文档库 最新最全的文档下载
当前位置:文档库 › OSPF加密的简单分析

OSPF加密的简单分析

OSPF加密的简单分析
OSPF加密的简单分析

OSPF简单认证分析

第一行:OSPF的版本号

第二行:OSPF分组的类型,包括:

1.Hello

2.DBD

3.LSR

4.LSU

5.LSAck

第三行:OSPF分组的长度,单位为字节

第四行:OSPF路由器的ID

第五行:OSPF区域ID

第六行:OSPF校验和

第七行:OSPF身份验证的类型

0:不进行验证

1:简单密码

2:MD5

第八行:身份验证的密码

第九行:MD5密钥ID,只用于MD5的身份验证

第九行:序列号,只用于MD5身份验证

下面是简单身份验证与MD5验证的数据:

OSPF邻居明文认证配置

OSPF邻居明文认证配置 【实验名称】 OSPF 邻居明文认证配置 【实验目的】 掌握OSPF 的邻居明文认证配置。 【背景描述】 你是一名高级技术支持工程师,某企业的网络整个的网络环境是ospf。为了安全起见,新加入的路由器要通过认证,请你给予支持。 【实现功能】 完成OSPF区域新成员加入的安全认证。 【实验拓扑】 【实验设备】 R2624路由器(2台)、V35DCE(1根)、V35DTE(1根) 【实验步骤】

第一步:基本配置 Red-Giant>en Red-Giant#conf t Red-Giant(config)#hostname R1 !更改路由器主机名 R1(config)#int s0 R1(config-if)#ip add 192.168.12.1 255.255.255.0 !为接口配置地址 R1(config-if)#clock rate 64000 ! 设置时钟速率在DTE端不用设置 R1(config-if)#no sh R1(config)#iint loo 0 R1(config-if)#ip add 1.1.1.1 255.255.255.0 ! 配置loopback接口,保证路由更新的稳定Red-Giant>en Red-Giant#conf t Red-Giant(config)#hostname R2 R2(config)#int s0 R2(config-if)#ip add 192.168.12.2 255.255.255.0 R2(config-if)#no sh R2(config)#int loo 0 R2(config-if)#ip add 2.2.2.2 255.255.255.0 ! 配置loopback接口,保证路由更新的稳定 验证测试:ping R2#ping 192.168.12.1 Sending 5, 100-byte ICMP Echoes to 192.168.12.1, timeout is 2 seconds: !!!!! 第二步:启动OSPF路由协议 R1(config)#router os 1 R1(config-router)#net 192.168.12.0 0.0.0.255 area 0 R1(config-router)# net 1.1.1.0 0 0.0.0.255 area 2 R1(config-router)#end R2(config)#router os 1 R2(config-router)#net 192.168.12.0 0.0.0.255 area 0 R2(config-router)#net 2.2.2. 0 0.0.0.255 area 1 R2(config-router)#end 验证测试:R1# sh ip os nei (以R1为例) Neighbor ID Pri State Dead Time Address Interface 2.2.2.2 1 FULL/ - 00:00:37 192.168.12.2 Serial0 第三步:配置OSPF验证 R1(config)#router os 1 R1(config-router)# area 0 authentication !配置区域间明文验证 R1(config)#int s0 R1(config-if)# ip os authentication-key star !配置验证密码 R2(config)#router os 1

OSPF快速重路由配置举例

组网需求 如图1-31所示,Router S 、Router A和Router D属于同一OSPF区域,通过OSPF协议实现网络互连。要求当Router S和Router D之间的链路出现故障时,业务可以快速切换到链路B上。 2. 组网图 图1-31 OSPF快速重路由配置举例(路由应用) 配置步骤 (1)配置各路由器接口的IP地址和OSPF协议 请按照上面组网图配置各接口的IP地址和子网掩码,具体配置过程略。 配置各路由器之间采用OSPF协议进行互连,确保Router S、Router A和Router D之间能够在网络层互通,并且各路由器之间能够借助OSPF协议实现动态路由更新。 具体配置过程略。 (2)配置OSPF快速重路由 OSPF支持快速重路由配置有两种配置方法,一种是自动计算,另一种是通过策略指定,两种方法任选一种。 方法一:使能Router S和Router D的OSPF协议的自动计算快速重路由能力 # 配置Router S。 system-view [RouterS] bfd echo-source-ip 1.1.1.1 [RouterS] ospf 1

