文档库 最新最全的文档下载
当前位置:文档库 › 线性规划

线性规划

线性规划
线性规划

线性规划问题在经济生活中的应用

内容摘要:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法一在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料:二是生产组织与计划的改进,即合理安排人力物力资源。线性规划所研究的是在一定条件下,合理安排人力物力等资源,使经济效果达到最优。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。文章根据线性规划问题在现实生活中的意义进行相关讨论与探究,介绍了线性规划问题产生的背景、特点和实际运用情况,以及线性规划问题在经济生活中运用的意义。

线性规划问题是数学的一个重要分支,它们所研究的问题是讨论在众多的方案中什么样的方案是最优的、以及怎么找出这些最优方案。在现实的生产活动中这类问题普遍存在,例如在生产计划安排中,选择什么样的生产方案才能提高产值、利润;在原料配给问题中,怎样确定各种成分的比例,才能使提高质量、降低成本的目标得以实现;在资源的分配问题中,怎样分配有限的资源,使得分配方案既能满足于各方面的基本要求,又能获得好的经济效益;在农田规划中,怎样安排各种农作物的合理布局,才能保持高产、稳定,以发挥地区优势;在经济管理中如何使产出率最大,即单位成本的产值最大,或者赢利率最大。诸如此类问题不胜枚举,线性规划就是为了求解这类问题并为求解这些问题提供理论基础与方法而应运而生的、实用性强的学科。

线性规划问题的发展

1947 年美国数学家G B .丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法——单纯形法,为这门学科奠定了基础。同年美国数学家J VOIq诺伊曼提出对偶理

论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。19 5 1 年美国经济学家T .C .库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获19 75 年诺贝尔经济学奖。

2 0 世纪5 0 年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。例如,1 9 5 4 年C 莱姆基提出对偶单纯形法,1954 年S .加斯和T 萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1 956 年A 塔克提出互补松弛定理,1960年G B 丹齐克和P.沃尔夫提出分解算法等。线性规划的研成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究。由于数字电子计算机的发展,出现了许多线性规划软件,如M P SX ,O P H E IE ,U M P IR E等,可以很方便地求解几千个变量的线性规划问题。

19 79 年苏联数学家L.G .K hachian提出解线性规划问题的椭球算法,并证明它是多项式时间算法。1984 年美国贝尔电话实验室的印度数学家N 卡马卡提出解线性规划问题的新的多项式时间算法。用这种

方法求解线性规划问题在变量个数为5000时只要单纯形法所用时间的1/50 。现已形

成线性规划多项式算法理论。

20 世纪50 年代后线性规划的应用范围不断扩大。线性规划问题应用的特点及般步骤线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料。二是生产组织与计划的改进,即合理安排人力物力资源。线性规划所研究的是在一定条件下,合理安排人力物力等资源,使经济效果达到最好。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

许多实际问题抽象成数学模型后均可以归为求解线性规划问题,因此线性规划问题有很强的实用性,实际问题经过数学抽象后成数学模型,均可归结为求解线性规划问题,并且这些实际问题的解就是线性规划问题的最优解,也就是指导现实生产生活的最优方案,由此可见,线性规划问题有很强的实用·性和最优性,它们能为生产生活中的配置提供最优方案。线性规划问题数学模型建立一般步骤:第一,列出约束条件及目标函数;第二,画出约束条件所表示的可行域;第三,在可行域内求目标函数的最优解及最优值。求解线性规划问题的方法常规求解线性规划问题的方法有以下几种:

( 一) 推直线法

对于一些简单的线性规划问题可以用推直线的办法求其最优解,其做法是建立目标函数等值线方程,等值线的法向量元就是目标函数中各未知数系数组成的向量C,它也称为目标函数的梯度,指向目标函数的增长方向,因此沿方向n 移动等值线时,线上各点目标函数值均增大,而沿一n 方向移动等值线时,目标函数值减少。所以求极大值点就泞着n 方向移动等值线,直至它到达极限位置,如再移动就到达与可行域的交为空集的位置。若求目标函数的最小值,就沿一n方向移动目标数等值线直至极限位置,这种方法在处理两元问题时非常有效。

( 二) 单纯形法

单纯形方法的基本思想就是从一个基本可行解出发,求一个使目标函数值有所改善的基本可行解,通过不断改进基本可行解,力图得到最优基本可行解;单纯形法有一个弱点,那就是它们首先要找出一组基本可行解,再从这个基本可行解出发求改进的基本可行解,目前较常见的求初始基本可行解的方法有两种,一种是两阶段法;另外一种是大M 法。

( 三) K arm arkar 算法1984 年印度数学家N K arm a rka 提出了解线性规划问题的一种新算法,这就是关于线性规划的多项式时间算法,轰动了有关领域。引起了人们的极大兴趣,多项式算法就是如果用一个算法解一种问题时需要的计算时间在最坏的情况下不超过输入长度的某个多项式所确定的数值P (L ),则称这个算法是解这种问题的多项式时间算法,简称多项式算法。

