文档库 最新最全的文档下载
当前位置:文档库 › 平面十杆机构运动学建模及仿真研究

平面十杆机构运动学建模及仿真研究

平面十杆机构运动学建模及仿真研究
平面十杆机构运动学建模及仿真研究

基于SimMechanics的经编机平面十杆机构运动学建模及仿真研究

作者:梁栋, 金国光, 畅博彦, 魏展, LIANG Dong, JIN Guo-guang, CHANG Bo-yan, WEI Zhan

作者单位:梁栋,畅博彦,魏展,LIANG Dong,CHANG Bo-yan,WEI Zhan(天津工业大学机械工程学院,天津,300387),金国光,JIN Guo-guang(天津工业大学机械工程学院,天津300387;天津工业大学天津市现代机电装备技

术重点实验室,天津300387)

刊名:

天津工业大学学报

英文刊名:Journal of Tianjin Polytechnic University

年,卷(期):2012,31(1)

本文链接:https://www.wendangku.net/doc/188747097.html,/Periodical_tjfzgxyxb201201021.aspx

平面连杆机构及其设计答案复习进程

第八章平面连杆机构及其设计 一、填空题: 1.平面连杆机构是由一些刚性构件用转动副和移动副连接组成的。 2.在铰链四杆机构中,运动副全部是低副。 3.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 4.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 5.在铰链四杆机构中,与连架杆相连的构件称为连杆。 6.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 7.对心曲柄滑块机构无急回特性。 8.平行四边形机构的极位夹角θ=00,行程速比系数K= 1 。 9.对于原动件作匀速定轴转动,从动件相对机架作往复直线运动的连杆机构,是否有急回 特性,取决于机构的极位夹角是否为零。 10.机构处于死点时,其传动角等于0?。 11.在摆动导杆机构中,若以曲柄为原动件,该机构的压力角α=00。 12.曲柄滑块机构,当以滑块为原动件时,可能存在死点。 13.组成平面连杆机构至少需要 4 个构件。 二、判断题: 14.平面连杆机构中,至少有一个连杆。(√) 15.在曲柄滑块机构中,只要以滑块为原动件,机构必然存在死点。(√) 16.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 17.有死点的机构不能产生运动。(×) 18.曲柄摇杆机构中,曲柄为最短杆。(√) 19.双曲柄机构中,曲柄一定是最短杆。(×) 20.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 21.在摆动导杆机构中,若以曲柄为原动件,则机构的极位夹角与导杆的最大摆角相等。 (√) 22.机构运转时,压力角是变化的。(√) 三、选择题:

23.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A ≤ B ≥ C > 24.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而 充分条件是取 A 为机架。 A 最短杆或最短杆相邻边 B 最长杆 C 最短杆的对边。 25.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时, 有两个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 26.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 A 为机架时, 有一个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 27.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 C 为机架时, 无曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 28.铰链四杆机构中,若最短杆与最长杆长度之和 B 其余两杆长度之和,就一定是双摇杆 机构。 A < B > C = 29.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 C 为原动件时,此时机构处在死点位 置。 A 曲柄 B 连杆 C 摇杆 30.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 A 为原动件时,此时为机构的极限 位置。 A 曲柄 B 连杆 C 摇杆 31.对曲柄摇杆机构,当以曲柄为原动件且极位夹角θ B 时,机构就具有急回特性。 A <0 B >0 C =0 32.对曲柄摇杆机构,当以曲柄为原动件且行程速度变化系数K B 时,机构就具有急 回特性。 A <1 B >1 C =1 33.在死点位置时,机构的压力角α= C 。 A 0 o B 45o C 90o 34.若以 B 为目的,死点位置是一个缺陷,应设法通过。 A 夹紧和增力B传动 35.若以 A 为目的,则机构的死点位置可以加以利用。 A 夹紧和增力;B传动。

