文档库 最新最全的文档下载
当前位置:文档库 › 振荡电路习题

振荡电路习题

振荡电路习题
振荡电路习题

振荡电路专题练习

1470振 荡 器 之 所 以 能 获 得 单 一 频 率 的 正 弦 波 输 出 电 压,是 依 靠 了 振 荡 器 中 的 ( )。

(a) 选 频 环 节 (b) 正 反 馈 环 节 (c) 基 本 放 大 电 路 环 节

2471自 激 正 弦 振 荡 器 是 用 来 产 生 一 定 频 率 和 幅 度 的 正 弦 信 号 的 装 置,此 装 置 之 所 以 能 输 出 信 号 是 因 为( ) 。

(a) 有 外 加 输 入 信 号 (b) 满 足 了 自 激 振 荡 条 件

(c) 先 施 加 输 入 信 号 激 励振 荡 起 来, 后 去 掉 输 入 信 号 3472一 个 振 荡 器 要 能 够 产 生 正 弦 波 振 荡,电 路 的 组 成 必 须 包 含( )。 (a) 放 大 电 路,负 反 馈 电 路 (b) 负 反 馈 电 路、选 频 电 路

(c) 放 大 电 路、 正 反 馈 电 路、 选 频 电 路

4473振 荡 电 路 的 幅 度 特 性 和 反 馈 特 性 如 图 所 示,通 常 振 荡 幅 度 应 稳 定 在 ( )。 (a) O 点 (b) A 点 (c) B 点 (d) C 点

5474反 馈 放 大 器 的 方 框 图 如 图 所 示,当 &U i

= 0 时,要 使 放 大 器 维 持 等 幅 振 荡,其 幅 度 条 件 是( )。

(a) 反 馈 电 压 U f 要 大 于 所 需 的 输 入 电 压 U be (b) 反 馈 电 压 U f 要 等 于 所 需 的 输 入 电 压 U be (c) 反 馈 电 压 U f 要 小 于 所 需 的 输 入 电 压 U be

6475一 个 正 弦 波 振 荡 器 的 开 环 电 压 放 大 倍 数 为 A u ,

反 馈 系 数 为 F ,该 振 荡 器 要 能 自 行 建 立 振 荡,其 幅 值 条 件 必 须 满 足 ( )。

(a) ||

A F u =1 (b) ||A F u <1 (c) ||A F u >1 7476一 个 正 弦 波 振 荡 器 的 开 环 电 压 放 大 倍 数 为 A u ,反 馈 系 数 为 F ,能 够 稳 定 振 荡 的 幅 值 条 件 是 ( )。 (a) ||A F u >1 (b) ||

A F u <1 (c) ||

A F u =1 8477反 馈 放 大 器 的 方 框 图 如 图 所 示,要 使 放 大 器 产 生 自 激 振 荡,其 相 位 条 件 是( )。

(a) 反 馈 电 压 &f U 与 电 压 &U be

之 间 的 相 位 差 为 90?

U om fm

(b) 反 馈 电 压 &f U 与 电 压 &U be 之 间 的 相 位 差 为 180? (c) 反 馈 电 压 &f U 与 电 压 &U be

之 间 的 相 位 差 为 零

&o

9478一 个 正 弦 波 振 荡 器 的 反 馈 系 数 F =

∠?

15

180

,若 该 振 荡 器 能 够 维 持 稳 定 振 荡,则 开 环 电 压 放 大 倍 数 A u 必

须 等 于 ( )。 (a) 15360∠? (b) 15

0∠?

(c) 5180∠-?

10479一 个 正 弦 波 振 荡 器 的 开 环 电 压 放 大 倍 数 为 A A u u =∠||

ψA , 反 馈 系 数 为 F F =∠||ψF ,该 振 荡 器 要 维 持 稳 定 的 振 荡, 必 须 满 足( )。

(a) ||AF u =>1,ψψπA F ()+=+21n (n = 0,1,2,…) (b) ||AF u =1,ψψπA F +=2n (n = 0,1,2,…) (c) ||

AF u >1,ψψπA F ()+=-21n (n = 0,1,2,…) 11480电 路 如 图 所 示,参 数 选 择 合 理,若 要 满 足 振 荡 的 相 应 条 件, 其 正 确 的 接 法 是

( )。

(a) 1 与 3 相 接, 2 与 4 相 接 (b) 1 与 4 相 接, 2 与 3 相 接 (c) 1 与 3 相 接, 2 与 5 相 接

-∞+

21

5

4

12481 LC 振 荡 电 路 如 图 所 示,集 电 极 输 出 正 弦 U ce 电 压 与 放 大 电 路 的 正 弦 输 入 电 压 U be 之 间 的 相 位 差 应 为 ( )。

(a) 0? (b) 90? (c)180?

2

CC

+

13482振 荡 电 路 如 图 所 示,选 频 网 络 是 由( )。 (a) L 1、C 1 组 成 的 电 路

(b) L 、C 组 成 的 电 路 (c) L 2、R 2组 成 的 电 路

2

CC

+

14483 LC 振 荡 电 路 如 图 所 示,其 振 荡 频 率 为( )。

(a) f LC

o ≈

12π (b)

f LC

o ≈

1

π (c) f LC

o ≈1

2

U CC

+

15484几 种 类 型 的 LC 振 荡 电 路 如 图 所 示,变 压 器 反 馈 式 振 荡 电 路 是 指 下 列 图 中( )。

+U CC

+U ()a ()b

16485几 种 类 型 的LC 振 荡 电 路 如 图 所 示,电 感 三 点 式 振 荡 电 路 是 指 下 列 图 中( )。

+U

CC

+U

()a()b

17486几种类型的LC振荡电路如图所示,电容三点式振荡电路是指下列图中()。

+U

CC

+U

()a

18487电感三点式振荡电路如图所示,其振荡频率为()。

(a) f

L L M C

o

++

1

2

12

()

(b) f

L L M C

o

++

1

2

12

π()