( 四) 凸单纯形法

若线性分式规划问题有最优解,则必存在最优极点。凸单纯形方法的基本思想也是从一个基本可行解出发,沿着既约梯度方向,求一个使目标函数值有所改善的基本可行解,通过不断改进基本可行解,力图得到最优基本可行解。

( 五) 代换法

代换法又称C ha rne s —C o op e r方法,它是C harne s 和C o o p e r于1 96 2 年提出来的方法;这种方法的主要思路是利用代换思想将目标函数转化为线性函数,然后利用线性规划的方法去求解。

线性规划问题应用实例

线性规划问题是经济数学的一个重要分支,在实践中有着广泛的应用,不仅许多实际课题属于线性规划问题,而且运筹学中一些分支中的问题也可以转化为线性规划问题来计算,因此线性规划问题在最优化学科中占有重要的地位。建模是解决线性规划问题极为重要的环节。一个正确教学模型的建立要求建模者熟悉规划问题的具体实际内容。当面对文字长、数据多的应用题,要明确目标函数和约束条件有相当的难度。解决这个难点的关键是通过表格的形式把问题中的已知条件和各种数据进行整理分析,从而找出约束条件和目标函数,并从数学角度有条理地表述出来。单位生产成本的最大增值问题。某工厂在计划期内要生产三种A ,B ,C 产品,假定产品畅销,已知生产的固定成本为1 0000 元,即生产期内的固定资产损耗量。并且生产单位产品所需要的劳动力、设备台时、原材料、变动成本以及产值如表1 所示。厂方规定总生产成本不要超过1 3 0000元,问应如何安排生产才能使得成本产出率最大?

建立数学模型:

设工厂在计划期内生产A ,B ,C 三种产品的数量分别为x 1,x 2和x 3,显然成本产出率的表达式是:

且A 、B 、C 三种产品的数量受4 种资源量的限制:劳动力量的限制:15 x 1 + 2 0 x 2+3 0 x 3= 8 0 0 0 ( 2 )

设备台时的限制:2 0 x 1+ 10 x 2+2 5 x 3:1 2 0 0 0 ( 3 )

原材料的限制:3 0 x 1+4 0 x 2 + 4 5 x 3= 15 0 0 0 ( 4 )

变动成本的限制:2 6 0 x 1+ 2 8 0 x 2+3 8 5 x 3 = 1 2 0 0 0 0 ( 5 ) 此外A,B,C 三种产品的产量不能为负数,即x 1,x 2,x 3≥0。综上所述,本文的问题就是在条件( 2 ) 至(5 ) 以及未知数非负的限制条件下求使得( 1 ) 最大的解,( 1 ) 式称为目标函数。(2 ) 至(5 ) 式称为约束条件,和工业资源配置问题一样的还有农业生产计划安排问题,商业流动资金的分配问题以及食谱问题等,这些问题经数学抽象后,均可建立起线性规划模型。线性规划在经济生活中运用的意义随着经济全球化的不断发展,企业面临更加激烈的市场竞争。企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等~系列过程中只有自己的优势,提高企业效率,降低成本,形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。过去很多企业在生产、运输、市场营销方面没有利用线性规划进行合理的配置,从而增加了企业的生产,使企业的利润不能达到最大化。在竞争日益激烈的今天,如果还按照过去的方式是难以生存的,所以就有必要利用线性规划的知识对战略计划、生产、销售各个环节进行优化从而降低生产成本,提高企业的效率。

在各类经济活动中,经常遇到这样的问题:在生产条件不变的情况下,如何通过统筹安排,改进生产组织或计划,合理安排人力、物力资源,组织生产过程,使总的经济效益最好。这样的问题常常可以化成或近似地化成所谓的“线性规划”问题。线性规划是应用分析、量化的方法,对经济管理系统中的人、财、物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现有效管理。利用线性规划我们可以解决很多问题。如在不违反一定资源限制下,组织安排

生产,获得最好的经济效益(产量最多、利润最大、效用最高)。也可以在满足一定需求条件下,进行合理配置,使成本最小。同时还可以在任务或目标确定后,统筹兼顾,合理安排,用最少的资源(资金、设备、原材料、人工、时间等)去完成任务。

把线性规划的知识运用到企业中去,可以使企业适应市场激烈的竞争,及时、准确、科学的制定生产计划、投资计划、对资源进行合理配置。过去企业在制定计划,调整分配方面很困难,既要考虑生产成本,又要考虑获利水平,人工测算需要很长时间,不易做到机动灵活,运用线性规划并配合计算机进行测算非常简便易行,很快就可以得到最优案,提高企业决策的科学性和可靠性。其决策理论是建立在严格的理论基础之上,运用大量基础数据,经严格的数学运算得到的,能使企业在生产的各个环节中优化配置资源,提高了企业的效率,对企业大有益处。

简单线性规划问题教案

332简单线性规划问题 “简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简 单应用,这是《新大纲》对数学知识应用的重视?线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益?它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题?中学 所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法一一数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力 依据课程标准及教材分析,二元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等 价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知 识内容定为了解层次 本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材 本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力 教学重点重点是二元一次不等式(组)表示平面的区域教学难点难点是把实际问题转化为线性规划问题,并给出解答?解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解?为突 出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化课时安排2课时 三维目标 一、知识与技能 1. 掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念; 2. 运用线性规划问题的图解法,并能应用它解决一些简单的实际问题I 二、过程与方法 1. 培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力; 2. 结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新. 三、情感态度与价值观 1. 通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、 归纳等数学能力; 2. 结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于 创新.