[RouterS-ospf-1] fast-reroute auto [RouterS-ospf-1] quit # 配置Router D。 system-view [RouterD] bfd echo-source-ip 4.4.4.4 [RouterD] ospf 1 [RouterD-ospf-1] fast-reroute auto [RouterD-ospf-1] quit 方法二:使能Router S和Router D的OSPF协议的指定路由策略快速重路由能力 # 配置Router S。 system-view [RouterS] bfd echo-source-ip 1.1.1.1 [RouterS] ip ip-prefix abc index 10 permit 4.4.4.4 32 [RouterS] route-policy frr permit node 10 [RouterS-route-policy] if-match ip-prefix abc [RouterS-route-policy] apply fast-reroute backup-interface ethernet 1/1 backup-nexthop 12.12.12.2 [RouterS-route-policy] quit [RouterS] ospf 1 [RouterS-ospf-1] fast-reroute route-policy frr [RouterS-ospf-1] quit # 配置Router D。 system-view

双机热备OSPF组网配置指导手册v1.3

双机热备主备方式OSPF组网配置 指导手册

关键字:双机热备、主备、非抢占、物理接口、静态路由、OSPF 目录 1双机热备防火墙组网说明: (3) 2主防火墙配置步骤: (4) 2.1 配置接口地址 (6) 2.2 配置安全区域 (8) 2.3 配置双机热备 (9) 2.4 配置接口联动 (12) 2.5 配置NAT (12) 2.6 配置OSPF动态路由协议 (16) 2.7 配置NQA (19) 2.8 配置静态缺省路由与TRACK 1绑定 (20) 2.9 配置OSPF发布缺省路由 (21) 3备防火墙配置步骤: (22) 2.1 配置接口地址 (23) 2.2 配置安全区域 (25) 2.3 配置双机热备 (27) 2.4 配置接口联动 (29) 2.5 配置NAT (30) 2.6 配置OSPF动态路由协议 (34) 2.7 配置NQA (36) 2.8 配置静态缺省路由与TRACK 1绑定 (37) 2.9 配置OSPF发布缺省路由 (38)

1 双机热备防火墙组网说明: 组网说明: 防火墙双机热备组网,主备非抢占模式,防火墙上行链路通过静态路由指向连接INTERNET网络,防火墙下行链路通过OSPF动态路由指向内部网络路由器。 业务要求: 当网络“层三交换机”或“防火墙”或“层二交换机”某一个设备本身故障或某一条线路故障时,流量可以及时从主防火墙切换至备防火墙,保证网络应用业务不中断、平稳运行。

2 主防火墙配置步骤: 1 配置PC IP地址192.168.0.3/24,连接管理防火墙: 2 通过IE浏览器打开防火墙WEB管理界面,防火墙默认的管理IP地址192.168.0.1,默认的用户名:h3c,默认密码:h3c。

RIP、OSPF、BGP三种协议的区别

OSPF(Open Shortest Path First开放式最短路径优先)是一个内部网关协议::AS内部路由(本质区别),采用链路状态路由选路技术 开放式最短路径优先协议是一种为IP网络开发的内部网关路由选择协议其由三个子协议组成hello协议,交换协议,扩散协议,其中hello协议负责检查链路是否可用并完成指定路由 器和备份路由器;交换协议完成“主”,“从”路由器的选择和交换各自的路由数据库信息,扩散协议负责完成各路由器中路由数据库的同步维护 不同厂商管理距离不同,思科OSPF的协议管理距离(AD)是110,华为OSPF的协议管理距离是10。 OSPF 采用链路状态路由选择技术,开放最短路径优先算法 路由器互相发送直接相连的链路信息和它拥有的到其它路由器的链路信息。每个 OSPF 路由器维护相同自治系统拓扑结构的数据库。从这个数据库里,构造出最短路径树来计算出 路由表。当拓扑结构发生变化时, OSPF 能迅速重新计算出路径,而只产生少量的路由协议流量。 此外,所有 OSPF 路由选择协议的交换都是经过身份验证的。 主要优点 收敛速度快;没有跳数限制; 支持服务类型选路 提供负载均衡和身份认证 适用环境 规模庞大、环境复杂的互联网 OSPF协议的优点: OSPF能够在自己的链路状态数据库内表示整个网络,这极大地减少了收敛时间,并且支持大型异构网络的互联,提供了一个异构网络间通过同一种协议交换网络信息的途径,并且不容易 出现错误的路由信息。 OSPF支持通往相同目的的多重路径。 OSPF使用路由标签区分不同的外部路由。 OSPF支持路由验证,只有互相通过路由验证的路由器之间才能交换路由信息;并且可以对不同的区域定义不同的验证方式,从而提高了网络的安全性。 OSPF支持费用相同的多条链路上的负载均衡。 OSPF是一个非族类路由协议,路由信息不受跳数的限制,减少了因分级路由带来的子网分离问题。 OSPF支持VLSM和非族类路由查表,有利于网络地址的有效管理 OSPF使用AREA对网络进行分层,减少了协议对CPU处理时间 BGP(边界网关协议):AS外部路由,采用距离向量路由选择 BGP是唯一一个用来处理像因特网大小的网络协议,也是唯一能够妥善处理好不相关路由域间的多路连接协议。BGPv4是一种外部的路由协议。可认为是一种高级的距离向量路由协议