平衡吊的动力学与运动学仿真

平衡吊的运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1 绪论 1.1 平衡吊的概要平衡吊是的主要结构是平行四边形连杆机构的放大形态和螺母升降结构,通过外力的作用下达到重物的上升和下降的目的,平衡吊可以满足重物随时停留在需要的工作区域。比其他的吊装设备更具有优越性,它比一般吊装设备更加的灵活,从而更加的精准,与机械手相比等其他吊装设备比,其结构更加得合理,性能较好,广泛的使用于重工业的生产中,在机床厂中更是被用作吊装作业,在小型企业装卸货物,例如码头的施工,集装箱的搬运,非常适合于作业区域窄,时间间隔短的作业方式。其极大减少了人力使用,有效地节约了人力资源。平衡吊在市场上主要常见的有3 种,机械式,气动式,液压式,机械式,顾名思义,通过外力的使用,使其达到升降的目的,主要在生产,搬运的的领域中常见,后期,更是添加了电动装置,优化了他的配置,有效地提高了生产效率。气动式平衡吊主要是对于气压的控制原理实现升降功能的我们成为气动式平衡吊,液压式,主要是根据液压系统来设置的,在大多数重工业生产地使用广泛。现在主要使用的为气动式平衡吊,主要省力,都是自动化进行的,按照平衡吊臂的类型还可以将平衡吊分为通用和专用类型,他们各有各的特色,相对于大型的吊车来说,其缺点是工作的行程围较小,区域局限化。 平衡吊的种类及其特点:液压平衡吊的特点:液压平衡吊有3 大类,有级,单级,无级变速的,他们通过不同的油路控制来达到不同的工作地点; 气动平衡吊的特点:体积不大,比一般的平衡吊具有灵活的特色;电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点的特点,一般为定速转动; Cad(2D)+solidworks(3D) 图纸整套免费获取,需要的 加QQ1162401387 1.2 平衡吊的结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成的,其中的几个臂件通过平行四边形连杆机构构成的。在外力的作用下起到升降重物的作用。

曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (21) 参考文献 (22)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析 1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 2.1问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

2.2平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。 如E点轨迹不符合设计要求,则可适当调整各杆件的尺寸,再通过尺寸动画功能检验。

基于MatlabSimulink的槽轮机构间歇运动特性的分析与仿真

基于Matlab/Simulink的槽轮机构间歇运动特性的分析与仿真 摘要:将槽轮机构转换为倒置曲柄滑块机构,建立了槽轮机构的运动数学模型,利用Matlab计算了槽轮机构的运动参数并绘制了相应的动态曲线,该方法直观精确,提高了设计效率。 关键词:槽轮机构间歇运动Matlab/Simulink 运动特性 Geneva mechanism based on Matlab/Simulink intermittent motion characteristics analysis and simulation Abstract :Converse geneva mechanism for inverted slider-crank mechanism,the geneva machanism motion mathematical model is established,using Matlab to calculate the dynamic movement parameters of the geneva mechanism and draw the corresponding curve,the method is accurate,intuitive improves the design efficiency Key words:the geneva mechanism intermittent motion Matlab / Simulink movement characteristics 0引言: 槽轮机构能将主动件连续旋转运动转换成从动件有规律的运动和停歇,是实现周期性运动和停歇的典型机构。槽轮机构的结构简单,外形尺寸小,效率高,并能较平稳地、间歇地进行传位,在现代机械设备中得到了广泛的应用,但因传动时尚存在柔性冲击,故常用于速度不高的场合。本文将针对槽轮机构的间歇运动,使用Matlab软件中的仿真工具箱Simulink进行运动学仿真,通过仿真得到从槽轮的运动变化曲线,并对槽轮机构的运动特性进行分析。 1槽轮机构的物理模型转换 图1 外槽轮机构简图图2 曲柄滑块机构 1-槽轮;2-拨盘1-滑块;2-曲柄;3-摇杆 在如图1所示为外槽轮机构简图,图2所示为倒置的曲柄滑块机构。当销子和轮槽结合时图2中倒置曲柄滑块构造形式与图1中槽轮机构类似。其中图1中带销子的拨盘2可视为连杆2,而槽轮可视为连杆3,滑块1代表销子。 2槽轮机构的数学建模 整个系统的运动过程可分为两个状态,即销子和轮槽结合与分离的两个状态

