨必不可少。 第二个特征是实现了以往喷油系统不能实现的一个燃烧循环中的多次喷油,也提高了燃烧控制自由度。 第三个特征是由于可以修正喷油量,所以喷油精度高。因为考虑到燃油耗和降低排放,所以提高喷油器的喷油控制精度很重要。最近的研究表明,预喷射的喷油量越小,PM和NOx之间的折衷就越弱,为了实现高精度的多次喷射,装有高速执行器的喷油器不可或缺。 3 共轨系统构成部件 以下详细介绍构成上述共轨系统的基本部件:供油泵和喷油器。 3.1 供油泵 如图3的产品发展历史所示,第一代供油泵为卡车用的、以直列式喷油泵为基础的HP0泵,以及乘用车用的、以分配型喷油泵为基础的HP2泵。乘用车用的HP2泵利用电磁阀实现进油量调整,并采用了在分配型喷油泵上卓有成效的内凸轮。HP2泵最大压力为145 MPa,而比这更高的压力对传统的内凸轮方式而言已达到极限。为此,如图4所示,第二代供油泵把柱塞的驱动结构由滚子机构改为平面滑动机构,降低了驱动部分的面压,以实现180 MPa的超高压喷射。进而,作为对应180 MPa 超高压喷射的另一项技术,在采用上述压力供给机构的同时,在柱塞的滑动面上涂覆陶瓷涂层,进行

玉柴高压共轨系统维修柴油机培训材料

共轨系统概述BOSCH高压共轨技术 柴油共轨系统特性 传统柴油喷射系统其压力的产生与喷油量跟凸轮与柱塞联系在一起,喷油的压力随着发动机转速与喷油量的增加而增加。这种柴油系统已经无法满足日益严格的排放法规和降低油耗的愿望。 共轨系统(Common Rail Systems,简称CRS)将燃油在高压下贮存在蓄压器(高压油轨)中,从本质上克服了传统柴油机喷射系统的缺陷,其特性有: 喷油压力的产生不依赖于发动机转速与系统喷油量,可根据发动机不同的工况灵活控制喷射压力和油量,从而实现低转速高喷射压力,达到低速高扭矩,低排放及优化燃油经济性的目的。 通过电子控制单元算出理想的喷油量和喷油时间,再由喷油器精确地喷射,甚至多次喷射。更高的系统压力,更好的排放能力,更低的燃油消耗 柴油共轨系统组成 柴油共轨喷射系统由液力系统和电子控制系统构成。其中液力系统又分低压液力系统和高压液力系统。 液力系统 低压液力系统 —油箱 —输油泵 —燃油滤清器 —低压油管 高压液力系统 —高压泵 —高压油轨 —喷油器 —高压油管 电子控制系统(Electronic Diesel Control,简称EDC)

—传感器 —电控单元(Electronic Control Unit,简称ECU) —执行器,包括带电磁阀的喷油器、压力控制阀、预热塞控制单元、 增压压力调节器、废气循环调节器、节流阀等 —线束 其中,喷油器、高压泵、高压油轨、电控单元为柴油共轨系统四大核心的部件。 轨系统示意图 喷油器 喷油器是将燃油雾化并分布在发动机燃烧室的部件。共轨喷油器的喷油时刻和持续时间均经电控单元精确计算后给出信号,再由电磁阀控制。 高压泵 高压泵的作用是将燃油由低压状态通过柱塞将其压缩成高压状态,以满足系统和发动机对燃油喷射压力和喷油量的要求。 高压油轨 高压油轨的作用是存贮燃油,同时抑制由于高压泵供油和喷油器喷油产生的压力波动,确保系统压力稳定。高压油轨为各缸共同所有,其为共轨系统的标志。 电控单元 电控单元就像发动机的大脑,它收集发动机的运行工况参数,结合已存储的特性图谱进行计算处理,并把信号传递给执行器,实现发动机的运行控制、故障诊断等功能。