OSPF 特殊区域的配置案例

上机报告 姓名学号专业 班级 计科1101 课程 名称 路由交换技术 指导教师 机房 名称 上机 日期 2013 年10月14 日上机项目名称 上机步骤及内容: 一、实验目的 ·掌握ospf协议的stub区域配置方法 ·掌握ospf协议的nssa区域配置方法 二、实验仪器设备和材料清单 器材:路由器4台,交换机2台,导线若干三、实验内容 ·掌握ospf协议的stub区域配置方法 ·掌握ospf协议的nssa区域配置方法 四、实验步骤 任务一stub区域配置

图1.1 实验拓扑图 一、配置stub区域 1、R1的配置代码 [R1]dis cu # version 5.20, Release 1808, Standard # sysname R1 # domain default enable system # # interface Ethernet0/0 port link-mode route ip address 192.168.2.1 255.255.255.0 # interface Ethernet0/0.1 vlan-type dot1q vid 1 ip address 202.168.0.1 255.255.255.0 # interface Ethernet0/0.2 vlan-type dot1q vid 2

ip address 202.168.1.1 255.255.255.0 # interface Ethernet0/0.3 vlan-type dot1q vid 3 ip address 202.168.2.1 255.255.255.0 # interface Ethernet0/0.4 vlan-type dot1q vid 4 ip address 202.168.3.1 255.255.255.0 # interface Ethernet0/1 port link-mode route ip address 10.0.0.1 255.255.255.0 # interface Serial1/0 link-protocol ppp # interface Serial2/0 link-protocol ppp # interface NULL0 # interface LoopBack0 ip address 1.1.1.1 255.255.255.255 # ospf 1 router-id 1.1.1.1 import-route direct area 0.0.0.1 network 10.0.0.0 0.0.0.255 network 1.1.1.0 0.0.0.255 # [R1] 2、R2的配置代码 [R2]dis cur # version 5.20, Release 1808, Standard # dar p2p signature-file cfa0:/p2p_default.mtd # port-security enable # vlan 1 # domain system

华为OSPF配置命令详解

华为OSPF配置命令详解 网络技术2009-07-11 15:22:36 阅读946 评论0 字号:大中小订阅【命令】ospf network-type { broadcast | nbma | p2mp | p2p } undo ospf network-type { broadcast | nbma | p2mp | p2p } 【视图】接口视图 【参数】broadcast:设置接口网络类型为广播类型。 nbma:设置接口网络类型为NBMA 类型。 p2mp:设置接口网络类型为点到多点。 p2p:设置接口网络类型为点到点。 【描述】ospf network-type 命令用来设置OSPF 接口网络类型, undo ospf network-type 命令用来删除接口指定的网络类型。需要注意的是:当接口被配置为新的网络类型后,原接口网络类型将自动取消。 【举例】# 配置接口Serial0 为NBMA 类型。 [Quidway-Serial0] ospf network-type nbma 【命令】ospf peer ip-address [ eligible ] undo ospf peer ip-address 【视图】接口视图 【参数】ip-address:NBMA、点到点和点到多点接口的相邻路由器的IP 地址。eligible:表明该邻居具有选举权。