(c) f

L L M C

o

++

1

22

12

π()

C

19488电 容 三 点 式 振 荡 电 路 如 图 所 示,其 振 荡 频 率 为( )。

(a) f L C C C C o ≈

+1

212

12

π(

) (b)

f L C C C C o ≈

+1

212

12

π(

)

(c)

f L C C C C o ≈

+1

12

12

(

)

+U CC

20489电 路 如 图 所 示, 电 容 C 2 远 大 于 C 2 和 C , 其 中 满 足 自 激 振 荡 相 位 条 件 的 是 下 列 图

中( )。

()a()b(c)

21490电路如图所示,电容C2远大于C2和C,其中满足自激振荡相位条件的是下列图中()。

()a()b(c)

22491 电路如图所示,欲使该电路能起振,则应该采取的措施是()。

(a) 改用电流放大系数β较小的晶体管

(b) 适当增加反馈线圈L

的匝数

1

(c) 适当减小L 值或增大C 值。

+U

23492 电路如图所示,欲使该电路能起振,则应该采取的措施是()。

(a) 改用电流放大系数β较小的晶体管。

(b) 减少反馈线圈L

的匝数。

1

(c) 适当增大L 值或减小C 值。

L

24493 电路如图所示,欲使该电路能起振,则应该采取的措施是()。

(a) 改用电流放大系数β较大的晶体管。

(b) 减少反馈线圈L

的匝数

1

(c) 适当减小L 值或增大C 值。

L

+U

25494 正 弦 波 振 荡 电 路 如 图 所 示,其 振 荡 频 率 为( )。

(a) f RC

o =

1

(b)

f RC

o =

1 (c)

f RC

o =

1

-∞+

26495桥式RC 正弦波振荡器的振荡频率取决于( )。 (a) 放大器的开环电压放大倍数的大小 (b) 反馈电路中的反馈系数F 的大小 (c) 选频电路中RC 的大小 27496由运算放大器组成的几种电路如图所示,其中RC 振荡电路是图( )。

-∞+

-∞+-∞+R 2

C

C

(c)

28497 桥式RC 振荡电路是用来产生一定频率和幅度的( )。 (a) 正弦交流信号(b) 正、负尖脉冲信号(c) 方波信号 29498正弦波振荡电路如图所示,正反馈支路的反馈系数F 的角度ψF 应等于( )。

(a) 90? (b) 180?

(c) 0?

-∞

R 2

30499正弦波振荡电路如图所示,若该电路能持续稳定的振荡,则同相输入的运算放大器的电压放大倍数应等

于 ( )。(a) 2

(b) 3 (c) 1

-∞+

R 2

31500正弦波振荡电路如图所示,若能稳定振荡,则

R R 2

1

必须等于 ( )。(a) 1 (b) 2 (c) 3

-∞+

R 2

32501电路如图所示, 欲使该电路维持正弦等幅振荡,若电阻R 11

00= k Ω,则反馈电 阻R F 的阻值应 为( )。 (a) 200 k Ω

(b) 100 k Ω (c) 400 k Ω

C

33502正弦波振荡器如图所示,为了获得频率可调的输出电压,则应该调节的电阻是( ) 。

(a) R

(b) R F(c) R

1

-∞

34503 电路如图所示,该电路为()。

(a) 正弦波振荡电路(b) 三角波产生电路 (c) 方波产生电路

D

-∞

(完整版)振荡电路大全

RC振荡器的几种接法 RC震荡的基本思想是正反馈加RC选频网络.RC选频网络之所以选出正弦波主要是因为电容的充电曲线. 这种振荡器特点是:T≈(1.4~2.3)R*C 电源波动将使频率不稳定,适合小于100KHz 的低频振荡情况。 2.加补偿电阻的RC振荡器 T≈(1.4~2.2)R*C,电源对频率的影响减小,频率稳定度可控制在5% 3.环行RC振荡器

4.采用TTL反相RC振荡器,频率可达50MHz 5.采用两三极管构成的RC振荡器,其中R5=R8,R7=R6,C5=C6

RC文氏电桥震荡器的计算说明 这个电路由RC串并网络构成选频网络,同时兼作正反馈电路以产生振荡,两个电阻和电容的数值各自相等。负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。 该电路输出波形较好,缺点是频率调节比较困难。

RC文氏电桥振荡电路 RC文氏电桥振荡器的电路如图1所示,RC串并联网络是正反馈网络,由运算放大器、R3和R4负反馈网络构成放大电路。 图1 RC文氏电桥振荡器 C 1R 1 和C2R2支路是正反馈网络,R3R4支路是负反馈网络。C1R1、C2R2、R3、R4正 好构成一个桥路,称为文氏桥。 RC串并联选频网络的选频特性 RC串并联网络的电路如图2所示。RC串联臂的阻抗用Z 1 表示,RC并联臂的 阻抗用Z 2 表示。 图2 RC串并联网络 RC串并联网络的传递函数为

式(1) ………………. 当输入端的电压和电流同相时,电路产生谐振,也就是式(1)是实数,虚部为0。令式(1)的虚部为0,即可求出谐振频率。 谐振频率 对于文氏RC振荡电路,一般都取R=R1 = R2,C=C1 = C2时,于是谐振角频率: 频率特性 幅频特性 相频特性 文氏RC振荡电路正反馈网络传递函数的幅度频率特性曲线和相位频率特性曲线如图3所示。 (a) 幅频特性曲线 (b) 相频特性曲线 图3 RC串并联网络的频率响应特性曲线