平衡吊的动力学与运动学仿真

平衡吊得运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1绪论 1、1平衡吊得概要 平衡吊就是得主要结构就是平行四边形连杆机构得放大形态与螺母升降结构,通过外力得作用下达到重物得上升与下降得目得,平衡吊可以满足重物随时停留在需要得工作区域内。比其她得吊装设备更具有优越性,它比一般吊装设备更加得灵活,从而更加得精准,与机械手相比等其她吊装设备比,其结构更加得合理,性能较好,广泛得使用于重工业得生产中,在机床厂中更就是被用作吊装作业,在小型企业装卸货物,例如码头得施工,集装箱得搬运,非常适合于作业区域窄,时间间隔短得作业方式。其极大减少了人力使用,有效地节约了人力资源。 平衡吊在市场上主要常见得有3种,机械式,气动式,液压式,机械式,顾名思义,通过外力得使用,使其达到升降得目得,主要在生产,搬运得得领域中常见,后期,更就是添加了电动装置,优化了她得配置,有效地提高了生产效率。气动式平衡吊主要就是对于气压得控制原理实现升降功能得我们成为气动式平衡吊,液压式,主要就是根据液压系统来设置得,在大多数重工业生产地使用广泛。现在主要使用得为气动式平衡吊,主要省力,都就是自动化进行得,按照平衡吊臂得类型还可以将平衡吊分为通用与专用类型,她们各有各得特色,相对于大型得吊车来说,其缺点就是工作得行程范围较小,区域局限化。 平衡吊得种类及其特点: 液压平衡吊得特点:液压平衡吊有3大类,有级,单级,无级变速得,她们通过不同得油路控制来达到不同得工作地点; 气动平衡吊得特点:体积不大,比一般得平衡吊具有灵活得特色; 电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点得特点,一般为定速转动; Cad(2D)+solidworks(3D)图纸整套免费获取,需要得 加QQ1162401387 1、2平衡吊得结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成得,其中得几个臂件通过平行四边形连杆机构构成得。在外力得作用下起到升降重物得作用。

三维建模及运动仿真

三维建模及运动仿真 Pro/Engineer 软件集产品的三维造型设计、加工、分析、仿真及绘图等功能于一体,是一套使用方便、参数化造型精确的软件,其强大的造型功能及仿真分析功能受到众多工程人员的青睐。本节将采用Pro/E 软件,完成少齿数齿轮传动机构中所有零件的参数化建模,并对少齿数齿轮减速器进行虚拟装配,在此基础上,对传动机构进行运动仿真。 3.1 齿轮的参数化建模 3.1.1 零件分析 齿轮建模的操作步骤如下: (1)添加齿轮设计参数 (2)添加齿轮关系式 (3)创建齿轮的齿廓曲线 (4)创建螺旋线方程 (5)实体生成: 1)创建螺旋线线方程 2))拉伸 3))阵列 3.1.2 绘制齿轮 (1)新建文件: 启动PROE Wildfire4.0,单击工具栏新建工具,或单击菜单“文件/新建”。出现如图3.1所示对话框。选择系统默认“零件”,子类型“实体”方式,“名称”栏中输入“canshuhuachilun ”,同时注意关闭“使用缺省模板”。选择公制模板mmns-part-solid ,如图3.2所示,然后单击“确定”。 (2)创建齿轮程序。 选择菜单栏“工具/程序”命令,出现如图3.3所示对话框。单击“编辑设计”, 依次添加齿轮设计参数及初始值,添加完毕单击“确定”。选择工具菜单“工具/程序”命令,出现如图3.4信息窗口,在其中输入程序如下: Y0=(1/4)*PI*MT+XT*MT*TAN(α t) Xc=(HANX+CNX-XN)*MN-ρ

Yc=(1/4)*PI*MT+HANX*MN*TAN(αt)+ρ*COS(αt) (3)添加齿轮四个圆的关系式。 1)选择“插入/模型基准/ 草绘”特征工具,或单击工具栏 草绘命令,出现如图3.5所示对话框。单击“草绘”确认,进入二维草绘模式如图3.6所示。

槽轮机构运动学仿真

湖南农业大学工学院 课程设计说明书 课程名称:机械CAD/CAM课程设计 题目名称:槽轮机构运动学仿真 班级:20 11 级机制专业四班 姓名: 学号: 指导教师: 评定成绩: 教师评语: 指导老师签名: 20 年月日

目录 摘要 (1) 关键词 (1) 1 槽轮机构的结构组成和工作原理 (1) 2 零件三维实体模型建立的方法 (1) 2.1 主动转盘三维实体模型建立的方法 (1) 2.2 从动槽轮三维实体模型建立的方法 (3) 2.3 其他零件三维实体模型建立的方法 (4) 3 装配模型建立的方法和步骤 (6) 4 建立装配模型的运动仿真 (9) 5 装配模型的运动仿真分析 (13) 6 装配模型的运动仿真分析结论 (15) 7 装配模型图集 (16) 7.1 总成图 (16) 7.2 爆炸图 (16) 7.3 零件图 (17) 7.4 主动转盘工程图 (18) 8 总结 (19) 参考文献.......................................... (19)