【描述】ospf peer 命令用来设定对端路由器IP 地址。undo ospf peer 命令用来取 消对端路由器IP 地址的设定。 缺省情况下,不设定任何对端路由器IP 地址。 对于NBMA 网络,如X.25 或帧中继等不支持广播方式的网络上,还需要进行一些特殊的配置。由于无法通过广播Hello 报文的形式发现相邻路由器,必须手工为该接口指定相邻路由器的IP 地址,以及该相邻路由器是否有选举权等,若未指定eligible 关键字时,就认为该相邻 路由器没有选举权。 【举例】# 配置接口Serial0 的相邻路由器IP 地址为10.1.1.4。 [Quidway-Serial0] ospf peer 10.1.1.4 【命令】ospf timer dead seconds undo ospf timer dead 【视图】接口视图 【参数】seconds:邻居路由器的失效时间,取值范围为1~65535 秒。其缺省值根据 接口类型不同而不同。 【描述】ospf timer dead 命令用来配置对端路由器的失效时间。 undo ospf timer dead 命令用来恢复对端路由器失效时间为缺省值。

ospf 三种认证详解

OSPF区域详解和3种认证 OSPF的4种特殊区域 1.Stub:过滤LSA4/5,将LS4/5的路由通过LSA3自动下放默认路由,Seed cost=1 注意点:Stub区域所有路由器都要配置成Stub 配置命令在OSPF进程中:area [area ID] stub 2.totally stubby:过滤LSA3/4/5,在ABR上配置 配置命令在OSPF进程中:area [area ID] stub no-summary 3.not-so-stubby:过滤LSA4/5,可以在此区域中出现ASBR,在此区域中,将直接相连的其它AS的路由转换为LSA7,在连接其它OSPF区域的ABR上将LSA7转换为LSA5。远端AS不转换,直接过滤掉(连接其它OSPF区域的ABR上不自动下放默认路由) 配置命令在OSPF进程中: area [area ID] nssa(配置为nssa区域) area [area ID] nssa default-information-originate(下发默认路由) tips: 只要产生LSA5的路由器都是ASBR(ASBR定义) 4.totally-nssa:在not-so-stubby基础上过滤LSA3/4/5,自动下放默认路由 配置命令在OSPF进程中: area [area ID] nssa no-summary 补充命令 area [area ID] nssa no-redistribution default-information-originate 总结no-summary的2个特性,过滤掉外部的LSA3并产生一条内部LSA3的默认路由 OSPF不规则区域互联的3种解决方法 1.ospf多进程的双向重分布 在ABR上启用多个OSPF进程,在每个进程中重分布其它进程的OSPF路由信息 2.Tunnel 在ABR上建立Tunnel口,在Tunnel上配置IP地址 基本配置方法: tunnel source [接口IP地址] tunnel destination [接口IP地址] 在tunnel口中配置一条IP地址 将tunnel口的IP地址在OSPF中宣告 3.Virtual Links 虚链路 area [需要穿越的area ID] virtual-link [对方RID]

OSPF+MPLS+BGP配置实例

CISCO 路由器OSPF+MPLS+BGP配置实例 二OO八年九月四日

目录 一、网络环境 (3) 二、网络描述 (3) 三、网络拓扑图 (4) 四、P路由器配置 (4) 五、PE1路由器配置 (6) 六、PE2路由器配置 (9) 七、CE1路由器配置 (11) 八、CE2路由器配置 (13) 九、业务测试 (14)

一、网络环境 由5台CISCO7204组成的网络,一台为P路由器,两台PE路由器,两台CE 路由器; 二、网络描述 在P和两台PE路由器这间通过OSPF动态路由协议完成MPLS网络的建立,两台PE路由器这间启用BGP路由协议,在PE路由器上向所属的CE路由器指VPN 路由,在CE路由器中向PE路由器配置静态路由。 配置思路: 1、在P和两台PE路由器这间通过OSPF动态路由协议,在P和PE路由器两两互连的端口上启用MPLS,两台PE之间的路为备份路由,这属公网路由。 2、两台PE路由器这间启用BGP路由协议,这使得属于VPN的IP地址能在两个网络(两台CE所属的网络)互相发布,这属私网(VPN)路由。 3、在PE路由器上向所属的CE路由器指VPN路由,这打通了两个网络(两台CE所属的网络)之间的路由。

三、网络拓扑图 P 路由器(r1)(r4)CE1路由器(r5) PE1LOOP0:202.98.4.3/32 LOOP0:192.168.3.1/24LOOP0:192.168.4.1/24 四、P 路由器配置 p#SHOW RUN Building configuration... Current configuration : 1172 bytes ! version 12.3 service timestamps debug datetime msec service timestamps log datetime msec no service password-encryption ! hostname p ! boot-start-marker boot-end-marker ! ! no aaa new-model