ERP的核心——线性规划模型

ERP的核心--线性规划模型 1982年,以美国布鲁克海文国家试验室与德国玉立希核研究中心牵头的多国能源系统协作项目大功告成,它为西方国家制定能源政策、化解由于石油价格暴涨所产生的能源危机做出了不可估量的贡献。该项目的目的是评价能源新工艺在未来国家级能源系统中的作用。毫无疑问,这样的评价需要建立一个通用的计算机化的模型。经认真考虑和多方比较,他们一致选择了多周期的线性规划模型。 15年过去了,我们对线性规划在管理、决策及ERP中作用的认识仍然不够。从1996年到今年8月,《计算机世界》所发表的30多篇有关MRP或ERP的文章中,除两篇文章各有一处提到"优化"一词外,其余皆未提及。至于线性规划,则全未触及,好像毫无关系。 优化:企业效益的源泉 从60年代初期的MRP到MRPⅡ再到90年代初的ERP,前后整整经历了30年的时间,为时不短。就MRP 与ERP的字面看,其差别仅仅是优化的资源种类由少变多、由局部变全部罢了。但有一个字没有变,那就是"PLANNING"。什么是PLANNING?按字面讲是"做计划"、"做规划"或"计划"、"规划"。对企业而言,做计划并不是什么困难的事情,困难的是做一个好的,经得起推敲与论证同时又能给企业带来较大效益的计划。有鉴于此,我们宁可将"PLANNING"译为"做规划"或"规划",因为由此才会联系到线性规划、非线性规划及动态规划,才会联系到目标与优化。事实上,MRP到MRPⅡ再到ERP的发展历程正是企业的线性规划模型与优化的范围由小到大、由局部到全局的过程。企业的效益依赖于资源配置的优化,即依赖于线性规划模型的优化。优化的范围越大,效果也就越好。如若不然,我们为什么还要将MRP扩大到MRPⅡ再扩大到ERP 呢? 清仓查库、摸清资源、建立良好的会计系统与审计系统、机构重组、激励机制及企业文化等亦可提高企业的效益。但这与ERP及模型的优化不是一个概念。前者是经验、艺术,是事务处理;而后者是揭示企业运作规律、获取更大效益的科学与技术。随着时间的推移,这类科技在企业管理中的应用将更加深入、广泛。我们认为,企业利用科学与技术揭示其运作规律并获取更大效益的举措亦是知识经济除信息化与全球化以外的又一显著特征。 优化的困难 我们将ERP线性规划模型的优化分成两种类型。一类是生产计划确定后的优化。对换这类计算,由于种种产品、原材料、零部件的价格都是确定的,广告与促销亦已确定,因此在这种情况下,ERP求解的是一个确定性的线性规划问题。相对而言,这一类的计算要容易一些。另一类计算是让ERP支持企业未来的

线性规划模型及其举例

线性规划模型及其举例 摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。 关键词:资源规划;约束条件;优化模型;最优解 在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。 一.背景介绍 如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式: 1()n i ij j j f x a x ==∑,1,2,,,1i m m =+ (1) 若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为: OPT. 1()n j j j f x c x ==∑ ST. 1 n ij j j a x =∑> ( =, < )i b , 1,2,,i m = (2) 0,j x ≥ 1,2,,j n =… (2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。 1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。 2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都