槽轮机构运动学仿真 学生: (工学院,11-机制4班,学号) 摘要:槽轮机构是将主动拨盘的连续转动转化为从动槽轮的间歇转动,以达到间歇进给、转位和分度等工作要求。运用Pro/E软件对槽轮机构进行三维实体建模及装配,并运用模块进行运动仿真分析,得出机构的角速度、角加速度随时间变化的曲线。 关键词:槽轮机构;间歇运动;运动仿真 1、槽轮机构的结构组成和工作原理 槽轮机构由槽轮和圆柱销组成的单向间歇运动机构,又称马尔他机构。它常被用来将主动件的连续转动转换成从动件的带有停歇的单向周期性转动。槽轮机构有外啮合和内啮合以及球面槽轮等。外啮合槽轮机构的槽轮和转臂转向相反,而内啮合则相同,球面槽轮可在两相交轴之间进行间歇传动。槽轮机构典型结构由主动转盘、从动槽轮和机架组成。 2、零件三维实体模型建立的方法 2.1、主动转盘三维实体模型建立的方法 ②选择模板

QJ1E47FMD发动机运动学及动力学仿真计算

QJ147FMD发动机运动学及动力学仿真计算 一、QJ147FMD发动机的参数: 标定转速:6000r/min 曲轴半径:19.6mm 连杆长度:80mm 缸径:47mm 曲柄连杆比:0.245 二、曲柄连杆机构再ADAMS软件中的仿真计算: 上图是燃气的爆发压力和往复惯性力以及合力的曲线图。 上图是用ADAMS软件仿真计算出的往复惯性力和理论计算的比较图。粉色——理论计算,蓝色——仿真计算。理论计算:max=745N,min=-1230N; 仿真计算:max=546.6316N,min=-901.3991N. 出现上诉的原因个人理解是: (1)仿真计算的往复加速度=理论计算的往复加速度,那么产生仿真计算所得到的往复惯性力和理论计算所得到的往复惯性力之所以不同的原因就在于往复质量的计算;(2)在理论计算中,往复质量的计算是由活塞组的质量+连杆小头的质量,而在小头质量的换算过程中教科书上介绍的方法一般有两种,即两质量和三质量系统来等效代替

连杆。并且可以确定的是用三质量系统来代替两质量系统计算的更为精确只是计算起来比较困难。那么我们可以推想如果可以的话用四质量系统来代替连杆所得到的结果应该比三质量系统来代替连杆是不是更为精确?如果答案是肯定的,那么我们就有理由相信:用无数个质量点来代替连杆系统所计算得到的结果将会比2质量系统来代替连杆计算的精度要高很多,这一点用ADAMS软件可以轻松的做到。(3)现在我们来做一个对比,即同一个连杆用两质量系统和三质量系统分别来代替的时候,同一个连杆在换算到连杆小头质量是如何变化的?很容易想到用三质量系统来代替连杆的时候换算到连杆小头的质量应该比两质量换算到连杆小头的质量要小,那么我们有理由相信:当用无数个质量点来代替连杆的时候,换算到连杆小头的质量要比教科书上按两质量系统来代替连杆换算到连杆小头出的往复质量要小。(4)由于摩托车的发动机的转速很高,所以他的往复加速度很大。我们这次所研究的发动机的加速度的数量级:几千。可见,当往复质量减少1%时,则往复惯性力将减少几十牛。(这也是我们在设计高速发动机的时候要注意减少往复惯性质量的原因,而我们按照理论公式来计算的时候,实际上已经人为的增大了往复质量。)由以上的分析,我们有理由认为用ADAMS仿真软件来进行计算,所得到的结果比按纯理论方法所计算的更为精确。 三、主轴径的受力分析: (1)我们用ADAMS软件,将所研究的发动机的轴径作为刚体并且还考虑到了轴承的安装位置以及曲柄系统的质心位置的影响之后所得到的曲轴主轴径的受力分析图。 上图是曲轴的两个轴径受力的极坐标图。