基本OSPF配置

基本OSPF配置 实验一: (一)实验名称:OSPF多区域配置 (二)实验目的:1)理解路由器的基本功能 2)训练路由器动态路由的基本配置命令 3)掌握路由器路由配置的基本方法 4)掌握在路由器上配置OFPF动态路由的基本方法 5)掌握网络连通性的基本方法 (三)实验拓扑图: (四)实验步骤: (一)配置PC机、路由器、服务器的IP地址 路由器router0:Router>enable Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#interface FastEthernet0/0

Router(config-if)#ip address 10.0.1.254 255.255.255.0 Router(config-if)#no shutdown Router(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up Router(config-if)#exit Router(config)#interface FastEthernet0/1 Router(config-if)#ip address 10.0.2.254 255.255.255.0 Router(config-if)#no shutdown Router(config-if)#exit Router(config)#interface Serial1/0 Router(config-if)#clock rate 64000 Router(config-if)#ip address 30.0.0.1 255.255.255.0 Router(config-if)#no shutdown 路由器router1:Router>enable Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#interface FastEthernet0/0 Router(config-if)#ip address 20.0.0.254 255.255.255.0 Router(config-if)#no shutdown Router(config-if)#exit Router(config)#interface Serial1/1 Router(config-if)#clock rate 64000 This command applies only to DCE interfaces Router(config-if)#ip address 30.0.0.2 255.255.255.0 Router(config-if)#no shutdown Router(config)#interface Serial1/0 Router(config-if)#clock rate 64000 Router(config-if)#ip address 40.0.0.1 255.255.255.0 Router(config-if)#no shutdown 路由器router2:outer>enable Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z.

使用OSPF路由协议配置的身份验证

OSPF 配置 Router ospf 进程号 Redistribute 其它路由协议 Network 端口网络反掩码area 区域号 Area 区域号range 网络号掩码 Area 区域号default-cost 花销值 Ip ospf priority number Ip ospf cost 花销值
Show ip ospf database 使用身份验证 为了安全的原因,我们可以在相同OSPF区域的路由器上启用身份验证的功能,只有经过身份验证的同一区域的路由器才能互相通告路由信息。 在默认情况下OSPF不使用区域验证。通过两种方法可启用身份验证功能,纯文本身份验证和消息摘要(md5)身份验证。纯文本身份验证传送的身份验证口令为纯文本,它会被网络探测器确定,所以不安全,不建议使用。而消息摘要(md5)身份验证在传输身份验证口令前,要对口令进行加密,所以一般建议使用此种方法进行身份验证。 使用身份验证时,区域内所有的路由器接口必须使用相同的身份验证方法。为起用身份验证,必须在路由器接口配置模式下,为区域的每个路由器接口配置口令。 任务命令 指定身份验证area area-id authentication 使用纯文本身份验证ip ospf authentication-key password 使用消息摘要(md5)身份验证ip ospf message-digest-key keyid md5 key 以下列举两种验证设置的示例,示例的网络分布及地址分配环境与以上基本配置举例相同,只是在Router1和Router2的区域0上使用了身份验证的功能。: 例1.使用纯文本身份验证 Router1: interface ethernet 0 ip address 192.1.0.129 255.255.255.192

锐捷ospf配置案例

锐捷ospf配置案例

————————————————————————————————作者: ————————————————————————————————日期:

一、组网需求 配置OSPF动态路由协议,让全网可以互通 二、组网拓扑 三、配置要点 1、根据规划,在设备接口上配置IP地址 2、配置OSPF进程 3、所有区域(area)必须与区域0(area 0)相连接 四、配置步骤 注意: 配置之前建议使用Ruijie#show ip interface brief 查看接口名称, 常用接口名称有FastEthernet(百兆)、GigabitEthernet(千兆)和TenGigabitEt hernet(万兆)等等,以下配置以百兆接口为例。 步骤一:配置接口IP 路由器R1: ?Ruijie>enable ------>进入特权模式 Ruijie#configure terminal ------>进入全局配置模式

Ruijie(config)#interface fastethernet0/0 ?Ruijie(config-if-FastEthernet0/0)#ipaddress192.168.1.1255.255.255.0------>配置接口IP Ruijie(config-if-FastEthernet 0/0)#interface fastethernet0/1 ?Ruijie(config-if-FastEthernet 0/1)#ip address192.168.2.1255.255.255.0 Ruijie(config-if-FastEthernet 0/1)#interfaceloopback 0 ------>配置回环口IP,作为OSPF的router-id ?Ruijie(config-if-Loopback 0)#ip address 10.0.0.1 255.255.255.0 ?Ruijie(config-if-Loopback 0)#exit 路由器R2: Ruijie>enable ?Ruijie#configure terminal ?Ruijie(config)#interface fastethernet 0/0 ?Ruijie(config-if-FastEthernet 0/0)#ip address 192.168.2.2255.255.255.0 Ruijie(config-if-FastEthernet 0/0)#interface fastethernet 0/1 ?Ruijie(config-if-FastEthernet0/1)#ipaddress 192.168.3.2 255.255.255.0 ?Ruijie(config-if-FastEthernet 0/1)#interface loopback0 ?Ruijie(config-if-Loopback 0)#ip address 10.0.0.2 255.255.255.0