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 一、高压共轨技术简介 我们先来了解下传统柴油发动机燃油喷射系统的局限性: 传统柴油发动机燃油喷射系统的工作过程是:柴油通过高压油泵提高油压后,再按照一定的供油定时和供油量通过喷油器,喷入气缸燃烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物的排放量,油耗也增高。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。 随着发动机自动控制技术的发展和进步,为了解决柴油机燃油压力变化所造成的燃油喷射燃烧缺陷,现代柴油机采用了一种高压共轨电控燃油喷射技术,使柴油机的性能得到了全面提升。 柴油机在机械喷射、增压喷射和普通电喷后,近几年来出现了共轨高压喷射。高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨管、电控喷油器、各种传感器和电控单元ECU 等组成,如图1所示。发动机工作时,高压油泵上自带的齿轮泵通过负压从油箱中吸油,并以一定的压力(约5~7bar)将过滤后燃油送入高压油泵。燃油进入高压柱塞腔后被压缩,通过高压油管进入共轨管形成高压,每缸喷油器通过高压油管与共轨管相连,以实现高压喷射。 2.1.1 高压油泵(High pressure pump) 高压油泵是高压共轨系统中的关键部件之一,它的主要作用是将低压燃油加压成为高压燃油,储存在油轨内等待ECU的喷射指令。高压油泵由齿轮泵、油量计量单元、溢流阀、进出油阀和高压柱塞等部分组成。以Bosch目前广泛应用于中国商用车市场并已开始本地化生产的CPN2.2BL为例,其结构如图2所示[12]。

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 浅谈柴油机高压共轨技术 一、高压共轨技术简介我们先来了解下传统柴油发动机燃油喷射 系统的局限性:传统柴油发动机燃油喷射系统的工作过程再按照一定是:柴油通过高压油泵提高油压后,喷入气缸燃的供油定时

和供油量通过喷油器, 烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,油耗于是增加了烟度和碳氢化合物的排放量, 每次喷射循环后高压油管内的残此外,也增高。尤其随之引起不稳定的喷射,压都会发生变化,严重时不仅喷在低转速区域容易产生上述现象,油不均匀,而且会发生间歇性不喷射现象。为随着发动机自动控制技术的发展和进步,了解决柴油机燃油压力变化所造成的燃油喷射现代柴油机采用了一种 高压共轨电控燃烧缺陷,燃油喷射技术,使柴油机的性能得到了全面提升。,柴油机在机械喷射、增压喷射和普通电喷后轨共。射高压喷高共现来几近年出了轨压电喷技术 是指在高压油泵、压力Rail)Common (- 1 - 传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并

可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可 以大幅度减小柴油机供油压力随发动机转 速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨ECU管、电控喷油器、各种传感器和电控单元- 2 -

柴油机高压共轨喷油系统的现状与发展

柴油机高压共轨喷油系统的现状及发展 然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机高压共轨系统

高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 结构及原理 高压共轨系统利用较大容积的共轨腔将油泵输出的高压燃油蓄积 起来,并消除燃油中的压力波动,然后再输送给每个喷油器,通过控 制喷油器上的电磁阀实现喷射的开始和终止。 其主要特点可以概括如下: 共轨腔内的高压直接用于喷射,可以省去喷油器内的增压机构; 而且共轨腔内是持续高压,高压油泵所需的驱动力矩比传统油泵小得 多。 通过高压油泵上的压力调节电磁阀,可以根据发动机负荷状况 以及经济性和排放性的要求对共轨腔内的油压进行灵活调节,尤其优 化了发动机的低速性能。 通过喷油器上的电磁阀控制喷射定时,喷射油量以及喷射速率,还可以灵活调节不同工况下预喷射和后喷射的喷射油量以及与主喷射的间隔。 高压共轨系统由五个部分组成,即高压油泵、共轨腔及高压油管、喷油器、电控单元、各类传感器和执行器。供油泵从油箱将燃油泵入高压油泵的进油口,由发动机驱动的高压油泵将燃油增压后送入共轨腔内,再由电磁阀控制各缸喷油器在相应时刻喷油。 预喷射在主喷射之前,将小部分燃油喷入气缸,在缸内发生预混合或者部分燃烧,缩短主喷射的着火延迟期。这样缸内压力升高率和峰值压力都会下降,发动机工作比较缓和,同时缸内温度降低使得NOx排放减小。预喷射还可以降低失火的可能性,改善高压共轨系统的冷起动性能。 主喷射初期降低喷射速率,也可以减少着火延迟期内喷入气缸内的油量。提高主喷射中期的喷射速率,可以缩短喷射时间从而缩短缓燃期。 主要生产商 目前世界上主要有三大公司在研发和生产柴油机高压共轨系统,日本电装、德国博世和美国德尔福。共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 由于其强大的技术潜力,今天各制造商已经把目光定在了共轨系统第3代——压电式(piezo)共轨系统,压电执行器代替了电磁阀,于是得到了更加精确的喷射控制。没有了回油管,在结构上更简单。压力从200~2000帕弹性调节。最小喷射量可控制在0.5mm3,减小了烟度和NOX的排放。 应用背景 日趋严重的能源危机,成为全世界内燃机行业关注的焦点,也使柴油机越来越受到用户青睐。与汽油机相比柴油机有很多优势:能减少20%~25%的CO2废气排放,车速较低时的加速性能更有优势,平均燃油消耗低25%~30%,能提供更多的驾驶乐趣。因此,有人大胆对全球汽车产量中柴油机的发展趋势进行了预测,并按区域划分世界汽车产量中的柴油机比例。但是,与汽油机相比,柴油机的排放控制又是一个难点。为满足排放标准,柴油机先进的燃油喷射系统———高压共轨技术成为业内人士关注的焦点。前些年,高压共轨技术是外资一统天下,现在这种局面被打破了。 排放标准的提升必然推动发动机技术的发展 发展前景