对线性规划整点问题的探究

对线性规划整点问题的探究 厦门双十中学 郭俊芳 在人教版第二册(上)(2004年6月第一版,2006年4月第3次印刷)的高中数学教材第7.4节——简单线性规划。课本第61~62页给出两个线性规划的实际问题。分别代表两个类型:例3属于第一类:给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大;例4属于第二类:给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源最小。且例4还要求最优解是整数解。笔者在教学中发现,这个问题是学生的难点,学生仅靠阅读课本解答是不能完全理解怎样得到这个最优解的。笔者经过多次的教学实践和研究,试图找到解决这类问题的方法,以下是笔者认为行之有效的方法。 一、精确图解法求整数最优解 课本P88习题16 某运输公司有7辆载重量为6t 的A 型卡车与4辆载重量为10t 的B 型卡车,有9名驾驶员。在建筑某段高速公路中,此公司承包了每天至少搬运360t 沥青的任务。已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车6次,每辆卡车每天往返的成本费A 型车160元,B 型车252元。每天派出A 型车和B 型车各多少辆公司所花的成本费最低? 解:设每天派出A 型车x 辆、B 型车y 辆,公司所花的成本为z 元,则 0x 70y 4x y 9 68x 106y 360x,y Z ≤≤??≤≤?? +≤????+??≥?∈?? 即0x 70y 4x y 94x 5y 30x,y Z ≤≤??≤≤?? +≤??+≥?∈?? z=160x+252y. 如图可行域是ABCD 围成的区域, 作直线160x+252y=0,图形中两直线160x+252y=0和4x+5y=30接近平行, 比较直线斜率k=160252- >-4 5 , 平移直线160x+252y=0,由图可知在A (7, 2 5 )处取到最小值,但A 不是整数解。 在可行域内共有(3,4),(4,3),(4,4),(5,2),(5,3),(6,2),(6,3),(7,1),(7,2)整数解,经检验只有(5,2)是最优解,此时z=160×5+252×2=1304元。 这种方法适用于区域是封闭区域,且区域内的整数点可数,坐标网络画出来容易在图上识别哪些整点在可行域内。 二、利用近似解估算整数最优解 课本P63例4 要将两种不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: x+y=9 4x+5y=30 160x+252y=0 A B C D

MATLAB求解线性规划含整数规划和01规划问题.pdf

MATLAB 求解线性规划(含整数规划和0-1规划)问题 线性规划是数学规划中的一类最简单规划问题,常见的线性规划是一个有约束的,变量范围为有理数的线性规划。如: max 712z x y =+ 9430045200s.t 310300,0 x y x y x y x y +≤??+≤??+≤??≥? 对于这类线性规划问题,数学理论已经较为完善,可以有多种方法求解此类问题。但写这篇文章的目的并不是为了介绍数学理论,我们这里主要讲解如果利用工具求解这一类线性规划问题。 最著名,同时也是最强大的数学最优化软件是LINGO/LINDO 软件包,它能够求解多种的数学规划问题,同时还提供了多种的分析能力。但LINGO 软件并不容易上手,同时,应用LINGO 的场合一般是大规模的线性规划问题,小小的线性规划完全可以不使用它。一个更受科研人员欢迎的数学软件是MATLAB ,它以功能强大而称著,并有数学软件中的“航空母舰”之称。我们这里就是要学习使用MATLAB 软件求解线性规划(含整数规划和0-1规划)问题。 为了使得不熟悉MATLAB 的人员也能够使用MATLAB 进行线性规划问题求解,本文将对MATALB 中使用到的函数和过程以及结果进行详细的分析,最后会对每一个问题都给出一个可以完全“套用”的MATLAB 程序。 我们首先从上面的线性规划问题开始,为了便于表达,将上面的式子写成矩阵形式: max 712z x y =+ 9430045200s.t 310300,0x y x y ???????? ? ??≤? ? ? ???? ? ???????≥? 于是约束就表达为了一个Ax b ≤不等式。 求解MATLAB 线性规划时,最常用的函数是linprog 函数,下面来介绍一下这个函数的使用。 打开MATLAB 帮助文档(PS:帮助文档的内容是最全的,只要你的英文过了专业8级),可以看到linprog 函数求解的是具有如下标准形式的线性规划:

习题答案选01_线性规划和单纯形法

运筹学教程(胡运权主编,清华版)部分习题答案(第一章)1.5 记可行集4个顶点分别为O:(0,0),A:(1.6,0),B:(1,1.5),C:(0,2.25) 当c=0,d=0时,四边形OABC中的点都是最优解 当c=0,d>0时,顶点C是最优解 当c=0,d<0时,线段OA上的点都是最优解 当c>0,d/c<2/5时,顶点A是最优解 当c>0,d/c=2/5时,线段AB上的点都是最优解 当c>0,2/50,d/c=4/3时,线段BC上的点都是最优解 当c>0,d/c>4/3时,顶点C是最优解 当c<0,d<0时,顶点O是最优解 当c<0,d=0时,线段OC上的点都是最优解 当c<0,d>0时,顶点C是最优解 1.8 a=3,b=2,c=4,d=-2,e=2,f=3,g=1,h=0,i=5,j=5,k=-3/2,l=0 1.15 设i=1,2,3分别表示前、中、后三舱,j=1,2,3分别表示A、B、C三种商品 设第i舱装载第j中商品的件数为x ij max z = 100(x11+x21+x31) + 700(x12+x22+x32) + 600(x13+x23+x33) s.t. 8x11+6x12+5x13 ≤ 2000 8x21+6x22+5x23 ≤ 3000 8x31+6x32+5x33 ≤ 1500 10x11+5x12+7x13 ≤ 4000 10x21+5x22+7x23 ≤ 5400 10x31+5x32+7x33 ≤ 1500 x11+x21+x31≤ 600 x12+x22+x32 ≤ 1000 x13+x23+x33 ≤ 800 8x11+6x12+5x13 ≤ 1.15 (8x21+6x22+5x23) 8x21+6x22+5x23 ≤ 1.15 (8x11+6x12+5x13) 8x31+6x32+5x33 ≤ 1.15 (8x21+6x22+5x23) 8x21+6x22+5x23 ≤ 1.15 (8x31+6x32+5x33)