占空比可调的方波振荡电路工作原理及案例分析

占空比可调的方波振荡电路工作原理及案例分析 参考电路图5.12所示,测试电路,计算波形出差频率。 电容 图5.12 方波发生电路(multisim) 通过上述电路调试,发现为方波发生器。 一、电路组成 如图5.13,运算放大器按照滞回比较器电路进行链接,其输出只有两种可能的状态:高电平或低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动的产生相互变换,所以电路中必须引入反馈;因为输出状态应按一定的时间,间隔交替变化,即产生周期性的变化,所以电路中要有延迟环节来确定每种状态维持的时间。 电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。电压传输特性如图6.8所示: U 0 U N U P U z U c R 3 R 2 R 1 R 图5.13方波发生电路 二、工作原理 从图5.13可知,设某一时刻输出电压U O =+U Z ,则同相输入端电位U P =+U T 。U O 通过R 对电容C 正向充电。反相输入端电位U N 随时间t 增长而逐渐升高,当t 趋近于无穷时,U N 趋于+U z ;

当U N =+U T ,再稍增大,U O 就从+U Z 越变为-U Z ,与此同时U p 从+U T 越变为-U T 。随后,U O 又通过R 对电容C 放电。 反相输入端电位U N 随时间t 增长而逐渐降低,当t 趋近于无穷时,U N 趋于-U Z ;当U N =-U T ,稍减小,U O 就从-U Z ,于此同时,U p 从-U T 跃变为+U T ,电容又开始正向充电。 上述过程周而复始,电路产生了自激振荡。 三、波形分析及主要参数 由于矩形波发生电路中电容正向充电与反向充电的时间常数均等于R3C,而且充电的总幅值也相等因而在一个周期内U O =+U Z 的时间与U O =-U Z 的时间相等,U O 对称的方波,所以也称该电路为对称方波发生电路。电容上电压U C 和电路输出电压U O 波形如图所示。矩形波的宽度T k 与周期T 之比称为占空比,因此U O 是占空比为1/2的矩形波。 利用一阶RC 电路的三要素法可列出方程,求出振荡周期。 3122(12/)T R C R R =+ 振荡频率为: 1/f T = 调整电压比较器的电路参数R 1,R 2和U Z 可以改变方波发生电路的振荡幅值,调整电阻R 1,R 2,R 3和电容C 的数值可以改变电路的振荡频率。 四、占空比可调电路 占空比的改变方法:使电容的反向和正向充电时间常数不同。利用二极管的单向导电性可以引导电流流经不同的通路,占空比可调的矩形波发生电路如图2-5所示,电容上电压和输出波形的如图 6.19 Z U ±O 图 5.14占空比可调电路 电路工作原理:当U O =+U Z 时,通过RW1,D1,和R3对电容C 正向充电,若忽略二极管导通时的等效电阻,则时间常数为:

555电路组成的振荡电路集锦

555电路组成的振荡电路集锦 一、555单稳类电路 555单稳工作方式,它可分为2种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。 第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。 二、555双稳类电路

第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。 第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。 双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。这是双稳工作方式的结构特点。2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。 三、555无稳类电路

第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。 第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。其中第1个单元电路(3.2.1)是应用最广的。第2个单元电路(3.2.2)是方波振荡电路。第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。 第三种(见图3)是压控振荡器。由于电路变化形式很复杂,为简单起见,只分成

电路中的信号振荡--教学设计

欢快的双闪灯 ——振荡的基本概念与原理 设计人:XXXX 参考教材:XXXXX 课时:45分钟 授课对象:XXXXXXXXXXXXXXX 时间:XXXXX年XXXX月

目录 【设计理念】 (3) 【学情分析及对策】 (4) 【教材内容及处理】 (4) 【教学目标】 (5) 【教学重点】 (5) 【教学难点】 (6) 【教学手段及教具准备】 (6) 【教学流程图】 (7) 【教学环节】 (8) 【板书设计】 (17) 【教学思考】 (17) 【学生工作页】 (18)

欢快的双闪灯——振荡的基本概念与原理振荡器是一种能量转换装置——将直流电能转换为具有一定频率的交流电能,也称信号发生电路,作用是产生振荡信号,被广泛用于电子工业、医疗、科学研究等方面。例如,在数字电路中提供时钟脉冲信号的电路,将无线电波等各种信号传送到远方的载波信号也是由振荡电路产生的。本教学设计从利用“鱼洗”的机械振荡激发学生的学习兴趣入手,通过问题引出电子振荡现象,并与“荡秋千”这一生活情境进行类比,归纳总结出电子的基本工作原理。然后,将教学内容与实训任务对接,完成电路布局和接线图的绘制。整个教学环节以“任务引领,合作学习”的方式逐步完成教学任务,培养学生的创新精神,拓展思维,达到学以致用,激发兴趣,提升本课程的学习积极性。 【设计理念】 1.基于陶行知“生活即教育”理论。职业教育以培养具备某一职业所需要的技术能力为目标,要求教育与实际的生产劳动相结合。在本教学设计中,我从生活中“鱼洗”的机械振荡现象引出电子振荡现象,利用视频、图片等形式展示实际生活中关于“电子振荡”的应用场景,利用学生原有的知识结构,调动学生好奇、好动的特点,提供更丰富的源于生活的感性材料,主体参与自主探究,从而获取新知识,养成独立思考、仔细观察、认真分析、严谨推理的学习习惯,掌握学习策略,让其探究能力得到提高。

实验五-三点正弦振荡电路

三点式正弦波振荡器 一、实验目的 1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、熟悉振荡器模块各元件及其作用。 2、进行LC振荡器波段工作研究。 3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、测试LC振荡器的频率稳定度。 三、实验仪器 1、模块3 1块 2、频率计模块1块 3、双踪示波器1台 4、万用表1块 四、基本原理 将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

振荡器的频率约为4.5MHz(计算振荡频率可调范围) 振荡电路反馈系数 振荡器输出通过耦合电容C5(10P)加到由N2组成的射极跟随器的输入端,因C5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。 五、实验步骤 1、根据图5-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 1)将开关S1拨为“01”,S2拨为“00”,构成LC振荡器。 2)改变上偏置电位器W1,记下N1发射极电流Ieo(=Ve/R11 ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4的振荡幅度VP-P,填于表5-1中,分析输出振荡电压和振荡管静态工作点的关系。 表5-1 分析思路:静态电流ICQ会影响晶体管跨导gm,而放大倍数和gm是有关系的。在饱和状态下(ICQ过大),管子电压增益AV会下降,一般取ICQ=(1~5mA)为宜。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频 六、实验报告