槽轮机构的组成及其特点

槽轮机构的组成及其特点 newmaker (1) 槽轮的组成(Composition of Geneva Mechanism) 如右图所示,主动拨盘上的圆柱销进进槽轮上的径向槽以前,凸锁止弧将凹锁止弧锁住,则槽轮静止不动。圆柱销进进径向槽时,凸、凹锁止弧恰好分离,圆柱销可以驱动槽轮转动。当圆柱销脱离径向槽时,凸锁止弧又将凹锁止弧锁住,从而使槽轮静止不动。因此,当主动拨盘作连续转动时,槽轮被驱动作单向的间歇转动。 (2)槽轮的特点 构造简单,外形尺寸小; 机械效率高,并能较平稳地,间歇地进行转位; 但因传动时存在柔性冲击,故常用于速度不太高的场合。 槽轮机构的类型及应用 (1)槽轮机构的类型(Type of Geneva Mechanism) 外槽轮机构:运动时,拨盘与槽轮为异向回转。 内槽轮机构:运动时,拨盘与槽轮为同向回转。 两种机构均用于平行轴之间的间歇传动。 (2)槽轮机构的应用举例(Application Sample of Geneva Mechanism) 外槽轮机构被广泛应用于电影放映机中。

(3)球面槽轮机构(Sphere Geneva Mechanism) 当需要在两相交轴之间进行间歇传动时,可采用球面槽轮机构。右图为球面槽轮机构。 槽轮机构的运动系数及运动特性 (1)槽轮机构的运动系数k (Motion Factor of Geneva Mechanism) k=td/t 又因拨盘1一般为等速回转,因此时间的比值可以用拨盘转角的比值来表示。可得外槽轮机构运动系数的另一表达式: 由于运动系数k应大于零,所以由上式可知外槽轮径向槽的数目z应大于3。又由上式可知,

双横臂悬架的运动学建模与仿真

第2期(总第147期) 2008年4月 机械工程与自动化 M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o12 A p r1 文章编号:167226413(2008)022******* 双横臂悬架的运动学建模与仿真 兰春亮,杨世文 (中北大学,山西 太原 030051) 摘要:采用虚拟样机技术,借助于ADAM S软件这个操作平台,针对某商务车前悬架建立了多体动力学模型,并对其进行运动学仿真分析,从中获得了随车轮上下跳动的悬架车轮定位参数的变化规律,这为汽车悬架系统开发提供了一种有效的手段。 关键词:双横臂独立悬架;建模;仿真;ADAM S 中图分类号:T P39119∶U463133+5 文献标识码:A 收稿日期:2007209213;修回日期:2007211209 作者简介:兰春亮(19792),男,山西岚县人,助理工程师,硕士研究生,主要研究方向:车辆悬挂系统动力学。

弹簧一端与车身用固定副连接,另一端与上摆臂固结在一起(固接点为C 点,并垂直于纸面),在中间断开并在断开处加一转动副,在转动副上加一扭簧,输入扭杆弹簧的刚度和预载荷即可达到扭杆弹簧的效果。上摆臂由于与扭杆弹簧连接在一起,其扭杆轴向的自由度已限制,所以若上摆臂与车身连接处再用转动副连接则会产生过约束,为了不出现过约束,采用轴套取代转动副。下摆臂与车身连接处采用转动副,减振器上端与车身相连,下端与下摆臂相连。该车前悬架减振器是双向液力式减振器,在A DA M S V ie w 中编制减振器速度—阻尼力特性样条曲线,修改阻尼栏为S p line (自变量是速度,函数为阻尼力),按减振器的阻尼力特性建立相应的S p line ,即可表示减振器非线性特性,再选择该曲线,完成减振器的建模。一般对前悬架而言评价其操纵稳定性和平顺性,主要特性参数见表l 。 表1 主要特征参数 特性参数名称数值参考范围前轮外倾角(o )0~0.5主销后倾角( o )2.5~3.5 主销内倾角(o )15.75前轮前束量(mm ) -3~3扭杆刚度 42.24 2  仿真分析 悬架的运动学特性首先反映在车轮上下跳动时其定位参数的变化趋势上,车轮定位参数( 前轮外倾角、前轮前束量、 主销内倾角及主销后倾角)的值对汽车的使用性能,特别是操作稳定性影响很大。在ADAM S 软件里建立悬架模型后,将悬架模型与测试平台装配,然后根据前轮上下最大跳动量设置激振台架上下激振位移的最大值。运动激振方程为:F =40sin (360d ×ti m e )(此为软件中的定义表达式设置,d 为旋转角度,ti m e 为时间),使车轮上下跳动,计算可得车轮定位参数。经仿真分析得到运动结果,见图2~图5。 图2 车轮外倾角变化曲线 由以上各性能曲线可以看出,在车轮跳动量为±40mm 的行程内:前轮外倾角变化范围为0103o ~0160o ;前轮前束量变化范围为-014mm ~3125mm ;主销内倾角变化范围为15166o ~1612o ;主销后倾角变化范围为21982o ~3132o 。 从仿真分析得到的数据来看,各项性能参数均较为合理,其变化趋势基本符合理论要求,悬架性能较好,能保证汽车具有较好的操纵稳定性和平顺性。 图3主销后倾角变化曲线 图4 主销内倾角变化曲线 图5前束量变化曲线 3 结束语 利用机械系统仿真软件ADAM S ,建立了某商务 车双横臂独立前悬架模型,并进行了运动学仿真,运动直观,仿真效果良好,提高了设计精度和设计效率,为同类机构的设计提供了一种高效快捷的方法,为进一步制造物理样机奠定了基础。 参考文献: [1] 余志生.汽车理论[M ].北京:机械工业出版社,2002. [2] 金叙龙,郭万富.双横臂独立悬架的运动特性分析[J ].汽 车技术,2001(4):11215. [3] 张洪欣.汽车设计[M ].北京:机械工业出版社,1988. (英文摘要转第80页) ? 77? 2008年第2期 兰春亮,等:双横臂悬架的运动学建模与仿真