Matlab程序 0-1整数线性规划

0-1整数线性规划Matlab程序 x = bintprog(f) x = bintprog(f, A, b) x = bintprog(f, A, b, Aeq, beq) x = bintprog(f, A, b, Aeq, beq, x0) x = bintprog(f, A, b, Aeq, Beq, x0, options) [x, fval] = bintprog(...) [x,fval, exitflag] = bintprog(...) [x, fval, exitflag, output] = bintprog(...) 这里x是问题的解向量 f是由目标函数的系数构成的向量 A是一个矩阵,b是一个向量 A,b和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件 A,b是系数矩阵和右端向量。 Aeq和Beq表示了线性规划中等式约束条件中的系数矩阵和右端向量。 X0是给定的变量的初始值 options为控制规划过程的参数系列。 返回值中fval是优化结束后得到的目标函数值。 exitflag=0表示优化结果已经超过了函数的估计值或者已声明的最大迭代次数;

exitflag>0表示优化过程中变量收敛于解X, exitflag<0表示计算不收敛。 output有3个分量, iterations表示优化过程的迭代次数, cgiterations表示PCG迭代次数, algorithm表示优化所采用的运算规则。 在使用linprog()命令时,系统默认它的参数至少为1个, 但如果我们需要给定第6个参数,则第2、3、4、5个参数也必须给出,否则系统无法认定给出的是第6个参数。遇到无法给出时,则用空矩阵“[]”替代。 例如 max=193*x1+191*x2+187*x3+186*x4+180*x5+185*x6; %f由这里给出st. x5+x6>=1; x3+x5>=1; x1+x2<=1; x2+x6<=1; x4+x6<=1; %a、b由不等关系给出,如没有不等关系,a、b取[] x1+x2+x3+x4+x5+x6=1; %aep、bep由等式约束给出 代码如下 f=[-193;-191;-187;-186;-180;-185;];

【一等奖教案】 线性规划

课题:线性规划在实际生活中的应用 教学目标: 1.知识目标:会用线性规划的理论和方法解决一些较简单的实际问题; 2.能力目标:培养学生观察、分析、联想、以及作图的能力,渗透集合、化归、数形结合的数学思想,培养学生自主探究意识,提高学生“建模”和解决实际问题的能力; 3.情感目标:培养学生学习数学的兴趣和“用数学”的意识,激励学生创新,鼓励学生讨论,学会沟通,培养团结协作精神. 教学重、难点: 教学重点:把实际问题转化成线性规划问题,即建模,并给出解答. 教学难点:1.建立数学模型.把实际问题转化为线性规划问题; 2.寻找整点最优解的方法. 教具:多媒体、实物投影仪、印好的习题纸和直尺(习题纸附后) 教学方法:讲练结合、分组讨论法 教学过程: (一)讲解新课 1.实例1讲解 引入:李咏主持的《非常6+1》是大家很喜欢的娱乐节目. (播放视频:李咏首支个人单曲MV《你是我们的大明星》) 当娱乐大哥大李咏把《非常6+1》里的金蛋砸得金花四溅时,央视总编却在思考着另外一个问题: 例1:央视为改版后的《非常6+1》栏目播放两套宣传片.其中宣传片甲播映时间为3分30秒,广告时间为30秒,收视观众为60万,宣传片乙播映时间为1分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有3.5分钟广告,而电视台每周只能为该栏目宣传片提供不多于16分钟的节目时间.电视台每周应播映两套宣传片各多少次,才能使得收视观众最多? 应用题是同学们最头痛的题型之一,它的特点是文字多、数据多,条件复杂,要看懂题目意思,理清题目中的数据,可以采用什么方式?请学生回答. 分析:将已知数据列成下表 播放片甲播放片乙节目要求 片集时间(min) 3.5 1 ≤16 广告时间(min)0.5 1 ≥3.5 收视观众(万)60 20

线性规划题及答案完整版

线性规划题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

线性规划题型及解法 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1,10,220x x y x y ≥??-+≤??--≤? 则22x y +的最小值是 . “()()2221++-y x ”值域? 三、约束条件设计参数形式,考查目标函数最值范围问题。 例3、在约束条件0 024x y y x s y x ≥??≥??+≤??+≤?下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范 围是() A.[6,15] B. [7,15] C. [6,8] D. [7,8] 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 五、已知最优解成立条件,探求目标函数参数范围问题。 例5已知变量x ,y 满足约束条件1422x y x y ≤+≤??-≤-≤? 若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。 六、设计线性规划,探求平面区域的面积问题 例6在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A) 七、研究线性规划中的整点最优解问题 例7、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件 ?? ???≤≥+-≥-.112, 932,22115x y x y x 则1010z x y =+的最大值是(A)80 (B) 85 (C) 90 (D)95 八、比值问题 当目标函数形如b x a y z --= 时,可把z 看作是动点()y x P ,与定点()a b Q ,连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