柴油机高压共轨喷油系统的现状及发展

柴油机高压共轨喷油系统的现状及发展 陈然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国内外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个内燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机高压共轨电控燃油喷射技术介绍

柴油机高压共轨电控燃油喷射技术介绍 摘要:传统机械发动机的喷油系统凭借其可靠性、易维护性一直在不断地发展和使用。进入21世纪以来,随着人们对能源、环保的意识和要求日益提高,传统发动机的脉动喷油系统已经不能够满足现代发动机的要求。因此,现代发动机的共轨燃油喷射技术在避免了传统发动机缺点的基础上,得到了快速的发展,已经成为燃油喷射的主要发展趋势。为了更好的对高压共轨电控发动机燃油喷射系统的理解,现对高压共轨电控燃油喷射系统进行系统的介绍。 1 引言 随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。我国从八十年代起相应制订了有关的标准,将环境保护作为大事来抓。与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。 2 高压共轨电控燃油喷射技术发展过程 20世纪40年代电控共轨燃油喷射技术首先在航空发动机上应用,20世纪50年代在赛车发动机上广泛应用。20世纪90年代,柴油机的电控供油系统开始在实际应用中大量使用。主要有日本电装公司和丰田汽车公司ECD-U2系统、博世公司和D-C公司电控共轨式燃油喷射系统。 国外在柴油机电控高压共轨燃油喷射系统方面的研究开展得较早而且比较深入,有多种共轨系统已经投产,并与整车进行了匹配应用。日本电装公司的ECD-U2系统是电控高压共轨燃油喷射系统的典型代表,该系统还能实现预喷射和靴型喷射。 共轨喷射的发展大体经历了3个阶段,如表1所示。 从表1中可以看出:共轨喷射的最高喷射压力在不断提高,这样对于喷射品质的提高有着重要的意义。压力越高,燃料雾化越好,颗粒越小越均匀,燃烧越充分,经济性、动力性和排放性均好,但这对喷射系统的要求也越高;喷射的次数不断增加,可以实现满足发动机燃烧和排放的多次喷射,可以控制燃烧的不同阶段喷油量和喷油速率,使燃烧更充分,热效率提高;在最小稳定喷射量上,3个阶段的每次的喷射量在下降,这说明每次喷射时候可以使喷射更均匀、更细密,喷油和断油更干脆,反应灵敏,响应特性好,这样有利于燃烧,减少积炭的产生。

博世共轨系统简介(强力推荐)