晶体振荡器电路+PCB布线设计指南

AN2867 应用笔记 ST微控制器振荡器电路 设计指南 前言 大多数设计者都熟悉基于Pierce(皮尔斯)栅拓扑结构的振荡器,但很少有人真正了解它是如何工 作的,更遑论如何正确的设计。我们经常看到,在振荡器工作不正常之前,多数人是不愿付出 太多精力来关注振荡器的设计的,而此时产品通常已经量产;许多系统或项目因为它们的晶振 无法正常工作而被推迟部署或运行。情况不应该是如此。在设计阶段,以及产品量产前的阶 段,振荡器应该得到适当的关注。设计者应当避免一场恶梦般的情景:发往外地的产品被大批 量地送回来。 本应用指南介绍了Pierce振荡器的基本知识,并提供一些指导作法来帮助用户如何规划一个好的 振荡器设计,如何确定不同的外部器件的具体参数以及如何为振荡器设计一个良好的印刷电路 板。 在本应用指南的结尾处,有一个简易的晶振及外围器件选型指南,其中为STM32推荐了一些晶 振型号(针对HSE及LSE),可以帮助用户快速上手。

目录ST微控制器振荡器电路设计指南目录 1石英晶振的特性及模型3 2振荡器原理5 3Pierce振荡器6 4Pierce振荡器设计7 4.1反馈电阻R F7 4.2负载电容C L7 4.3振荡器的增益裕量8 4.4驱动级别DL外部电阻R Ext计算8 4.4.1驱动级别DL计算8 4.4.2另一个驱动级别测量方法9 4.4.3外部电阻R Ext计算 10 4.5启动时间10 4.6晶振的牵引度(Pullability) 10 5挑选晶振及外部器件的简易指南 11 6针对STM32?微控制器的一些推荐晶振 12 6.1HSE部分12 6.1.1推荐的8MHz晶振型号 12 6.1.2推荐的8MHz陶瓷振荡器型号 12 6.2LSE部分12 7关于PCB的提示 13 8结论14

振荡电路的原理

高频放大器 使用高频功率放大器的目的是放大高频大信号使发射机末级获得足够大的发射功率。 高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。 原理 放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。如果放大电路的通频带小于信号的频带,由于信号的低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。 For personal use only in study and research; not for commercial use 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻变换和选频滤波功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 本级振荡电路 本级振荡电路图 本级振荡电路采用改进型晶体振荡电路(克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。 混频器 工作频率 混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。

讲义 第6章 反馈与振荡电路

第6章 反馈与振荡电路 放大电路引入反馈后,称为反馈放大电路,或闭环电路。反馈电路又分负反馈电路和正反馈电路。 负反馈能改善放大电路的各种性能指标,广泛应用在模拟电子技术中。 放大电路接入正反馈可以构成振荡电路。 (本章只介绍反馈) 6.1 反馈的基本概念 6.1.1 反馈的基本概念的引出 在第二章讨论过工作点稳定的共射极放大电路,如图6-1所示。 图中电阻E R 称为温度补偿电阻,E R 的作用是稳定静态工作点。 静 态 工 作 点 稳 定 的 实 质 : ,()(),C E E E E E E C BE B B C E T I I U U R I R I U U I I I ↑?↑↑?↑=≈?↓?↓?↓↓固定 E R 把输出端的静态电流C I 返送到输入端,进而稳定C I 的变化。这个稳定过程是直流负反馈的过程。 1、反馈:将输出信号(电压或电流)的一部分或全部以某种方式回送到电路的输入端,使输入量(电压或电流)发生改变,这种现象称为反馈 2、反馈放大电路 具有反馈的放大电路包括基本放大电路A 及反馈网络F 两个部分。其组成框图如图6-2所示 基本放大电路:未加反馈的单级、多级放大电路,或者是集成运算放大器。 反馈网络:可由电阻。电感。电容或半导体器件组成。 3、直流反馈和交流反馈 (1)直流反馈:若反馈信号只包含直流分量。直流负反馈具有稳定静态工作点的作用。 (如图6-1所示就是直流反馈电路) (2)交流反馈:若反馈信号只包含交流分量。 (3)判断交流与直流反馈:看反馈元件是在交流通路中还是在直流通路中起作用。 (去掉旁路电容E C ,如图6-3所示电路,就包含有交流反馈) 有时反馈既有直流分量,又有交流分量,称之为交、直流反馈。图6-3所示电路就是既有交流反馈又有直流反馈。 4、正反馈与负反馈 (1)正反馈:若反馈信号在输入端与输入信号相加,使净输入信号i X '增加,称为正反馈; (2)负反馈:若反馈信号在输入端与输入信号相加,使净输入信号i X '减小,称为负反馈。 (负反馈使放大倍数下降,但使得其他许多性能得到改善,因此在放大电路中得到广泛应用。正反馈虽然提高了放大倍数,但使得其他性能降低,因此在放大电路中很少采用,主要用于振荡电路和数字电路的暂态过程。)

555时基电路组成的振荡电路集锦

一、555单稳类电路555单稳工作方式,它可分为2种。见图示。 https://www.wendangku.net/doc/1810218589.html,/bbs/viewthread.php?tid=7813&extra=page%3D1 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。 第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。二、555双稳类电路 第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较

器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。 第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。这是双稳工作方式的结构特点。2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。三、555无稳类电路 第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。