管道机器人运动学分析与变径机构仿真

MECHANICAL ENGINEER 机械工程师 管道机器人运动学分析与变径机构仿真 史继新1a,1b,刘芙蓉1a,1b,胡啸2,袁显宝1a,1b,陈保家1a,1b,李响1a,1b (1.三峡大学 a.湖北省水电机械设备设计与维护重点实验室;b.机械与动力学院,湖北宜昌443002;2.中核武汉核电运行技 术股份有限公司,武汉430223) 摘要:基于对核电站压力容器和主管道接管内部检查的需要,研发了一种多履带可变径式管道检查机器人。分析机器人四种不同的运动情况,得出机器人履带轮角速度和机器人在管道内旋转速度及行走线速度的函数,建立了机器人在管道内的运动学模型。针对机器人可变径机构,建立力学模型,得出变径机构中弹簧的理论数据,并运用Inventor运动仿真分析验证了其合理性。 关键词:管道机器人;运动学模型;变径机构;Inventor运动仿真 中图分类号:TP242.3;TH122文献标志码:粤文章编号:员园园圆原圆猿猿猿(圆园员9)04原园014原园3 Kinematics Analysis and Variable Diameter Mechanism Simulation of Pipeline Robot SHI Jixin1a,1b,LIU Furong1a,1b,HU Xiao2,YUAN Xianbao1a,1b,CHEN Baojia1a,1b,LI Xiang1a,1b (1.China Three Gorges University a.Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance;b.College of Mechanical and Power Engineering,Yichang443002,China;2.China Nuclear Power Operation Technology Co.,Ltd.,Wuhan430223,China) Abstract院Based on the need for internal inspection of nuclear power plant pressure vessels and main pipelines,a multi-track variable-diameter pipeline inspection robot is developed.The four different motions of the robot are analyzed,and the angular velocity of the robot crawler wheel and the rotation speed of the robot in the pipeline and the traveling linear velocity are obtained.The kinematics model of the robot in the pipeline is established.For the robot variable diameter mechanism,the mechanical model is established,the theoretical data of the spring in the variable diameter mechanism is calculated,and the rationality is verified by Inventor motion simulation analysis. Keywords:pipeline robot;kinematics model;variable diameter mechanism;Inventor motion simulation 0引言 随着核电厂运行时间的增加,各种规格管道内表面可能会出现一些问题需要实施检查与维修。因这些部位处于强辐射区,人员无法直接实施这些工作,必须开发具有行走功能的管道机器人携带摄像头完成核电厂管道检查工作。目前,发达国家对于管道机器人的研究处于领先地位[1]:德国ECA公司研制出一系列管道爬行机器人,在满足多尺寸规格管道的前提下,能搭载多种检测工具,其检查的管道范围从150耀2000mm;日本东京工业大学研制出Thes系列管道机器人[2];韩国汉城汉阳大学研制出双模块协作管道检测机器人[3]。中国在管道检查机器人领域起步较晚,北京德朗检视科技有限公司研发的DNC100、DNC150等管道爬行器,已在核电领域中得到运用;东华大学研制除了自主变位履带足管道机器人[4];上海交通大学针对煤气管道的检测,研制出煤气管道检测机器人样机[5]。 针对目前国内外传统机器人在面对垂直、微小、复杂管时,存在通行性能差、稳定性弱、牵引力不足等缺点。本项目所研制的多履带可变径式管道检查机器人,在机器人的机械结构、移动方式等方面做出改进,能适应150耀160mm管径的管道内部运动,分析了其管道内部运动的运动学模型和变径机构的力学模型,并针对变径机构进行了仿真分析,验证设计的合理性。 1管道检查机器人整体结构设计 为了满足核电厂管道内部检查的需要,机器人必须具备三项基本能力:1)机器人的速度调节能力;2)机器人的转向能力;3) 析, 构设计,如图1 道机器人具有三组履带轮, 很好的夹紧力。 立的电动机控制, 每组履带轮的独立运动, 节不同电动机的转速来使机器人顺利通过弯管。履带轮和主体之间的连杆机构配上弹簧的特性使机器人具有很好的管道适应能力,可以适应150耀160mm管道直径的运动。2运动学分析 机器人每组履带轮的角速度决定机器人整体的运动情况,因此本节根据机器人履带轮角速度和机器人整体运动情况的函数关系建立运动学模型。该模型的坐标系、关节变量和参数如图2所示。XY Z表示全局坐标参考系,并且xyz表示附接到管线检查机器人的中心的局部坐标系;i、j 和k是局部坐标系的单位矢量。无论机器人如何移动,x轴 图1管道机器人 三维模型 1.履带轮组 2.变径机构 3.主体 3 2 1 基金项目:国家自然科学基金(11805112);湖北省教育厅 科学技术研究计划重点项目(D2*******);湖北省水电机械 设备设计与维护重点实验室开放基金项目(2016KJX15、 2017KJX04) 14 圆园员9年第4期网址:https://www.wendangku.net/doc/188747097.html,电邮:hrbengineer@https://www.wendangku.net/doc/188747097.html,