运筹学试验一:线性规划 LINGO 程序说明:LP

LINGO 程序说明 3.1 程序名: linearp1(求极小问题) linearp1运行实例: 5 ,,1 ,0 1 2 2 6 .t .s 215min 532143212 1 =≥=-++=-+-+=j x x x x x x x x x x x z j 在model window 中输入以下语句: min=5*x1+21*x3; x1-x2+6*x3-x4=2; x1+x2+2*x3-x5=1; 按运行按钮在solution report 窗口得到以下结果: Global optimal solution found at iteration: 2 Objective value: 7.750000 Variable Value Reduced Cost X1 0.5000000 0.000000 X3 0.2500000 0.000000 X2 0.000000 0.5000000 X4 0.000000 2.750000 X5 0.000000 2.250000 Row Slack or Surplus Dual Price 1 7.750000 -1.000000 2 0.000000 -2.750000 3 0.000000 -2.250000 3.2 程序名: linearp2(求极大问题) linearp2运行实例: max 100150..2160 100 120 ,0 x y s t x y x y x y ++≤≤≤≥ 在model window 中输入以下语句: max=100*x+150*y; ! this is a commnent; x<=100; y<=120;

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益.

8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策. 3.3 线性规划在运输问题中的应用 运输是物流活动的核心环节,线性规划是运输问题的常用数学模型,利用数学知识可以得到优化的运输方案. 运输问题的提出源于如何物流活动中的运输路线或配送方案是最经济或最低成本的.运输问题解决的是已知产地的供应量,销地的需求量及运输单价,如何寻找总配送成本最低的方案;运输问题包含产销平衡运输问题和产销不平衡运输问题;通常将产销不平衡问题转化为产销平衡问题来处理;运输问题的条件包括需求假设和成本假设.需求假设指每一个产地都有一个固定的供应量所有的供应量都必须配送到目的地.与之类似,每一个目的地都有一个固定的需求量,整个需求量都必须有出发地满足;成本假设指从任何一个产地到任何一个销地的配送成本和所配送的数量的线性比例关系.产销平衡运输问题的一般提法是: 假设某物资有m个产地a1,a2,?,am;各地产量分别为b1,b2,?,bn,物资从产地Ai运往销地Bj的单位运价为cij,满足:

破解线性规划中的整点问题

破解线性规划中的整点问题 河南省三门峡市卢氏一高(472200)赵建文 Email:zhaojw1968@https://www.wendangku.net/doc/1710307736.html, 线性规划中的整点问题是高中数学线性规划中的重要一类问题,是高中数学的一个难点,本文将整数线性规划问题解法作以简单介绍供同学们学习时参考. 例 某商店计划同时销售某品牌电热水器和太阳能热水器,由于市场需求旺盛,这两种产品供不应求,因该商店根据具体情况(如成本、员工工资)确定产品的月采购量,具体数据如下,问这两种产品各采购多少时,才能使总利润最大?最大利润是多少? 分析:本题是整数规划问题,设采购电热水器x 台、太阳能热水器y 台,列出约束条件和目标函数,用图解法解之. 解析:设月采购电热水器x 台、太阳能热水器y 台,月总利润为z 元,则 1000300030000100050011000 ,x y x y x y N +≤??+≤??∈? ,即330222 ,x y x y x y N +≤??+≤??∈?,目标函数为 z =800600x y + 作出可行域如图所示, 作直线l :86x y +=0, 平移直线z =800600x y +知过M 3638( ,)55时,max z =10320,但x =365,y =385不是整数,所以可行域内点M 3638( ,)55不是整点最优解. 求整点最优解 解法一 网格平移法 首先在可行域内打网格,其次描出M 3638(,)55 附近的所有整点,接着平移直线l :86x y +=0,会发现当移至(8,6)时,直线在y 轴上截距最大,即max z =10000元. 解法二 特值检验法 由图可知目标函数取得最大值的整点应分布在可行域右上侧靠近边界的区域,一次取得满足条件的整点,(0,10),(1,9),(2,9),(3,9)(4,8),(5,8),(6,8),(7,7),(8,6),(8,5),(9,4),(10,2),(10,1),(11,0).将这些点分别代入z =800600x y +,求出各点对应的值,经验证可知,在整点(8,6)处max z =10000元. 解法三 调整最优法 单位产品所需资金 月资金供应量(百元) 电热水器 太阳能热水器 成本 10 30 300 工资 10 5 110 单位利润 8 6

lingo解决线性规划问题的程序

Lingo12软件培训教案 Lingo 主要用于求解线性规划,整数规划,非线性规划,V10以上版本可编程。 例1 一个简单的线性规划问题 0 , 600 2 100 350 st. 3 2max >=<=+=<<=++=y x y x x y x y x z ! 源程序 max = 2*x+3*y; [st_1] x+y<350; [st_2] x<100; 2*x+y<600; !决策变量黙认为非负; <相当于<=; 大小写不区分 当规划问题的规模很大时,需要定义数组(或称为矩阵),以及下标集(set) 下面定义下标集和对应数组的三种方法,效果相同::r1 = r2 = r3, a = b = c. sets : r1/1..3/:a; r2 : b; r3 : c; link2(r1,r2): x; link3(r1,r2,r3): y; endsets data : ALPHA = ; a=11 12 13 ; r2 = 1..3; b = 11 12 13; c = 11 12 13; enddata