大型企业OSPF组网建设方案

第一章OSPF 协议简单介绍 OSPF 是由IETF 的IGP 工作组为IP 网络开发的路由协议。OSPF 作为一种内部网关协议(Interior Gateway Protocol,IGP),用于典型网络中的路由器之间发布路由信息。它是一种链路状态协议,区别于距离矢量协议(RIP),OSPF 具有支持大型网络、路由收敛快、占用网络资源少等优点,在目前应用的路由协议中占有相当重要的地位。

第二章OSPF 协议应用场合 在当前典型网络络中,OSPF的应用场合基本上有以下三种: (1)典型网络中核心和汇聚都是支持OSPFv2 的三层交换机 (2)典型网络核心或者汇聚层设备上建立了过多的静态路由,人工维护量 过大 (3)典型网络中的三层设备支持OSPFv2 但是仍然在使用RIP 协议的可以考虑做协议迁移。在日常工作中常见的情况只有(1)和(2)两种。

第三章OSPF 协议基本规划 OSPF网络协议在所有内部网关协议中是比较复杂的一种,这种复杂性和OSPF的协议原理密切相关,那么在设计典型网络中的OSPF我们具体需要考虑哪几方面的问题呢?在本节中将会为您一一介绍。 3.1保持OSPF 数据库的稳定性: Router-id的选择对于大型典型网络络OSPF设计和实施中我们需要考虑的第一点,就是Router-id的选择。这是因为OSPF作为一种链路状态路由协议其计算路由的依据是LSA(链路状态宣告报文)数据库,每个运行OSPF的路由器都会发送并泛洪LSA报文到整个网络,这样网络中每个运行OSPF的路由器都会收集到其他设备发送过来的LSA 并且放入LSA 数据库中,然后开始进行SPF(最短路径转发)运算,计算出一棵以自己为根到其他网络 的无环树。由此可以看出保持每个路由器LSA 数据库的稳定性是保证OSPF 网络稳定的 前提。那么在LSA 数据库中对于不同OSPF 设备发送来的LSA 是如何进行区分的呢, 答案就是使用Router-id。如果一个路由器的Router-id 发生变化,那么此路由器的会重新 进行LSA 泛洪,从而导致全网OSPF路由器都会更新其LSA数据库并且重新进行SPF计算,使得OSPF网络发生振荡。因此选择一个稳定的Router-id是OSPF网络设计的首要工作。 了解了Router-id 的重要性后,我们来看看一个OSPF 路由器是如何选择Router-id 的,其选举原则基本 上可以归纳为以下两点: (1)首先选择具有最高IP 地址的环回接口 (2)如果没有环回接口的话则选择具有最高IP 地址的激活物理接口。 在一个OSPF路由器选举出Router-id 后,重启路由器或者重新配置OSPF 进程都会导致Router-id 的重新选举,如果OSPF路由器选择了一个激活物理接口的IP 地址作为Router-id的话,那么一旦其down掉,就有可能引起OSPF路由器的Router-id发生变更,因此选择物理接口是一种危险的做法。 在实际工程中,的推荐做法是首先规划出一个私有网段用于OSPF 的Router-id 选择。

OSPF协议配置

OSPF 协议配置 【实验目的】 1.了解和掌握ospf 的原理; 2.熟悉ospf 的配置步骤; 3.懂得如何配置OSPF router ID ,了解DR/BDR 选举过程; 4.掌握hello-interval 的使用; 5.学会使用OSPF 的authentication ; 【实验拓扑】 【实验器材】 如上图,需用到路由器三台,hub/switch 一个,串行线、网线若干,主机三台。 说明:拓扑中网云可用hub 或普通switch 替代,建立multiaccess 网络,以太口连接。 【实验原理】 一、OSPF 1. OSPF 基本原理以及邻居关系建立过程 OSPF 是一种链路状态型路由选择协议。它依靠5种(Hello, DBD, LSR, LSU and LSAck)不同种类的数据包来识别、建立和维护邻居关系。当路由器接收到来自邻居的链路状态信息后,会建立一个链路状态数据库;然后根据该链路状态数据库,采用SPF 算法确定到各目的地的最佳路径;最后将最佳路径放到它的路由表中,生成路由表。 OSPF 会进行周期性的更新以维护网络拓扑状态,在LSA 的生存期到期时进行周期性的更新。除了周期性更新之外,还有触发性更新。即当网络结构发生变化(例如增减路由器、链路状态发生变化等)时,会产生触发性更新,把变化的那一部分通告给整个网络。 192.168.1.0/24 RT A