博世共轨系统简介 为满足国三排放标准,国内多数卡车及柴油机企业将技术路线定为高压共轨,目前高压共轨技术主要被博世、德尔福、电装等公司掌握,其中博世的高压共轨系统占有绝大部分市场份额。 技术升级随之而来的是车辆使用等方面的变化,为了更好地普及国三电控共轨系统的知识,让大家更好的用好车,我们在博世共轨系统的官网上找到了一些共轨系统的基础知识,现在整理出来,与大家一起分享。 ●柴油共轨系统组成 柴油共轨喷射系统由液力系统和电子控制系统构成。其中液力系统又分低压液力系统和高压液力系统。 共轨系统示意图 液力系统

低压液力系统: —油箱 —输油泵 —燃油滤清器 —低压油管 高压液力系统: —高压泵 —高压油轨 —喷油器 —高压油管 电子控制系统(Electronic Diesel Control,简称EDC) —传感器 —电控单元(Electronic Control Unit,简称ECU) —执行器,包括带电磁阀的喷油器、压力控制阀、预热塞控制单元、增压压力调节器、废气循环调节器、节流阀等 —线束 ●共轨系统的四大核心部件 其中,喷油器、高压泵、高压油轨、电控单元为柴油共轨系统四大核心的部件。

喷油器是将燃油雾化并分布在发动机燃烧室的部件。共轨喷油器的喷油时刻和持续时间均经电控单元精确计算后给出信号,再由电磁阀控制。 2.高压泵 高压泵的作用是将燃油由低压状态通过柱塞将其压缩成高压状态,以满足系统和发动机对燃油喷射压力和喷油量的要求。

高压油轨的作用是存贮燃油,同时抑制由于高压泵供油和喷油器喷油产生的压力波动,确保系统压力稳定。高压油轨为各缸共同所有,其为共轨系统的标志。 4.电控单元 电控单元就像发动机的大脑,它收集发动机的运行工况参数,结合已存储的特性图谱进行计算处理,并把信号传递给执行器,实现发动机的运行控制、故障诊断等功能。

柴油机电控共轨技术

第二节柴油机电控共轨技术 一、柴油机电控共轨系统简介 图8-44是博世公司生产的第一代高压电控共轨燃油系统。 图8-4 BOSCH 第一代高压电控共轨燃油系统 该系统的主要特点: 共轨压力为135 MPa;2、可实现预喷射;3、可实现闭环控制; 4、可用于3-8缸轿车柴油机; 5、排放可达欧3排放标准。 图8-45是日本电装公司开发的适用于轿车柴油机的高压电控共轨系统。 第一代电控共轨系统基本上是采用高速电磁阀作为执行器,承受的最高油压及系统的效率受到了限制,为了解决这一难题,许多公司正在开发采用压电晶体的电控共轨燃油系统。 图8-46是ECD-U2共轨系统在汽车上的实际布置图

电控共轨系统的特点可以概括如下: (1)自由调节喷油压力(共轨压力):利用共轨压力传感器测量共轨内的燃油压力,从而调整供油泵的供油量。 (2)自由调节喷油量:以发动机的转速及油门开度信息等为基础,由计算机计算出最佳喷油量,通过控制喷油器电磁阀的通电、断电时刻及通电时间长短,直接控制喷油参数。 (3)自由调节喷油率形状:根据发动机用途的需要,设置并控制喷油率形状:预喷射、后喷射、多段喷射等。 (4)自由调节喷油时间:根据发动机的转速和负荷等参数,计算出最佳喷油时间,并控制电控喷油器在适当的时刻开启,在适当的时刻关闭等,从而准确控制喷油时间。 在电控共轨系统中,由各种传感器——发动机转速传感器、油门开度传感器、温度传感器等,实时检测出发动机的实际运行状态,由ECU根据预先设计的计算程序进行计算后,定出适合于该运行状态的喷油量、喷油时间、喷油率等参数,使发动机始终都能在最佳状态下工作。 德国博世公司和日本电装公司的研究结果均表明:在直喷式柴油机中,采用电控共轨式燃油系统与采用普通凸轮驱动的泵管嘴系统相比,电控共轨系统与发动机匹配时更加方便灵活。其突出优点可以归纳如下: (1)广阔的应用领域(用于轿车和轻型载货车,每缸功率可达30kW,用于重型载货车以及机车和船舶用柴油机,每缸功率约可达200kW左右)。 (2)更高的喷油压力,目前可达140 MPa,不久的将来计划达到180Mpa。 (3)喷油始点、喷油终点可以方便地改变。 (4)可以实现预喷射、主喷射和后喷射,可以根据排放等要求实现多段喷射。

CAT柴油机培训---3500B发动机结构讲义

. 3500B? ? ? ?? ??? –3500B??