第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。其中第1个单元电路(3.2.1)是应用最广的。第2个单元电路(3.2.2)是方波振荡电路。第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。 第三种(见图3)是压控振荡器。由于电路变化形式很复杂,为简单起见,只分成最简单的形式(3.3.1)和带辅助器件的(3.3.2)两个单元。图中举了两个应用实例。无稳电路的输入端一般都有两个振荡电阻和一个振荡电容。只有一个振荡电阻的可以认为是特例。例如:3.1.2单元可以认为是省略RA的结果。有时会遇上7.6.2三端并联,只有一个电阻RA的无稳电路,这时可把它看成是3.2.1单元电路省掉RB后的变形。

振荡器

震荡原理 大小和方向都随周期发生变化的电流叫振荡电流,能产生振荡电流的电路就叫做振荡电路。其中最简单的振荡电路叫LC回路。振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能由振荡电路产生。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。 物理模型 振荡电路物理模型(即理想振荡电路)的满足条件: ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 分类介绍 能够产生振荡电流的电路叫做振荡电路。一般由电阻、电感、电容等元件和电子器件所组成。由电感线圈l和电容器c相连而成的lc电路是最简单的一种振荡电路,其固有频率为f=[sx(]1[]2πlc。§一种不用外加激励就能自行产生交流信号输出的电路。它在电子科学技术领域中得到广泛地应用,如通信系统中发射机的载波振荡器、接收机中的本机振荡器、医疗仪器以及测量仪器中的信号源等。

晶振振荡器电路

在该应用手册中,我们将讨论我们推荐给您的晶振电路设计方案,并解释电路中的各个元器件的具体作用,并且在元器件数值的选择上提供指导。最后,就消除晶振不稳定和起振问题,我们还 将给出一些建议措施。 图1所示为晶振等效电路。R 为ESR(串联等效阻抗)。L 和C 分别是晶振等效电感和等效电容。C P 是晶振的伴生电容,其极性取决于晶振的极性。图2所示为晶振的电抗频谱线。当晶振在串联谐振状态下工作时,线路表现为纯阻性,感抗等于容抗(XL = XC)。串联谐振频率由下式给出 LC f S π21= 当晶振工作在并联谐振模式时,晶振表现为感性。该模式的工作频率由晶振的负载决定。对于并联谐振状态的晶振,晶振制造商应该指定负载电容C L 。在这种模式下,振动频率由下式给出 P L P L C C C C L fa += π21 图 1. 晶振等效电路. 图 2. 晶振的电抗频谱线.

在并联谐振模式下,电抗线中fs 到fa 的斜线区域内,通过调整晶振的负载,如图2,晶振都可以振荡起来。MX-COM 所有的晶振电路都推荐使用并联谐振模式的晶振。 图3所示为推荐的晶振振荡电路图。这样的组成可以使晶振处于并联谐振模式。反相器在芯片内体现为一个AB 型放大器,它将输入的电量相移大约180° 后输出;并且由晶振,R1,C1和C2组成的π型网络产生另外180°的相移。所以整个环路的相移为360°。这满足了保持振荡的一个条件。其它的条件,比如正确起振和保持振荡,则要求闭环增益应≥1。 反相器附近的电阻Rf 产生负反馈,它将反相器设定在中间补偿区附近,使反相器工作在高增益线性区域。电阻值很高,范围通常在500K ? ~2M ?内。MXCOM 的有些芯片内置有电阻,对于具体的芯片,请参考其外部元器件选用说明书。 对晶振来讲,C1和C2组成负载电容。和晶振来匹配最好的电容(C L ),晶振厂家都有说明。C1和C2的计算式为 S L C C C C C C ++?=2 121 这里C S 是PCB 的漂移电容(stray capacitance ),用于计算目的时,典型值为5pf 。现在C1和C2选择出来满足上面等式。通常选择的C1和C2是大致相等的。C1和/或C2的数值较大,这提高了频率的稳定性,但减小了环路增益,可能引发起振问题。 R1是驱动限流电阻,主要功能是限制反相器输出,这样晶振不会被过驱动(over driven )。R1、C1组构成分压电路,这些元器件的数值是以这样的方式进行计算的:反相器的输出接近rail-to-rail 值,输入到晶振的信号是rail-to-rail 的60%,通常实际是令R1的电阻值和的C1容抗值相等,即R1 ≈ XC1。这使晶振只取得反相器输出信号的一半。要一直保证晶振消耗的功率在厂商说明书规定范围内。过驱动会损坏晶振。请参考晶振厂商的建议。 理想情况下,反相器提供180°相移。但是,反相器的内在延迟会产生额外相移,而这个额外相移与内在延迟成比例。为保证环路全相移为n360°,π 型网络应根据反相器的延迟情况,提供小于180°的相移。R1的调整可以满足这一点。使用固定大小的C1和C2,闭环增益和相位可随R1变化。如果上述两个条件均得到了满足,在一些应用中,R1可以忽略掉。 图 3. 晶振电路

振荡电路工作原理详细分析

振荡电路工作原理详细分析注:这只是我个人的理解,仅供参考,如不正确,请原谅! 1、电路图和波形图 2、工作原理:晶体管工作于共发射极方式。集电极电压通过变压器反馈回基级,而变压器绕组的接法实现正反馈。其工作过程根据三极管的工作状态分为三个阶段:t1、t2、t3(如上图): 说明:此分析过程是在电路稳定震荡后,以一个完整波形周期为例进行分析,即起始Uce=12v。而对于电路刚接通时,工作原理完全相同,只是做波形图时,起始电压Uce=0v。 1)、电路接通后,进入t1阶段(晶体管为饱和状态)。 在t1的初始阶段,电路接通,流过初级线圈的电流不能突变,使得集电极电压Uce急速减小,由于时间很短,在波形中表现为下降沿很陡。而经过线圈耦合,会使基极电压Ube急速增大。此时,三极