例2 运输问题 解: 设决策变量ij x = 第i 个发点到第j 个售点的运货量,i =1,2,…m; j =1,2,…n; 记为ij c =第i 个发点到第j 个售点的运输单价,i =1,2,…m; j =1,2,…n 记i s =第i 个发点的产量, i =1,2,…m; 记j d =第j 个售点的需求量, j =1,2,…n. 其中,m = 6; n = 8. 设目标函数为总成本,约束条件为(1)产量约束;(2)需求约束。 于是形成如下规划问题: n j m i x n j d x m i s x x c ij j n i ij i m j ij m i n j ij ij ,...,2,1,,...,2,1,0 ,...,2,1, ,...,2,1, st. z min 11 11==>=<==<==∑∑∑∑==== 把上述程序翻译成LINGO 语言,编制程序如下: ! 源程序

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 220 240 330 x y x y x y +-≥ ? ? -+≥ ? ?--≤ ? ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13,4 5 D 、 5 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方, 即为4 5 ,选 C 六、求约束条件中参数的取值范围 例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是() A、(-3,6) B、(0,6) C、(0,3) D、(-3,3) 解:|2x-y+m|<3等价于 230 230 x y m x y m -++>? ? -+- ? ? -< ? ,故0<m<3,选 C 七、比值问题

简单的线性规划问题附答案)

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变化时,方程表 示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?

线性规划教学设计

线性规划教学设计 教学目标●掌握如何利用二元一次不等式及不等式组表示平面区域;掌握线性约束条件等基本概念;掌握利用图形解决线性规划问题的方法,并能应用这个方法解 决简单的实际问题. ●培养学生画图能力和解决实际问题的能力. 重点难点●重点是会利用二元一次方程表示平面区域来解决问题 ●难点是如何把实际问题转化为线性规划问题,并解决. ●疑点是怎样的实际问题的最优解可用线性规划来解决. 教学过程 ●引入新课我们知道,二元一次不等式和二元一次不等式组都表示平面区域,从这里开始,我们来研究它的应用. ●引导设问画出下列不等式组表示的平面区域 x-4y≤-3 3x+5y≤25 x≥1 ○学生活动学生利用上节课的知识很容易就可以画出来. ●引导设问设z=2x+y,式中变量x,y满足上列条件,求z的最值(图像略). ▲教师引导 z=2x+y中,假如z是常数,那么它表示一条直线.这道题实际上就是求x+2y的变化范围.那怎样才能表示出它的范围呢? ○学生活动学生应该能用图形的方法看出正确答案. ▲教师讲述点(0,0)不在这个三角形区域内,(图可由大屏幕上给出)点(0,0)在直线L :2x+y=0上.作一组和之平行的直线L:2x+y=t, t∈R.可知,当L在 L 的右上方时,直线L上的点(x,y)满足2x+y>0. 即当t>0,而且L往右平移时,t随之增大,在经过不等式组表示的平面区域内 的点且平行于L的直线中,以经过点A(5,2)的直线L 1 对应的t最大,以经过点 B(1,1)的直线L 2 对应的t最小,所以 Z max =12; Z min =3. ▲教师讲述在上述问题中,不等式组是一组对变量x,y的约束条件,这组

程序框图、线性规划

查漏补缺(一) 程序框图 1.执行如图所示的程序框图,输出的S 值为( ) A .2 B .4 C .8 D .16 2.如图2,程序框图(算法流程图)的输出结果是( )A .-3 B .-2 C .-5 D .8 3.执行图3所示的程序框图,若输入x =4,则输出y 的值为( ) A .12- B .12 C .54- D .54 4.执行图4所示的程序框图,输入x =-2,h =0.5,那么输出的各个数的和等于( ) A.3 B.3.5 C.4 D.4.5 5.执行图5所示的程序框图,如果输入的N 是6,那么输出的p 是( ) A .120 B . 720 C . 1440 D . 5040 图3 图4 图5 k=0,S=1 k <3 开始 结束 是 否 k=k+1 输出S S=S ×2k 图1

6.阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为( ) A .1- B .1 C .3 D .9 7.如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( ) A .A B +为12,,...,n a a a 的和 B .2 A B +为12,,...,n a a a 的算术平均数 C .A 和B 分别是12,,...,n a a a 中最大的数和最小的数 D .A 和B 分别是12,,...,n a a a 中最小的数和最大的数 8.下图是一个算法流程图,则输出的k 的值是____. 9.如果执行如图3所示的程序框图,输入1x =-,n =3,则输出的数S = __ 开 始 输入x |x|>1 1 ||-=x x x = 2x+1 输出x 结 束 是 否 开始 输入x , n S =6 i ≥0? 是 否 输出S 结束 i =n -1 i =i -1 S =S·x +i +1