3500? 1980 ????? ? 20 D399 ? ? ? FIG. 1 Production Date Product Maximum Rating 1980Phase 0100 kW/cyl. 1985Phase 1112.5 kW/cyl. 1988Phase 2125 kW/cyl. 1995 B Series137.5 kW/cyl. 2000 B HD150 kW/cyl. 3500B? 3500 ?????? 3500? ?? ? ? ??3500B? ?? ??? ? ?? ? ??

3500B? ??? ? ??ㄝ ? ? ? ? ? ?? ? ? ?? ????? ? 催???? ?? ? ? 催?? ?? ?? ??

3508B ?? ?Ё ?V8 ? ??34.5 L(2105 cu.In.) ??190 mm ( 7.5 in ) ? ?170 mm ( 6.7 in ) 乱 ??1500 HP FIG. 2 3508B ? ? ?1482 BHp @1800rpm( ? ? ??

3508B? ?1000~1100 BHp @ 1600rpm 1800 rpm 1500 BHp @ 1925 rpm ( “E”Rating) FIG. 3 3512B ?? ?Ё ?V12 ? ??51.8 (3158 cu.In.) ??170 mm ( 6.7 in ) ? ?190 mm ( 7.5 in ) 乱 ??2250 HP

3512B ? ? ?2168 BHp @1800rpm FIG. 3 3512B? ?? ?1500 ~1650 BHp @ 1600 rpm 1500 ~1650BHp @ 1925 rpm (“A”“B”“C”Rating) 2100 BHp ( “D”Rating) 2250 BHp @ 1925 rpm ( “E”Rating)

详谈柴油机高压共轨电喷技术

详谈柴油机高压共轨电喷技术高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。 共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 欧洲可以说是柴油车的天堂,在德国柴油轿车占了39%。柴油轿车已有了近70年的历史,而最近10年可以说柴油发动机有了突飞猛进的发展。在1997年,博世与奔驰公司联合开发了共轨柴油喷射系统(Common Rail System)。今天在欧洲,众多品牌的轿车都配有共轨柴油发动机,如标致公司就有HDI共轨

柴油发动机,菲亚特公司的JTD发动机,而德尔福则开发了Multec DCR柴油共轨系统。 共轨系统与柴油喷射系统的区别 共轨系统与之前以凸轮轴驱动的柴油喷射系统不同,共轨式柴油喷射系统将喷射压力的产生和喷射过程彼此完全分开。电磁阀控制的喷油器替代了传统的机械式喷油器,燃油轨中的燃油压力由一个径向柱塞式高压泵产生,压力大小与发动机的转速无关,可在一定范围内自由设定。共轨中的燃油压力由一个电磁压力调节阀控制,根据发动机的工作需要进行连续压力调节。电控单元作用于喷油器电磁阀上的脉冲信号控制燃油的喷射过程。喷油量的大小取决于燃油轨中的油压和电磁阀开启时间的长短,及喷油嘴液体流动特性。 燃油喷射压力是柴油发动机的重要指标,因为它联系着发动机的动力、油耗、排放等。共轨柴油喷射系统已将燃油喷射压力提高到1800巴 近年发展 最近2年,匹配直喷柴油发动机的轿车在欧洲得到了显著发展,有着高效和出色的燃油经济性,并降低了发动机噪音。直喷柴油发动机使用的是泵喷嘴系统,国内生产的1.9TDI宝来就应用这一系统,最高喷射压力可达到1800巴。泵喷嘴直喷系统好虽好,但燃油压力不能保持恒定,随着排放控制的更加苛刻,就需要更高及恒定的柴油喷射压力和更完善的电子控制,于是众多制造商们就把优点更多的柴油共轨系统作为柴油发动机的发展方向。这一系统有很高的燃油压力,并能提供弹性燃油分配控制,通过ECU灵活地控制燃油分配、燃油喷射时间、