管工作在饱和状态(Ube>=Uce)。基极电流ib失去对集电极电流ic 的控制。之后,随着时间增加,Uce会逐渐增加,Ube通过基极与发射机之间的放电而逐渐减少。基极电压Ube下降使得ib减小。 2)、当ib减小到ic /β时, 晶体管又进入放大状态,即t2阶段。 于是,ib的减小引起ic的减小,造成变压器绕组上感应电动势方向的改变,这一改变的趋势进一步引起ib的减小。如此又开始强烈的循环,直到晶体管迅速改变为截止状态。这一过程也很快,对应于脉冲的下降沿。在此过程中,电流强烈的变化趋势使得感应线圈上出现一个很大的感应电动势,Ube变成一个很大的负值。 3)、当晶体管截止后(t3阶段),ic=0,Uce经初级线圈逐渐上升到12v(变压器线圈中储存有少量能量,逐渐释放)。此时,直流12v电源通过27欧电阻和反馈线圈对基极电压充电,Ube逐渐上升,当Ube上升到0.7v左右时,晶体管重新开始导通(硅管完全导通的电压大约是0.7v)。于是下一个周期开始,重复上述各个阶段。其震荡周期T=t1+t2+t3;

集成电路构成的振荡电路

集成电路构成的振荡电路大全集成电路构成的振荡电路大全 在电子线路中,脉冲振荡器产生的CP脉冲是作为标准信号和控制信号来使用的,它是一种频率稳定、脉冲宽度和幅度有一定要求的脉冲。这种振荡器电路不需要外界的触发而能自动产生脉冲波,因此被称为自激振荡器。一个脉冲波系列是和这个脉冲的基本频率相同的正炫波以及许多和这个脉冲基本频率成整数倍的正炫波谐波合成的,所以脉冲振荡器有时叫做多谐振荡器。用集成电路构成的振荡器比用分立元件构成的工作要可靠的多,性能稳定。本电路汇编了用各种集成电路构成的大量振荡器电路。供读者在使用时参考。 -、门电路构成的振荡电路 1、图1是用CMOS与非门构成的典型的振荡器。当反相器F2输出正跳时,电容立即使F1输入为1,输出为0。电阻RT为CT对反相器输出提供放通电路。当CT放电达到F1的转折电压时,F1输出为1,F2输出为0。电阻连接在F1的输出端对CT反方向充电。当CT被充到F1的转折电压时,F1输出为0,F2为1,于是形成形成周期性多谐振荡。其振荡周期T=2。2RtCt。电阻Rs是反相器输入保护电阻。接入与否并不影响振荡频率。 2、图2是用TTL的非门构成的环形振荡器。三个非门接成闭环形。假定三个门的平均传输延迟时间都是t,从F1输入到F3输出共经过3t的延迟,Vo输出就是Vi的输入,所以输出端的振荡周期T=6t。该电路简单,但t数值一般是几十毫微秒,所以振荡频率极高,最高可达8MHz。 3、图3是用TTL非门电路组成的带RC延时电路的RC环形振荡器。当a点由高电平跳变为低电平时,b点电位由低边高,经门2使C点电位由高变低,同时又经耦合到d点,使d点电位上跳为高电平,所以门3输出即e点电位为低。随着c充电电流减少,d点电位逐渐降低,低到关门电压时门3关闭,e点由低变高,再反馈到门1,使b点由高变低,d点下降到较负的电压值,保证门3输出为高。当c放电使d点上升到开门电压时,门3打开,e点又由高变低,输出电压Vo又回复为低电平,如此交替循环变化形成连续的自激振荡。振荡周期T=2.2RC。R可用作频率微调,一般R值小于1k欧姆。RS是保护电阻。

74HC00多谐振荡器电路图

74HC00多谐振荡器电路图 一、电路及工作原理 电路见下图。74HC00为四一二输入端与非门。 如果将二输入端与非门的一个输入端接高电平,或者将两个输入端短接,则其输出便与余下的一个输入端或两个短接的输入端反相,相当于一个反相器。在下图所示电路中,设IC1A的①脚、IC1B的⑤脚为高电平(K1按下,K2断开),则IC1A可看作②脚输入③脚输出、可看作IC1B④脚输入⑥脚输出的反相器,其传输特性如右图所示。由于R1的负反馈作用,如果②脚电压较低,③脚输出高电压,则通过R1把②脚电平拉高;如果②脚电压较高、③脚输出低,则通过R1把②脚电平拉低,结果折衷停在中心点C。输出100%反馈到输入,相当于把左下三角形部分按照虚线折到右上角。虚线与传输特性的交点C就是反相器的工作点,约等于1/2VCC。C点位于传输特性的陡坡中心。本例中,74HC00输入变化1mV,输出变化高达1V。 由于IC1③脚和④脚连按,其⑥脚输出的信号与②脚同相但幅度放大。图中C1起正反馈作用。只要②脚电压有微小的波动,如提高0.1mV,则③脚电压降低100mV,再经IC1B 反相,⑥脚输出电压升高大于1V,此电压变化通过C1送回②脚,使②脚电压继续升高,直至VCC+0.7V。这时,IC1内部的保护二极管导通,使输入电压不能高,反相器工作点停在右图的D点。D点位于传输特性的水平线上,输入变化几乎不影响输出。此时,IC1的②脚为高电平,③脚为低电平,⑥脚为高电平。电阻R1接在②、③脚之间。③脚是输出端,内阻很低,②脚是输入端,内阻极高。②高③低的电位差使得R1上的电流I的方向如左图所示,放电的起始电压为VCC+0.7V,放电的最终电压为0V。 实际放电到C点(1/2VCC)附近,就停止了。放电从VCC+0.7V到1/2VCC约需1.1R1C1=1.1(2.2l0(6))(0.110(-6)0.25s。 这时,②脚变低,经过IC1A反相放大③脚变高IC1B反相放大⑥脚快速变低C1②脚。正

电容反馈振荡器设计

高频电子线路课程设计 电容反馈振荡器电路设计 班级: 11级电信班 学号: 111102051 姓名: 指导教师: 日期: 2013.12.20

目录 第1章电容反馈式振荡器的设计方案论证 (3) 1.1电容反馈式振荡器的应用意义 (3) 1.2 电容反馈式振荡器的设计要求及技术指标 (3) 1.3 电容反馈式振荡器的的电路原理 (4) 1.4 电容反馈式振荡器的方案框图及分析 (6) 第2章电容反馈式振荡器的电路设计及仿真 (7) 2.1电路的设计依据 (7) 2.2原理图EWB软件仿真 (8) 2.3 仿真结果 (8) 第3章设计总结 (9) 参考文献 (9)