2.Designated Router (DR) / Backup Designated Router(BDR)选举过程 存在于multiaccess网络,点对点链路和NBMA网络中无此选举过程,此过程发生在Two-Way之后ExStart之前。 选举过程: 选举时,依次比较hello包中的各台router priority和router ID,根据这两个值选出DR 和BDR。选举结束后,只有DR/BDR失效才会引起新的选举过程;如果DR故障,则BDR 替补上去,次高优先级Router被选为BDR。 基本原则如下: 1)有最高优先级值的路由器成为DR,有第二高优先级的路由器成为BDR; 2)优先级为0的路由器不能作为DR或BDR,只能做DRother (非DR); 3)如果一台优先级更高的路由器加到了网络中,原来的DR与BDR保持不变,只有DR 或BDR它们失效时才会改变; 4)当优先级相同时,路由器ID最高和次高的的就成为DR和BDR; 5)当没有配置loopback时,用router上up起来的端口中最高IP地址作为Router ID,否则就用loopback口的IP地址作为它的ID;如果有多个loopback则用loopback端口中最高IP地址作为ID;而且路由器ID 一旦确定就不再更改。 建议使用优先级操纵DR/BDR选举过程 3.update timer与authentication的影响 要让OSPF路由器能相互交换信息,它们必须具有相同的hello间隔和相同的dead-time 间隔。缺省情况下,后者是前者的4倍。 缺省地,路由器认为进入的路由信息总是可靠的、准确的,从而不加甄别就进行处理,这存在一定的危险。因此,为了确保进入的路由信息的可靠性和准确性,我们可以在路由器接口上配置认证密钥来作为同一区域OSPF路由器之间的口令,或对路由信息采用MD5算法附带摘要信息来保证路由信息的可靠性和准确性。建议采用后者,因为前者的密钥是明文发送的。 三、其它预备知识 1、回环接口的配置: Router(config)#int l0 Router(config-if)#ip addr *.*.*.* *.*.*.* 2、telnet:是属于应用层的远程登陆协议,是一个用于远程连接服务的标准协议,用户可以 用它建立起到远程终端的连接,连接到Telnet服务器;用户也可以用它远程连接上路由器进行路由器配置。 【实验内容】 一、在路由器上配置单域的OSPF 1.按照拓扑图1接好线,完成如下基本配置: (1)配置端口IP地址 以RTA路由器的配置为例: RTA(config)#Interface Ethernet 0 RTA(config-if)#ip address 192.168.1.1 255.255.255.0

OSPF的八大特点介绍

什么是OSPF? OSPF的全称叫Open Shortest Path First,开放最短路径优先。Open的意思就是这个协议是公开性的,OSPF是由IETF标准组织制定的一种基于链路状态内部网关协议。(Shortest Path First)最短路径优先指的是路由选择过程中的一个算法,如果学过动态路由协议基础,就会知道OSPF是一种典型的IGP,是描述路由信息运行在同一个自制系统内部的动态路由协议。OSPF路由协议是一种典型的链路状态(Link-state)的路由协议,一般用于同一个路由域内。在这里,路由域是指一个自治系统(Autonomous System),即AS,它是指一组通过统一的路由政策或路由协议互相交换路由信息的网络。在这个AS中,所有的OSPF路由器都维护一个相同的描述这个AS结构的数据库,该数据库中存放的是路由域中相应链路的状态信息,OSPF路由器正是通过这个数据库计算出其OSPF路由表的。 OSPF的八大特点介绍 前文已经说明了OSPF路由协议是一种链路状态的路由协议,为了更好地说明OSPF 路由协议的基本特征,我们将OSPF路由协议与距离矢量路由协议RIP(Routing Information Protocol)作一比较,归纳为如下几点: 1、RIP路由协议中用于表示目的网络远近的参数为跳(HOP),也即到达目的网络所要经过的路由器个数。 在RIP路由协议中,该参数被限制为最大15,对于OSPF路由协议,路由表中表示目的网络的参数为Cost,该参数为一虚拟值,与网络中链路的带宽等相关,也就是说OSPF