柴油机高压共轨电控喷射系统介绍

柴油机高压共轨电控喷射系统介绍 一、共轨技术 在汽车柴油机中,高速运转使柴油喷射过程的时间只有千分之几秒,实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。由于柴油的可压缩性和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。油管内的压力波动有时还会在主喷射之后,使高压油管内的压力再次上升,达到令喷油器的针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象,由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,油耗增加。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。为了解决柴油机这个燃油压力变化的缺陷,现代柴油机采用了一种称"共轨"的技术。 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。共轨式喷油系统于二十世纪90 年代中后期才正式进入实用化阶段。高压共轨系统可实现在传统喷油系统中无法实现的功能,其优点有: a、共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。 b、可独立地柔性控制喷油正时,配合高的喷射压力(120Mpa~200MPa),可同时控制NOx和微粒(PM)在较小的数值内,以满足排放要求。 c、柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NO x,又能保证优良的动力性和经济性。 d、由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。 由于高压共轨系统具有以上的优点,现在国内外柴油机的研究机构均投入了很大的精力对其进行研究。比较成熟的系统有:德国BOSCH公司的CR系统、日本电装公司的ECD-U2系统、意大利的FIAT集团的unijet系统、英国的DELPHI DIESEL SYSTEMS公司的LDCR 系统等。 二、高压共轨电控燃油喷射系统及基本单元 高压共轨电控燃油喷射系统主要由电控单元、高压油泵、蓄压器(共轨管)、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨(蓄压器),高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。 1、高压油泵 高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。

电控高压共轨柴油发动机原理及特点

电控高压共轨柴油发动机原理及特点

前言 电控柴油发动机进入海气已有十个年头了,我们的汽车维修工还没有正确认识它。目前进入我国燃油喷射系统技术有博世、电装、德尔福等几家柴油机用电控技术来控制供油,并非想象中的那么神秘,它的发动机工作原理是一样的。我们常见电控柴油发动机均采用电控共轨或单体泵技术,其主要差异在于发动机的燃油喷射系统,发动机的外形差异不是很大,电控部分的实现、更加有利于整正性能的优化,减少排放、经济性、动力性、以及整车的舒适性等。 第一章电控发动机与普通发动机的差异 一、技术原理上的差异性。 1、高压共轨与四气门技术结合。 电控发动机目前一般采用高压共轨、四气门和涡轮增压中冷技术相结合,四气门结构(二进、二排)不仅可以提高充气效率,更由于喷油嘴可以居中布置,使多孔油未均匀分布,可为燃油和空气良好混合创造条件,同时可以在四气门缸盖上将进气道设计成两个独立的具有圆形状的结构以实现可变涡流。这些因素的协调配合,可大大提高混合气的形成质量(品质),有效降低碳烟颗粒(HC)碳氢和(NOX)氮氧化物排放,并提高热效率。 2、高压喷油和电控喷射技术。 高压喷射和电控喷射技术的有效采用,可使燃油充分雾化,各缸的燃油和空气混合达到最佳,从而降低排放,提高整车性能。 二、部件构成上的差异。 电控高压共轨技术是指在高压油泵、共轨管、压力传感器和

ECU(电脑控制)组成的闭环系统中,将喷射压力的产生和喷射过程彼此分开的一种技术。由高压油泵把高压燃油输送到共轨管,通过对共轨管内的油压进行闭环控制,喷油压力独立可调。 三、高压共轨系统的特点。 高压共轨系统改变了传统的喷油系统的组成结构,最大的特点就是将燃油压力产生和燃油喷射分离,以此对轨管内的油压实现精确控制。 1、可靠性:对轻型车来说系统零部件成熟且有长期使用考核验证,中型比较成熟。 2、继承性:结构简单,安装方便。 3、灵活性:高压共轨油压独立于发动机转速控制,整车控制功能强。 4、喷油压力:共轨管压力1600bar、普通压力180kgf/cm2。 5、多次喷油:可以实现多次喷射,目前最好的共轨系统可以进行6次喷射,共轨系统的灵活性好。 6、升级潜力:多次喷油特别是后喷能力使得共轨系统特别方便与后处理系统配合。 7、匹配适合性:结构移植方便,适应范围广,与柴油机均能很好匹配。 8、时间控制:时间控制系统抛弃了传统喷油系统的泵、管、嘴、系统,用高速电磁阀直接控制高压燃油的通与断,喷油量由电磁阀开启和切断的时间来确定,时间控制系统结构简单,将喷油量和喷油正时的控制合二为一,控制的自由度更大,同时能较大地

高压共轨燃油系统介绍.