第1章电容反馈式振荡器的设计方案论证 1.1电容反馈式振荡器的应用意义 随着社会的发展,通讯工具在我们的生活中的作用越来越重要。通信工程专业的发展势头也一定会更好,为了自己将来更好的适应社会的发展,增强自己对知识的理解和对理论知识的把握,本次课程设计我准备制作具有实用价值的电容反馈式振荡器。 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电 压 U f 和输入电压 U i 要相等,这是振幅平衡条件。二是U f 和U i 必须相位相同,这 是相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。 正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。 1.2 电容反馈式振荡器的设计要求及技术指标 设计内容: 1.用EWB仿真,设计一个电容反馈振荡器 2.能够观察输出的振荡波形。 3.测量其振荡频率。 4.分析电路并计算其频率是否与所测的频率相同。 设计参数:振荡频率5MHZ左右

Pspice仿真报告(串并联振荡电路分析)

第三次高频电子线路小班课Pspice电路仿真实验报告 此处为校徽 研究题目:串并联振荡电路分析 班级:电子信息工程1402班 组别:第六组 组员: ***:主讲人 ***:仿真运行 ***:PPT制作 ***:文档整理

一、仿真实验题目: 6.将第4题中R1的电阻值改为4KΩ,试观察振荡电路输出波形,此时将电阻R2改为具有负温度系数的热敏电阻,(设此电阻值仍为10KΩ,随温度呈线性变化关系,在电阻模型参数中取Tc1=-0.13),设电路工作在28度,再次分析电路,记录输出波形,并分析原因。 图PSP-1-(1) 热敏电阻值的计算: R2=R ES=R*r*[1+Tc1*(T-T0)+Tc2*(T-T0)*2]=10*1*[1-0.13*(28-27)]=8 .7KΩ 环路增益:T(w0)=(R1+R2) / 3R1 二.仿真电路原理图:

图PSP-2-(1)三.参数 图PSP-3-(1)输入文件

图PSP-3-(2)

图PSP-3-(3) 四代码: **** 11/03/16 23:11:30 ******* PSpice 10.5.0 (Jan 2005) ******* ID# 0 ******** ** Profile: "SCHEMATIC1-DCSweep" [ F:\pspice jinshzuhen-pspicefiles\schematic1\dcsweep.sim ] **** CIRCUIT DESCRIPTION ****************************************************************************** ** Creating circuit file "DCSweep.cir" ** WARNING: THIS AUTOMATICALLY GENERATED FILE MAY BE OVERWRITTEN BY SUBSEQUENT SIMULATIONS *Libraries: * Profile Libraries : * Local Libraries : .LIB "../../../pspice jinshzuhen-pspicefiles/pspice jinshzuhen.lib" * From [PSPICE NETLIST] section of C:\OrCAD\OrCAD_10.5\tools\PSpice\PSpice.ini file: .lib "nom.lib" *Analysis directives: .TRAN 0 4S 0 10u .PROBE V(alias(*)) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*)) .INC "..\https://www.wendangku.net/doc/1810218589.html," **** INCLUDING https://www.wendangku.net/doc/1810218589.html, **** * source PSPICE JINSHZUHEN R_R4 N05859 0 10k C_C2 N05859 N007180 1u

振荡电路

振荡电路 正弦波振荡器在量测、自动控制、无线电通讯及遥控等许多领域有着广泛的应用.例如调整放大器时,我们用一个"正弦波信号发生器"和生一个频率和振幅均可以调整的正弦信号,作为放大器的输入电压,以便观察放大器输出电压的波形有没有失真,并且量测放大器的电压放大倍数和频率特性.这种正弦信号发生器就是一个正弦波振荡器.它在各种放大电路的调整测试中是一种基本的实验仪器. 在无线电的发送和接收机中,经常用高频正弦信号作为音频信号的"载波",对信号进行"调制"变换,以便于进行远距离的传输. 高频振荡还可以直接作为加工的能源,例如焊接半导体器件引脚时使用的"超声波压焊机",就是利用60KHz 左右的正弦波(即超声波)作为焊接的"能源". 那么一个正弦波振荡器为什么能够自己产生一个正弦波的振荡呢?它产生的正弦振荡又怎么能够满足我们所提出来一定频率和振幅的要求呢?最后,这个正弦振荡在外界干扰之下又怎么能够维持其确定的振荡频率和振幅呢?这些就是下面我们要讨论的基本问题. 放大电路是典型的两端口网络,振荡电路是一个典型的单端口网络,只有一个射频信号的输出端口.从能量转化的角度来看,射频放大电路和射频振荡电路都是直流电的能量转换到特定频率射频信号的能量.两者的区别就在于振荡电路没有射频信号的输入,而放大电路必须有射频信号的输入. 振荡电路的技术指标包括:①输出射频信号频率的准确度和稳定度;②输出射频信号振幅的准确性和稳定度;③输出射频信号的波形失真度;④射频信号输出端口的阻抗和最大输出功率.对于射频振荡电路的设计,都需要按照上述技术指标进行.通常在射频信号源的参数中,也可以找到上述技术指标. 振荡器通常可以分为反馈型振荡电路和负阻型振荡电路.反馈型振荡电路是由含有两端口的射频晶体管两端口网络和一个反馈网络构成,如使用双极型晶体管或者场效应管构成的振荡电路,采用在射频放大电路中引入正反馈网络和频率选择网络形成振荡电路.负阻型振荡电路由射频负阻有源器件和频率选择网络构成,如使用雪崩二极管﹑隧道二极管﹑耿氏二极管等构成射频信号源.在负阻型振荡电路中通常不出现反馈网络,而反馈型振荡电路必须包含正反馈网络,因此反馈网络是区分两种类型振荡电路的标志.通常反馈型振荡电路的工作频率为射频的中低端频段,负阻振荡电路的工作频率为射频的高端频段.负阻振荡电路更适合于工作在微波﹑毫米波等频率更高的频段. 一. 振荡电路和工作条件 一个典型的反馈型振荡电路的结构如图1所示.放大电路本身的电压增益称为开环增益,描述了输出信号O V 和输入信号d V 之间的关系.在连接了反馈网络之后,放大电路的增益()vf A j 称为闭环增益