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E 点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD 的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。

平面连杆机构及其设计(参考答案)

一、填空题: 1.平面连杆机构是由一些刚性构件用低副连接组成的。 2.由四个构件通过低副联接而成的机构成为四杆机构。 3.在铰链四杆机构中,运动副全部是转动副。 4.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 5.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 6.在铰链四杆机构中,与连架杆相连的构件称为连杆。 7.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 8.对心曲柄滑快机构无急回特性。9.偏置曲柄滑快机构有急回特性。 10.对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,是否有急回特性,取决于机构的极位夹角是否大于零。 11.机构处于死点时,其传动角等于0。12.机构的压力角越小对传动越有利。 13.曲柄滑快机构,当取滑块为原动件时,可能有死点。 14.机构处在死点时,其压力角等于90o。 15.平面连杆机构,至少需要4个构件。 二、判断题: 1.平面连杆机构中,至少有一个连杆。(√) 2.平面连杆机构中,最少需要三个构件。(×) 3.平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。(√) 4.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 5.有死点的机构不能产生运动。(×) 6.机构的压力角越大,传力越费劲,传动效率越低。(√) 7.曲柄摇杆机构中,曲柄为最短杆。(√) 8.双曲柄机构中,曲柄一定是最短杆。(×) 9.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 10.平面连杆机构中,压力角的余角称为传动角。(√) 11.机构运转时,压力角是变化的。(√) 三、选择题: 1.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A <=; B >=; C > 。 2.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而充分条件是取 A 为机架。 A 最短杆或最短杆相邻边; B 最长杆; C 最短杆的对边。3.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时,有两