高压共轨燃油系统介绍 2005-8-15 10:45:55来源: 编辑: 一、高压共轨燃油系统概况 共轨式喷油系统于二十世纪90 年代中后期才正式进入实用化阶段。这类电控系统可分为:蓄压式电控燃油喷射系统、液力增压式电控燃油喷射系统和高压共轨式电控燃油喷射系统。高压共轨系统可实现在传统喷油系统中无法实现的功能,其优点有: a. 共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。 b. 可独立地柔性控制喷油正时,配合高的喷射压力(120MPa~200MPa ),可同时控制NOx 和微粒(PM )在较小的数值内,以满足排放要求。 c. 柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NOx ,又能保证优良的动力性和经济性。 d. 由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。 由于高压共轨系统具有以上的优点,现在国内外柴油机的研究机构均投入了很大的精力对其进行研究。比较成熟的系统有:德国ROBERT BOSCH 公司的CR 系统、日本电装公司的ECD-U2 系统、意大利的FIAT 集团的unijet 系统、英国的DELPHI DIESEL SYSTEMS 公司的LDCR 系统等。 二、高压共轨燃油喷射系统主要部件介绍 图1 为高压共轨电控燃油喷射系统的基本组成图。它主要由电控单元、高压油泵、共轨管、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨,高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map 图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。 1 、高压油泵

BOSCH柴油机高压共轨系统介绍

高压共轨柴油系统 BOSCH –CRDi
陆风X8

AG04 3LR
AG04 3LR EK72 0.5OG AG02c FG50 1WL 2GY
MB01a 3LW
AG20e 3BY MB02e 0.75WR EK28 0.5YR 燃油滤清 沉淀水开 关 FG05 0.5V 燃油滤 清温度 开关 GD76 0.5B EK40 0.35BGy 燃油滤 清器加 热 GD75 2B FG04 2LG GL01 5WG
MB02f 0.75WR
EK52 0.5LW EK93 0.75OY
MB02 0.75WR HFM+ 0.5WL
EKBT 2.5R EK01 2.5V MB02a MB02a/b 0.75WR 2*0.75WR EK05 EK03 2.5R 2.5R EK80 0.35GyW SL01 0.5RB SL01 0.5RB MB02d 0.75WR
MB02a 1.5WR
M
GD76 0.5B
预 预 预 预 热 热 热 热 塞 塞 塞 塞
GD76 0.75B
A60 0.75VB
A17 A19 A16 A01 A02 EA37 EA44 1.5W A49 1.5RB 1.5VL 1.5V 1.5RW 0.5GL 0.5WR 1.5R EA42 A47 A33 A46 A31 0.5YV 1.5RV 1.5VO 1.5VB 1.5RY EK49 0.35Y EK25 0.35Gy
EK75 EK26 EK48 EK27 0.35P 0.5VL 0.35BrV 0.35W EK02 2.5B EK58 EK58 0.35GyV 0.35GyV
EK04 2.5B EK06 2.5B
EK09 EK46 EK08 0.5VW 0.5LY 0.5VO EK30 EK31 EK45 0.5BrR 0.5L 0.5LR
EK91 EK70 EK54 EK92 0.75YBr 0.75OW 0.5BG 0.5BL EK68 0.75YB
A27 0.5G
A07 A12 0.5R
A11 0.5WG
A20 0.75WV A50 0.75GY
A28 0.5WB
A43 0.5GW A08 0.5WY
A58 A41 0.5GB 0.5YL
EKGD 2.5B
陆风 陆风X8 X8
发动机管理原理图
2