正弦波振荡器振荡电路分析

正弦波振荡器分析 1.振荡器的振荡特性和反馈特性如图9.10所示,试分析该振荡器的建立过程,并推断A、B两平衡点是否稳定。 解:依照振荡器的平衡稳定条件能够推断出A点是稳定平衡点,B点是不稳定平衡点。因此,起始输入信号必须大于U iB振荡器才有可能起振。 图9.10 图9.11 2.具有自偏效应的反馈振荡器如图9.11所示,从起振到平衡过程u BE波形如图9.12所示,试画出相应的i C和I c0波形。 解:相应的和波形如图9.13所示。 图9.12 图9.13 3.振荡电路如图9.11所示,试分析下列现象振荡器工作是否正常: (1)图中A点断开,振荡停振,用直流电压表测得V B=3V,V E=2.3V。接通A点,

振荡器有输出,测得直流电压V B=2.8V,V E=2.5V。 (2)振荡器振荡时,用示波器测得B点为余弦波,且E点波形为一余弦脉冲。 解:(1)A点断开,图示电路变为小信号谐振放大器,因此,用直流电压表测得 V =3V,V E=2.3V。当A点接通时,电路振荡,由图9.12所示的振荡器从起振到平B 衡的过程中能够看出,具有自偏效应的反馈振荡器的偏置电压u BEQ,从起振时的大于零,等于零,直到平衡时的小于零(也能够不小于零,但一定比停振时的u BEQ小),因此,测得直流电压V B=2.8V,V E=2.5V是正常的,讲明电路已振荡。 (2)是正常的,因为,振荡器振荡时,u be为余弦波,而i c或i e的波形为余弦脉冲,所示E点波形为一余弦脉冲。 4.试问仅用一只三用表,如何推断电路是否振荡? 解:由上一题分析可知,通过测试三极管的偏置电压u BEQ即可推断电路是否起振。短路谐振电感,令电路停振,假如三极管的静态偏置电压u BEQ增大,讲明电路差不多振荡,否则电路未振荡。 5.一反馈振荡器,若将其静态偏置电压移至略小于导通电压处,试指出接通电源后应采取什么措施才能产生正弦波振荡,什么缘故? 解:必须在基极加一个起始激励信号,使电路起振,否则,电路可不能振荡。 6.振荡电路如图9.14所示,试画出该电路的交流等效电路,标出变压器同名端位置;讲明该电路属于什么类型的振荡电路,有什么优点。若L=180μH,C2=30pF,C 的变化范围为20~270pF,求振荡器的最高和最低振荡频率。 1

门电路振荡器

集成电路构成的振荡电路大全 在电子线路中,脉冲振荡器产生的CP脉冲是作为标准信号和控制信号来使用的,它是一种频率稳定、脉冲宽度和幅度有一定要求的脉冲。这种振荡器电路不需要外界的触发而能自动产生脉冲波,因此被称为自激振荡器。一个脉冲波系列是和这个脉冲的基本频率相同的正炫波以及许多和这个脉冲基本频率成整数倍的正炫波谐波合成的,所以脉冲振荡器有时叫做多谐振荡器。用集成电路构成的振荡器比用分立元件构成的工作要可靠的多,性能稳定。本电路汇编了用各种集成电路构成的大量振荡器电路。供读者在使用时参考。 -、门电路构成的振荡电路 1、图1是用CMOS与非门构成的典型的振荡器。当反相器F2 输出正跳时,电容立即使F1输入为1,输出为0。电阻RT为CT对反相器输出提供放通电路。当CT放电达到F1的转折电压时,F1输出为1,F2输出为 0。电阻连接在F1的输出端对CT反方向充电。当CT被充到F1的转折电压时,F1输出为0,F2为1,于是形成形成周期性多谐振荡。其振荡周期T=2。 2RtCt。电阻Rs是反相器输入保护电阻。接入与否并不影响振荡频率。 2、图2是用TTL的非门构成的环形振荡器。三个非门接成闭环形。假定三个门的平均传输延迟时间都是t,从F1输入到F3输出共经过3t的延迟,Vo输出就是Vi的输入,所以输出端的振荡周期T=6t。该电路简单,但t数值一般是几十毫微秒,所以振荡频率极高,最高可达8MHz。

3、图3是用TTL非门电路组成的带RC延时电路的RC环形振荡器。当a点由高电平跳变为低电平时,b点电位由低边高,经门2使C点电位由高变低,同时又经耦合到d点,使d点电位上跳为高电平,所以门3输出即e点电位为低。随着c充电电流减少,d点电位逐渐降低,低到关门电压时门3关闭,e点由低变高,再反馈到门1,使b点由高变低,d点下降到较负的电压值,保证门3输出为高。当c放电使d点上升到开门电压时,门3打开,e点又由高变低,输出电压 Vo又回复为低电平,如此交替循环变化形成连续的自激振荡。振荡周期T=2. 2RC。R可用作频率微调,一般R值小于1k欧姆。RS是保护电阻。 4、图4是用与非门构成的晶体振荡器。该振荡器精度比较高,一般在10^-5,一般将其基准振荡信号作为时间基准来使用。由于受晶体体积的限制,晶体振荡器产生的脉冲频率都比较到,通常是几百KHZ~几MKZ。要想得到频率较低的标准

相关文档
相关文档 最新文档