对线性规划整点问题的探究(蒋政)

对线性规划整点问题的探究 一、精确图解法求整数最优解 ( 课本P88习题16 ) 某运输公司有7辆载重量为6t 的A 型卡车与4辆载重量为10t 的B 型卡车,有9名驾驶员。在建筑某段高速公路中,此公司承包了每天至少搬运360t 沥青的任务。已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车6次,每辆卡车每天往返的成本费A 型车160元,B 型车252元。每天派出A 型车和B 型车各多少辆公司所花的成本费最低? 解:设每天派出A 型车x 辆、B 型车y 辆,公司所花的成本为z 元,则 0x 70y 4x y 9 68x 106y 360x,y Z ≤≤??≤≤??+≤????+??≥?∈??即0x 70y 4 x y 94x 5y 30x,y Z ≤≤??≤≤? ? +≤??+≥?∈?? z=160x+252y. 如图可行域是ABCD 围成的区域, 作直线160x+252y=0,图形中两直线160x+252y=0和4x+5y=30接近平行, 比较直线斜率k=160252- >-4 5 , 平移直线160x+252y=0,由图可知在A (7, 2 5 )处取到最小值,但A 不是整数解。 在可行域内共有(3,4),(4,3),(4,4),(5,2),(5,3),(6,2),(6,3),(7,1),(7,2)整数解,经检验只有(5,2)是最优解,此时z=160×5+252×2=1304元。 这种方法适用于区域是封闭区域,且区域内的整数点可数,坐标网络画出来容易在图上识别哪些整点在可行域内。 二、利用近似解估算整数最优解 (课本P63例4) 要将两种不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: 今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需的三种规格成品,且所使用钢板张数最少。 解:设需截取第一种钢板x 张,第 二种钢板y 张,则 2x y 15x 2y 18x 3y 27x,y 0,x,y N +≥??+≥? ? +≥??≥∈? 目标函数z=x+y, 如图可行域是阴影部分,目标函数在A 点取到最优解。解方程组 x 3y 272x y 15+=?? +=? 得A (185,39 5) 但不是整数解, 规格类型 钢板类型 A 规格 B 规格 C 规格 第一种钢板 2 1 1 第二种钢板 1 2 3 2018 16 14 12 10 8 6 4 2 -15-10-5 51015 x+y=12 x+3y=27 x+2y=18 2x+y=15 A B C D E x O y x+y=9 4x+5y=3 160x+252y=0 A B C D

线性规划的方法及应用

线性规划的方法及应用 1 引言 运筹学最初是由于第二次世界大战的军事需要而发展起来的,它是一种科学方法,是一种以定量的研究优化问题并寻求其确定解答的方法体系.线性规划(Linear Progromming ,简称LP )是运筹学的一个重要分支,其研究始于20世纪30年代末,许多人把线性规划的发展列为20世纪中期最重要的科学进步之一.1947年美国的数学家丹泽格提出了一般的线性规划数学模型和求解线性规划问题的通用方法――单纯形法,从而使线性规划在理论上趋于成熟.此后随着电子计算机的出现,计算技术发展到一个高阶段,单纯形法步骤可以编成计算机程序,从而使线性规划在实际中的应用日益广泛和深入.目前,从解决工程问题的最优化问题到工业、农业、交通运输、军事国防等部门的计划管理与决策分析,乃至整个国民经济的综合平衡,线性规划都有用武之地,它已成为现代管理科学的重要基础之一. 2 线性规划的提出 经营管理中如何有效地利用现有人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现.这类问题可以用数学语言表达,即先根据问题要达到的目标选取适当的变量,问题的目标通常用变量的函数形式(称为目标函数),对问题的限制条件用有关变量的等式或不等式表达(称为约束条件).当变量连续取值,且目标函数和约束条件为线性时,称这类模型为线性规划的模型.有关对线性规划问题建模、求解和应用的研究构成了运筹学中的线性规划分支.线性规划实际上是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解.从而线性规划模型的基本结构为: ①变量:变量又叫未知数,它是实际系统的位置因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如n x x x ,,,21 等. ②目标函数:将实际系统的目标用数学形式表示出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值(如产值极大值,利润极大值)或极小值(如成本极小值,费用极小值等等). ③约束条件:约束条件是指实现系统目标的限制因素.它涉及到企业内部条件和外部环境的各个方面,如原材料供应设备能力、计划指标.产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件.约束条件的数学表示有三种,即 ,,,线性规划的变量应为非负值,因为变量在实际问题中所代表的均为实物,所以不能为负. 线性规划问题有多种形式,函数有的要求实现最大化,有的要求最小化;约束条件可以是“ ”,

相关文档
相关文档 最新文档