玉柴高压共轨系统维修柴油机培训材料

共轨系统概述 BOSCH高压共轨技术 柴油共轨系统特性 传统柴油喷射系统其压力的产生与喷油量跟凸轮与柱塞联系在一起,喷油的压力随着发动机转速与喷油量的增加而增加。这种柴油系统已经无法满足日益严格的排放法规和降低油耗的愿望。 共轨系统(Common Rail Systems,简称CRS)将燃油在高压下贮存在蓄压器(高压油轨)中,从本质上克服了传统柴油机喷射系统的缺陷,其特性有: 喷油压力的产生不依赖于发动机转速与系统喷油量,可根据发动机不同的工况灵活控制喷射压力和油量,从而实现低转速高喷射压力,达到低速高扭矩,低排放及优化燃油经济性的目的。 通过电子控制单元算出理想的喷油量和喷油时间,再由喷油器精确地喷射,甚至多次喷射。更高的系统压力,更好的排放能力,更低的燃油消耗 柴油共轨系统组成 柴油共轨喷射系统由液力系统和电子控制系统构成。其中液力系统又分低压液力系统和高压液力系统。 液力系统 低压液力系统 —油箱 —输油泵 —燃油滤清器 —低压油管 高压液力系统 —高压泵 —高压油轨 —喷油器 —高压油管 电子控制系统(Electronic Diesel Control,简称EDC) —传感器

—电控单元(Electronic Control Unit,简称ECU) —执行器,包括带电磁阀的喷油器、压力控制阀、预热塞控制单元、 增压压力调节器、废气循环调节器、节流阀等 —线束 其中,喷油器、高压泵、高压油轨、电控单元为柴油共轨系统四大核心的部件。 轨系统示意图 喷油器 喷油器是将燃油雾化并分布在发动机燃烧室的部件。共轨喷油器的喷油时刻和持续时间均经电控单元精确计算后给出信号,再由电磁阀控制。 高压泵 高压泵的作用是将燃油由低压状态通过柱塞将其压缩成高压状态,以满足系统和发动机对燃油喷射压力和喷油量的要求。 高压油轨 高压油轨的作用是存贮燃油,同时抑制由于高压泵供油和喷油器喷油产生的压力波动,确保系统压力稳定。高压油轨为各缸共同所有,其为共轨系统的标志。 电控单元 电控单元就像发动机的大脑,它收集发动机的运行工况参数,结合已存储的特性图谱进行计算处理,并把信号传递给执行器,实现发动机的运行控制、故障诊断等功能。

1潍柴动力教材柴油发动机培训

潍柴动力股份有限公司 2011年4月14日Thursday

前言 发动机只要工作,就会从排气口排出废气。废气对环境的危害是客观存在的。采用一些技术措施,就会减少废气中有害气体的含量。为此要制定一个标准,国二、国三、国Ⅳ、国Ⅴ是我们国家对公路柴油机制定的排放法规;对于非道路用车,我国也制定了相应的排放法规。我们国家根据我国具体情况,依据欧洲排放标准,制定了我国的排放法规。

排放 法规 CO (g/kW.h)HC (g/kW.h)NO x (g/kW.h)PM (g/kW.h)烟度(m-1)欧Ⅰ 4.5 1.18.00.36欧Ⅱ 4.0 1.17.00.15欧Ⅲ 2.10.66 5.00.100.8欧Ⅳ 1.50.46 3.50.020.5欧Ⅴ 1.50.46 2.00.020.5欧Ⅳ排放法规与欧Ⅲ排放法规相比,CO 排放将由2.1g / kW·h 降到 1.5g/kW·h, HC 排放将由0.66g/kW·h 降到0.46g/kW·h 。 NOx排放将由 5.0g/kW·h 降到3.5g/kW·h 。PM排放由0.1g/kW·h 降到0.02g/kW·h 。 欧洲重型车用柴油机排放法规

前言 实现更高效、更清洁的燃烧,是两大世界性问题——能源和环境问题对内燃机提出的永远要求。 目前世界上汽车已成为可吸入颗粒和NOx排放的主要污染源。在一些国家和地区,车用柴油机排放在发动机对环境排放贡献度要达到70%左右。如据报道,日本直喷式柴油机载货车NOx排放量约占其全部车辆NOx排放总量的34%;其颗粒排放量约占全部车辆颗粒排放总量的71%。我国香港地区的测试表明,2001柴油车NOx和颗粒的排放量分别约占全部车辆相应排放总量的75%和98%。

相关文档
相关文档 最新文档