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

《运动学与动力学仿真》实验指导书

《运动学与动力学仿真》实验指导书适用专业:机械电子工程 上海电机学院 2014年10月

实验一虚拟样机几何建模 一、实验目的 1、了解虚拟样机建模的目的 2、掌握利用Adams/View 进行几何体建模的方法,熟悉典型几何体的建模命令和相关的属性调整方法 二、实验要求 实验前预习相关知识和实验内容。 三、实验原理 Adams/view 中的几何建模工具集如图1所示。 图1 几何建模工具集 调用几何建模工具通常有两种方法:使用主工具箱上的建模工具集选择工具图标,或通过菜单选择几何建模工具命令。 使用主工具箱建模方法: 1)在主工具箱中,用鼠标右键选择上部的几何建模按钮,屏幕弹出如图1所示的几何建模工具集; 2)用鼠标选择相应的建模工具集的图标; 3)在参数设置对话框,修改参数值。 4)按照屏幕下方状态栏的提示,绘制几何图形。

图形 图2 基本形体图库 四、实验设备 机房,adams软件 五、实验步骤 1)在几何建模工具集中选取所要建的三维实体建模工具图标; 2)在参数设置栏,设置所建立的几何体是新构件(New Part)、添加到现有构件(Add to Part)还是添加到地基上(On Ground); 3)在参数设置栏,选择输入有个尺寸参数。 4)按照屏幕下方状态栏的提示,用鼠标确定起始绘图点; 5)按住鼠标左键,拖动鼠标,屏幕出现所绘图形。可以在参数设置栏设置形体的尺寸; 6)释放鼠标,完成简单形体建模,绘图结束点定义了几何体的方向和部分形体。 六、实验注意事项 无 七、实验报告要求 1、根据原理和要求画出2个基本的形体

实验二约束类型及工具 一、实验目的 1. 了解运动学与动力学分析中常用的约束类型 2. 掌握 Adams/View中添加运动约束的方法 二、实验要求 实验前预习相关知识和实验内容 三、实验原理 ADANMS/View提供了12种常用的运动副工具。作用:可以将两个构件连接起来。条件:被连接的构件可以是刚体构件、柔性构件或者是点质量。常用运动副如图1所示。 图1 常用的运动副 1)在连接工具集或者在连接对话框,选择连接工具图标。

平面连杆机构运动及动力分析

毕业设计报告(论文) 报告(论文)题目:平面连杆机构运动及动力分析作者所在系部:机械工程系 作者所在专业:机械设计制造及其自动化 作者所在班级: B07115 作者姓名: 作者学号: 指导教师姓名: 完成时间: 2011年6月 北华航天工业学院教务处

摘要 平面连杆机构是一种应用十分广泛的机构。平面连杆机构全部采用低副连接,因而结构简单易于制造,结实耐用,不易磨损,适于高速重载;运动低副具有良好的匣形结构,无需保养,适于极度污染或腐蚀而易出现问题的机器中;平面连杆机构能够实现多种多样复杂的运动规律,而且结构的复杂性不一定随所需完成的运动规律性的复杂程度而增加;平面连杆机构还具有一个独特的优点,就是可调性,即通过改变机构中各杆件长度,从而方便地改变了原机构的运动规律和性能。连杆机构由于结构上的特点在各种机械行业中被广泛的采用。通过对连杆机构的设计,可以实现不同的运动规律,满足预定的位置要求和满足预定的轨迹要求。 机构运动及动力分析的目的是分析各个构件的位移、、角加速度以及受力,分析构件上某点的位置、轨迹、速度和加速度等。这种方法能给出各运动参数与机构尺寸间的解析关系及写出机构某些点的轨迹方程式,能帮助我们合理地选择机构的尺寸,从而对某一机构作深入的系统研究。 平面连杆机构运动及动力分析,就是以连杆机构作为研究对象,对其各个运动件之间的关系公式进行推导,应用现代设计理论方法和有关专业知识进行系统深入地分析和研究,探索掌握其运动规律,讨论重要参数间的关系。 关键词:平面连杆机构运动性能仿真运动规律 Abstract Planar linkage mechanisms are used widely. Planar linkage mechanisms take the use of lower pair connection, so its structure is easy to manufacture, durable and resistant, especially suitable for high-speed and heavy-duty; lower pair sports has a good box-shaped structure, without maintenance, which is fit for machines working in extreme contamination or often coming with problems because of corrosion; planar linkage mechanism not only can achieve a variety of complex movement, but also the more complex movem ent doesn’t go with more complex structure; what gives linkage a unique advantage is that the motive rules and performance of the original mechanism will change with the length of the bar. As a result, linkage mechanisms are widely used in mechanical industries. By changing the design of linkage mechanisms, it can achieve different motive rules in order to move as the intended location and trajectory.

相关文档