路由信息不受物理跳数的限制。因此,OSPF适合应用于大型网络中,支持几百台的路由器,甚至如果规划的合理支持到1000台以上的路由器也是没有问题的。 2、RIP路由协议不支持变长子网屏蔽码(VLSM),这被认为是RIP路由协议不适用于大型网络的又一重要原因。 而产生VLSM的原因就是由于IP地址的匮乏。不支持VLSM极大的限制的网络的规划和IP地址分配的不合理。现在我们划分IP地址的时候通常掩码都是随意的,就是因为协议支持VLSM。 3、RIP路由协议路由收敛较慢。 路由收敛快慢是衡量路由协议的一个关键指标。RIP路由协议周期性地将整个路由表作为路由信息广播至网络中,该广播周期为30秒。在一个较为大型的网络中,RIP协议会产生很大的广播信息,占用较多的网络带宽资源;并且由于RIP协议30秒的广播周期,影响了RIP路由协议的收敛,甚至出现不收敛的现象。而OSPF是一种链路状态的路由协议,当网络比较稳定时,网络中的路由信息是比较少的,并且其广播也不是周期性的,因此OSPF 路由协议在大型网络中也能够较快地收敛。 4、在RIP协议中,网络是一个平面的概念,并无区域及边界等的定义。 在OSPF路由协议中,一个网络,或者说是一个路由域可以划分为很多个区域area,每一个区域通过OSPF边界路由器相连,区域间可以通过路由总结(Summary)来减少路由信息,减小路由表,提高路由器的运算速度。

OSPF协议配置实例

OSPF 协议配置 【实验目的】 1.了解和掌握ospf 的原理; 2.熟悉ospf 的配置步骤; 3.懂得如何配置OSPF router ID ,了解DR/BDR 选举过程; 4.掌握hello-interval 的使用; 5.学会使用OSPF 的authentication ; 【实验拓扑】 【实验器材】 如上图,需用到路由器三台,hub/switch 一个,串行线、网线若干,主机三台。 说明:拓扑中网云可用hub 或普通switch 替代,建立multiaccess 网络,以太口连接。 【实验原理】 一、OSPF 192.168.1.0/RTA

1. OSPF基本原理以及邻居关系建立过程 OSPF是一种链路状态型路由选择协议。它依靠5种(Hello, DBD, LSR, LSU and LSAck)不同种类的数据包来识别、建立和维护邻居关系。当路由器接收到来自邻居的链路状态信息后,会建立一个链路状态数据库;然后根据该链路状态数据库,采用SPF算法确定到各目的地的最佳路径;最后将最佳路径放到它的路由表中,生成路由表。 OSPF会进行周期性的更新以维护网络拓扑状态,在LSA的生存期到期时进行周期性的更新。除了周期性更新之外,还有触发性更新。即当网络结构发生变化(例如增减路由器、链路状态发生变化等)时,会产生触发性更新,把变化的那一部分通告给整个网络。 2.Designated Router (DR) / Backup Designated Router(BDR)选举过程 存在于multiaccess网络,点对点链路和NBMA网络中无此选举过程,此过程发生在Two-Way之后ExStart之前。 选举过程: 选举时,依次比较hello包中的各台router priority和router ID,根据这两个值选出DR和BDR。选举结束后,只有DR/BDR失效才会引起新的选举过程;如果DR故障,则BDR替补上去,次高优先级Router被选为BDR。 基本原则如下: 1)有最高优先级值的路由器成为DR,有第二高优先级的路由器成为BDR; 2)优先级为0的路由器不能作为DR或BDR,只能做DRother (非DR); 3)如果一台优先级更高的路由器加到了网络中,原来的DR与BDR保持不变,只有DR或BDR它们失效时才会改变; 4)当优先级相同时,路由器ID最高和次高的的就成为DR和BDR; 5)当没有配置loopback时,用router上up起来的端口中最高IP地址作为Router ID,否则就用loopback口的IP地址作为它的ID;如果有多个loopback则用loopback端口中最高IP地址作为ID;而且路由器ID 一旦确定就不再更改。 建议使用优先级操纵DR/BDR选举过程 3.update timer与authentication的影响 要让OSPF路由器能相互交换信息,它们必须具有相同的hello间隔和相同的dead-time

相关文档